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ABSTRACT

Metabolomics covers a wide range of applications in life sciences, biomedicine, and phytology. Data
acquisition (to achieve high coverage and efficiency) and analysis (to pursue good classification) are two
key segments involved in metabolomics workflows. Various chemometric approaches utilizing either
pattern recognition or machine learning have been employed to separate different groups. However,
insufficient feature extraction, inappropriate feature selection, overfitting, or underfitting lead to an
insufficient capacity to discriminate plants that are often easily confused. Using two ginseng varieties,
namely Panax japonicus (P]) and Panax japonicus var. major (PJvm), containing the similar ginsenosides,
we integrated pseudo-targeted metabolomics and deep neural network (DNN) modeling to achieve
accurate species differentiation. A pseudo-targeted metabolomics approach was optimized through data
acquisition mode, ion pairs generation, comparison between multiple reaction monitoring (MRM) and
scheduled MRM (sMRM), and chromatographic elution gradient. In total, 1980 ion pairs were monitored
within 23 min, allowing for the most comprehensive ginseng metabolome analysis. The established DNN
model demonstrated excellent classification performance (in terms of accuracy, precision, recall, F1 score,
area under the curve, and receiver operating characteristic (ROC)) using the entire metabolome data and
feature-selection dataset, exhibiting superior advantages over random forest (RF), support vector ma-
chine (SVM), extreme gradient boosting (XGBoost), and multilayer perceptron (MLP). Moreover, DNNs
were advantageous for automated feature learning, nonlinear modeling, adaptability, and generalization.
This study confirmed practicality of the established strategy for efficient metabolomics data analysis and
reliable classification performance even when using small-volume samples. This established approach
holds promise for plant metabolomics and is not limited to ginseng.
© 2024 The Author(s). Published by Elsevier B.V. on behalf of Xi’an Jiaotong University. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of Xi'an Jiaotong University.
* Corresponding author. State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.

** Corresponding author.

*#+ Corresponding author. Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences,

Shanghai, 201203, China.

E-mail addresses: wzyang0504@tjutcm.edu.cn (W. Yang), kefengl@mpu.edu.mo (K. Li), daguo@simm.ac.cn (D.-a. Guo).

1 These authors contributed equally to this work.

https://doi.org/10.1016/j.jpha.2024.101116

2095-1779/© 2024 The Author(s). Published by Elsevier B.V. on behalf of Xi’an Jiaotong University. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).


Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wzyang0504@tjutcm.edu.cn
mailto:kefengl@mpu.edu.mo
mailto:daguo@simm.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpha.2024.101116&domain=pdf
www.sciencedirect.com/science/journal/20951779
www.elsevier.com/locate/jpa
https://doi.org/10.1016/j.jpha.2024.101116
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jpha.2024.101116

M. Jiang, Y. Sha, Y. Zou et al.

1. Introduction

Metabolomics, as a part of systems biology, can quantitatively
evaluate variations in small-molecule metabolites across different
samples, accurately reflecting the function of the metabolic network
and uncovering the biological state of the system [1]. Metabolomics
can link differential metabolites to molecular phenotypic changes
and explore the causes of these changes [2]. Currently, the appli-
cation of metabolomics is flourishing in various research fields, such
as studies related to toxicology [3], pharmacology [4], functional
genomics [3,5], early diagnosis of disease [6], gut microbiome [7],
marine organisms [8], plants [9], and the others [10,11]. Among the
general workflows involved in metabolomics analysis, the system-
atic profiling of metabolic features is crucial for gaining high
coverage of the metabolome. This can be achieved using nuclear
magnetic resonance, liquid chromatography-mass spectrometry
(LC-MS), gas chromatography-MS, or capillary electrophoresis-MS.
Using LC-MS, metabolic features can be recorded in the untargeted
(referred to as untargeted metabolomics), targeted (targeted
metabolomics), or pseudo-targeted (pseudo-targeted metab-
olomics) modes. Comparatively, the pseudo-targeted metabolomics
approaches merge a wide linearity range typical of the targeted
mode by multiple reaction monitoring (MRM) to accurately reflect
the real content differences of the metabolites among different
groups. Certain merits of the untargeted mode enable the simulta-
neous profiling of isomeric metabolites with masses of interest [12].
In most cases, MS is utilized because of its high sensitivity, broad
applicability, and high mass-to-charge (m/z) resolution, simulta-
neously offering rich structural information for metabolites identi-
fication. Regardless of whether the MS? acquisition mode is data-
independent or data-dependent, the full-scan MS' data were used
for the multivariate statistical analysis to visualize holistic differ-
ences by untargeted metabolomics. Additionally, diverse multivar-
iate statistical analysis tools, such as partial least squares-
discriminant analysis (PLS-DA), support vector machine (SVM),
random forest (RF), and variational autoencoder, are used to
discover significantly differential metabolites among different
groups [13,14]. Classification, prediction, and biomarker discovery
methods can be extended to other models, including logistic
regression models, least absolute shrinkage and selection operator
(LASSO), correlation-constrained partial least squares (CCPLS),
analysis of variance-simultaneous component analysis plus
(ASCA+), augmented principal component analysis plus (APCA+)
(variance analysis extends to multivariate class [15]), multivariate
curve resolution, neural networks, and Gaussian mixture modeling
[16].

Most classic machine-learning methods, such as RF [17], SVM
[18], and LASSO [19], require handcrafted features for classification
or regression. However, constructing effective models for classifi-
cation using omics datasets is difficult. Methods based on gradient
boosting, such as extreme gradient boosting (XGBoost) [20], and
light gradient boosting machine (LightGBM) [21], have been pro-
posed. Compared to classical machine-learning methods, these
approaches perform well in terms of accuracy and effectiveness;
however, they still struggle with feature selection and robustness.
Recently, deep-learning methods have become dominant ap-
proaches in the domains of computer vision [22], natural language
processing [23], and data mining [24]. Deep neural networks
(DNNs) have also been utilized in herbal metabolome analyses [25].
Deep-learning-based approaches can automatically identify the
relationships between various features and demonstrate significant
advantages over traditional machine-learning approaches when
dealing with high-dimensional omics data. Additionally, deep-
learning methods do not require feature selection, indicating that
they can be developed using a fully integrated process. Moreover,
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deep-learning approaches can efficiently utilize advanced com-
puter hardware, such as graphics processing units (GPUs), signifi-
cantly benefiting model training and deployment.

The insights gained from plant metabolomics research can
profoundly affect the development of natural products, boost
agricultural productivity, and improve food quality [26]. Plants are
important sources with a long medical history of use in the pre-
vention and management of illnesses [27]. Authentication of the
plant origin is particularly important for ensuring the efficacy and
safety of herbal medicines. Holistic metabolic profiling is crucial for
establishing chemical markers to easily differentiate confused va-
rieties of herbal medicines. However, the exact identification of
plant species requires multiple layers of evidence [28]. Thus,
metabolomics has been increasingly developed and employed to
distinguish similar species by providing holistic metabolome
characterization of complex samples, offering a comprehensive
pathway for characterizing and comparing plant metabolites, and
identifying potential chemical markers crucial for species differ-
entiation [29,30]. Plants from the Panax L. genus (Araliaceae) are
experiencing increased global recognition for their remarkable
tonifying properties. They are widely used as vital ingredients in a
range of clinical applications, including healthcare products, func-
tional foods, and cosmetic formulations [27]. Ginseng occupies a
top-selling position in the global natural product market. The
market value of the global ginseng industry has grown significantly.
Chinese patent medicines (CPMs) containing Panax notoginseng and
Panax ginseng (PG) are commonly used. However, according to the
basic theory of traditional Chinese medicine, distinct varieties of
Panax herbal medicines exhibit variations in their properties, me-
ridian tropism, and therapeutic effects. Therefore, they should not
be substitutes for each other in clinical use. For example, Panax
japonicus (P]) tonifies the liver and spleen meridians, disperses
stasis to stop bleeding, and alleviates swelling and pain, while
Panax japonicus var. major (PJvm) tonifies the liver and lung me-
ridians, nourishes the lungs, removes blood stasis, and relieves
pain. Therefore, accurate identification of the origin of Panax spe-
cies is vital to guarantee the efficacy and clinical reliability of herbal
medicines. Multiple secondary metabolites have been extracted
from a variety of Panax plants, including saponins (well known as
ginsenosides), polysaccharides, organic acids/esters, flavonoids,
steroids, and phenols [31]. Additionally, ginsenosides and poly-
saccharides are the major bioactive ingredients among multiple
Panax species and different parts of the same ginseng variety (e.g.,
root, leaf, and flower), rendering it difficult to precisely identify the
ginseng varieties, especially from compound preparations [29]. To
date, ginsenosides have served as exclusive chemical markers for
the quality control (QC) of various ginseng varieties. Particularly in
extracts and preparations (such as the formulation granules and
CPMs) with destroyed appearance features and genetic informa-
tion, monitoring based solely on a few ginsenoside markers (e.g.,
notoginsenoside R1 (noto-R1) and ginsenoside Rgl (Rg1), ginse-
noside Re (Re), and ginsenoside Rb1 (Rb1) fails to accurately
distinguish among the different ginseng varieties [32]. Currently,
numerous reports are available regarding the identification and
differentiation of various Panax herbal medicines using untargeted
[29,33], targeted [34], and pseudo-targeted metabolomics ap-
proaches [29].

In this study, we integrated pseudo-targeted metabolomics and
DNN modeling to differentiate between easily confused medicinal
plants, using PJ] and PJvm as examples. The rhizomes of P] and PJvm
share rich oleanolic acid (OA)-type ginsenosides with similar
compositions and contents, rendering their discrimination as ex-
tracts or formulations challenging [35]. The overall technical
roadmap of this integrated strategy is illustrated in Fig. 1. First, a
series of metabolic feature acquisition modes and methods
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Fig. 1. Technology roadmaps for the strategy by integrating deep neural network (DNN) modeling and liquid chromatography-mass spectrometry (LC-MS)-based pseudo-targeted
metabolomics to discriminate easily confused herbal medicines. 2D-LC: two-dimensional LC; MRM: multiple reaction monitoring; 1D: 1-dimensional; IM-QTOF: ion mobility
quadrupole time-of-flight; MSE: full information tandem MS; HDMSE: high-definition MSF; DDA: data-dependent acquisition; HDDDA: high-definition DDA; QTrap: triple
quadrupole-linear ion trap; EMS-IDA-EPI: enhanced MS scan-information dependent acquisition-enhanced product ion scan; SMRM: scheduled MRM; SPS: split-combine structure;
RF: random forest; OPLS-DA: orthogonal partial least squares-discriminant analysis; SVM: support vector machine; XGBoost: extreme gradient boosting; MLP: multilayer per-

ceptron; AUC: area under the curve; ROC: receiver operating characteristic.

available on three LC-MS platforms were developed and compared
to achieve high coverage of the ginseng metabolome: two-
dimensional LC-MS (2DLC-MS) and targeted-MS on the Agilent
6550 quadrupole time-of-flight (QTOF) mass spectrometer (Agilent
Technologies, Santa Clara, CA, USA); MRM on the AB SCIEX 4500
QTrap (triple quadrupole-linear ion trap) mass spectrometer (Fos-
ter City, CA, USA); and full information tandem MS (MSE) and data-
dependent acquisition (DDA) on the Waters Vion ion mobility (IM)-
QTOF mass spectrometer (Milford, MA, USA). Moreover, the chro-
matographic elution gradient was optimized to achieve high
analytical efficiency without compromising performance in species
differentiation. Second, a high-coverage and efficient ultra-high
performance liquid chromatography/scheduled MRM (UHPLC/
sMRM) approach (targeting 1980 ion pairs) was established to
cover the most comprehensive ginseng metabolome. Third, DNN
model was established and its performance in differentiating be-
tween P] and PJvm was assessed using both the entire metabolome
data and feature-selection dataset. Additionally, its potential ad-
vantages over the commonly used machine- and deep-learning
models were demonstrated.

2. Experimental
2.1. Chemicals and reagents

Sixty-six reference standards for ginsenosides (chemical struc-
tures shown in Fig. S1 and detailed information in Table S1) and the
internal standard (IS) compound, astragaloside IV, were purchased
from Chengdu Desite Biotechnology Co., Ltd. (Chengdu, China) and
Shanghai Standard Biotech Co., Ltd. (Shanghai, China) with a purity
>98%, as determined wusing high performance liquid

chromatography (HPLC) coupled with an ultraviolet (UV) detector.
LC-MS grade acetonitrile, methanol, and formic acid were supplied
by Fisher Scientific (Fair Lawn, NJ, USA). Ultrapure water was pre-
pared in house using a Milli-Q Integral 5 water purification system
(Millipore, Bedford, MA, USA). Information on the ginseng samples
(110 batches belonging to four ginseng varieties: PG, red ginseng
(RG), PJ, and PJvm) are listed in Table S2. Authentication of the
ginseng samples was performed by observing their appearance and
comparing their LC-MS fingerprints with those reported in the
literature. All specimens were deposited at the State Key Laboratory
of Component-based Chinese Medicine, Tianjin University of
Traditional Chinese Medicine (Tianjin, China).

2.2. Preparation of ginseng sample and reference standard solutions

An ultrasound-assisted extraction method was used to prepare
the ginseng samples. The accurately weighed powder of each
sample (500 mg) was extracted with 5 mL of 70% (V/V) aqueous
methanol in a water bath at 40 °C for 1 h (power, 400 W; frequency,
40 kHz). The resultant supernatant was transferred into a 10-mL
volume flask after centrifugation at 3219 g (4,000 rpm) for
10 min. The same extraction process was repeated by adding 3 mL
of 70% (V/V) methanol to the drug residue. The supernatants from
the two extractions were pooled and diluted to a constant volume
(10 mL). The extraction liquid was diluted by five folds and then
centrifuged at 11,481 g (14,000 rpm) for 10 min. The obtained su-
pernatant was used as the test solution (concentration: 10 mg/mL).
A QC sample (QC;) was prepared by mixing test solutions of 30
batches of PG and RG at 10 mg/mL. A QC; sample was derived from
the test solutions of 50 batches of PG and RG at 10 mg/mL. The QC3
sample was prepared using the roots/leaves/flowers of PG, Panax
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quinquefolius, Panax notoginseng, and the rhizomes of P] and PJvm
(two batches for each ginseng variety), with the IS concentration
being constant at 50 pg/mL. Additionally, the stock solutions for the
reference standards were prepared by dissolving an appropriate
amount of each compound in 70% (V/V) aqueous methanol, with
each compound at the concentration of 20 pg/mL in the mixed
standards solution.

2.3. UHPLC/IM-QTOF-MS conditions for creating ion pairs in
pseudo-targeted metabolomic profiling

Several factors affecting the ultimate performance have been
optimized to establish a pseudo-targeted metabolomic profiling
method for the ginseng metabolome. It utilized four different MS
data acquisition modes on three LC-MS platforms, and detailed
information is provided in the Supplementary data and Tables S3
and S4. The conditions used for pseudo-targeted metabolomic
profiling were described below.

Efficient chromatographic separation was achieved on ACQUITY
UPLC I-Class/Vion IM-QTOF system (Waters) configured with a CSH
Cyg column (2.1 mm x 100 mm, 1.7 um) kept at 30 °C. A binary
mobile phase, containing 0.1% (V/V) formic acid each in water (A)
and acetonitrile (B), ran according to the following gradient pro-
gram: 0—1 min, 15%—20% (B); 1-6 min, 20%—30% (B); 6—11 min,
30%—31% (B); 11-13 min, 31%—35% (B); 13—15 min, 35%—40% (B);
15—17 min, 40%—95% (B); and 17—19 min, 95% (B). A flow rate of
0.3 mL/min was set, and the injection volume was 3 pL.

High-accuracy MS data were acquired using Vion™ IM-QTOF
mass spectrometer coupled to UPLC I-Class system via Zspray™
electrospray ionization (ESI) source (Waters). Data acquisition was
conducted using high-definition MSF (HDMSF) in negative mode.
The ESI source parameters were set as follows: capillary
voltage, —2.5 kV; cone voltage, —38 V; source temperature, 123 °C;
desolvation temperature, 458 °C; desolvation gas flow rate (Nj),
900 L/h; and cone gas flow rate (N), 50 L/h. The mass analyzer
scanned over a mass range of 250—1500 Da in full scan, with a scan
time of 0.3 s. The low collision energy (CE) was 6 eV, and the high-
energy ramp was 10—80 eV. For traveling wave IM separation, the
parameters were set to the default values [36]. UNIFI™ 1.9.3.0
software (Waters) was used to acquire and process the data.

2.4. UHPLC/QTrap-MS condition

Pseudo-targeted metabolomic profiling of ginseng samples was
performed using ACQUITY UPLC I-Class system (Waters) coupled
with AB SCIEX QTrap 4500 mass spectrometer via an ESI source. The
chromatographic conditions were the same as those described in
Section 2.3 for UHPLC/IM-QTOF-MS, and the MS data were recor-
ded in negative mode following the ion source parameters: ion
spray voltage, —4500 V; source temperature, 550 °C; curtain gas, 35
psi; gas 1 (GS1) and GS2, 55 psi; declustering potential, 40 eV; and
CE, 54 eV. The acquired data were processed using MultiQuant 3.0.3
software (AB SCIEX, Framingham, MA, USA).

2.5. Establishment and transformation of MRM transitions

In establishing a pseudo-targeted metabolomics approach, a key
aspect is the selection of MRM transitions to achieve high coverage.
Metabolome information was first recorded and analyzed on the
Vion IM-QTOF platform, and MRM transitions were generated and
further applied to the QTrap 4500 platform to acquire multi-batch
data of ginseng samples. The code and script from GitHub (https://
github.com/zhengfj1994/MRM-lon_Pair_Finder) were used to
obtain the MRM ion pairs and correct the retention times recorded
between these two LC-MS platforms. The raw data recorded on Vion
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IM-QTOF were converted into a .csv file using UNIFI software to
obtain the MS! information, and then MS Convert was used to
transform it into.mgf file to obtain the MS? information. The
“MRM_lon_Pair_Finder” R statistical scripting language (version
3.6.1) was invoked to match between the obtained MS! and MS?
information, generating a list of defined MRM transitions. The
retention times of the transitions were corrected based on IS peaks.

2.6. Establishment of a DNN classification model for differentiating
between PJ and Pjvm

Data processing technologies can significantly affect the model
performance, as demonstrated in various studies [37,38]. We
incorporated multiple data processing methods to develop an ac-
curate and robust model for metabolomics datasets. First, we used
the chained equations algorithm to fill in the missing values. Next,
we applied the Box-Cox algorithm to harmonize the data and reduce
variations in the distribution between different institutions. Sub-
sequently, we standardized the data using the min-max method.
Finally, we addressed the data imbalance using the adaptive syn-
thetic sampling method while maintaining a specific balancing ratio.

Model performance was typically evaluated using standard
metrics, such as accuracy, precision, recall, and F1 score. The defi-
nitions of these metrics are provided in Eqgs. 1-4:

Accuracy = TP+ TN Eq. 1
TP+ FP+TN +FN

Precision = % Eq. 2

Recall = TPZ% Eq. 3

F1 score — 2 x Precision x Recall Eq. 4

Precision + Recall

TP, TN, FP, and FN, represent true positives, true negatives, false
positives, and false negatives, respectively.

We proposed a classification model based on DNN by learning
from complex ginseng-omics data. This model comprises two
procedures: a feature extraction and feature mapping modules, as
illustrated in Fig. 2. Particularly, raw ginseng-omics data were
normalized following a log operation. The computation can be
formulated as Eq. 5:

X —
xn:l—'u
[

Eq. 5
where x, and x; denote the results of the normalization and log
operations, respectively. The mean and variance values are repre-
sented by u and g.

These normalized data were then directly fed into the proposed
model without feature selection or additional processes. To alle-
viate the overfitting caused by high-dimensional ginseng-omics
data, we introduced a feature split-combine structure (SPS) into the
proposed 1D residual block (Fig. 2). The proposed SPS was formed
using two parallel 1-dimensional convolution (ConviD) layers,
which forced the model to learn more distinct representations from
the input sequence. SPS splits the input feature channel-wise,
which has little impact on the model parameters and computa-
tional costs. We applied Mish as the activation function [39]. Mish is
a smooth and self-regularized function that demonstrates better
performance than rectified linear unit (ReLU) [40], Swish [41], and
scaled exponential linear unit (SELU) [42]. It is defined as Eq. 6:


https://github.com/zhengfj1994/MRM-Ion_Pair_Finder
https://github.com/zhengfj1994/MRM-Ion_Pair_Finder

M. Jiang, Y. Sha, Y. Zou et al.

5 s 21
4 : HEN IR
bt o %, == g |
2. N i
"/ . a ] o s |
5 R | @ = |
b .§\ : :
< (o))
c
Py o
@ » : 8
X o =
Ginseng Omics Max pooling Conv1D
dataset layer layer
=
g ¢ D
= g .
S
Mish Feature Linear Concatenate
function transform layer

Journal of Pharmaceutical Analysis 15 (2025) 101116

o
\-0/1@

\

SPS block

[ Transform ]

Mish
Mish

Conv1D
Mish

Conv1D

Conv1D

Input
"

Conv1D
Mish
Conv1D
Mish
Conv1D
Mish

Fig. 2. Architecture of the classification model based on deep neural network (DNN). SPS: split-combine structure; Conv1D: 1-dimensional convolution.

f(x) = x tanh(In(1 + €¥)) Eq. 6
where the x denotes the input feature maps.

For the feature mapping module, we employed several fully
connected layers in a cascading manner that could add the output of
each head to the subsequent head to progressively refine the feature
representations. The predicted results are formulated as Eq. 7:

Rd = (D((D(Rd,l) + ARd) Eq 7
where, the Ry is the prediction result, and ARy denotes the pre-
dicted offsets by the dth layers.

Because there were some differences between the numbers of
categories in the training data, we used focal loss to optimize this
challenge. Focal loss is defined as Eq. 8 [43]:

< = —ar(1—pr)? log (pr) Eq. 8

where, a; is the balance parameter and p; can be calculated as Eq. 9:

_ p
pt*{]—p

where, p € [0,1] represents the probability of the input sample by
model.

For the training stage, we applied the Adam optimizer and
cosine learning rate scheduler. The total number of epochs were set
to 100 with a batch size of 64. The initial learning rate was set to
1 x 10~* with the momentum of 0.9 and weight decay of 3 x 1074,
The model was built using PyTorch and trained from scratch on one
Nvidia A100 GPU. The cross-entropy loss was employed to provide
supervision information for model training.

ify=1

other Eq.9

2.7. Discovery of differential ginsenosides between P] and PJlvm using
a pattern recognition pseudo-targeted metabolomics approach

Ginsenosides from PJ and PJvm were compared using the
following workflows: 1) the multi-batch ginseng metabolomics

data (containing 1980 metabolic features) were processed using
MultiQuant software (AB SCIEX); 2) 659 robust metabolic features
were screened by “80% rule” [44]; 3) the resultant data matrix was
imported into SIMCA 14.1 software (Sartorius, Umea, Sweden) for
pattern recognition chemometric analysis, including principal
component analysis (PCA) and orthogonal partial least squares-
discriminant analysis (OPLS-DA); and 4) those variables with var-
iable importance in projection (VIP) > 1.0 were considered as
potentially differential ginsenosides.

3. Results and discussion

3.1. Development of a high-coverage and efficient pseudo-targeted
metabolomic profiling strategy enabling differentiation of ginseng
varieties

Various ginseng varieties contain similar metabolomes (the
nature and composition of different subcategories of metabolites,
such as saponins [29], polysaccharides [33], and volatile oils [45]),
rendering their differentiation difficult when the appearance fea-
tures disappear. To achieve elaborate metabolome discrimination
relying on LC-MS, high coverage on the metabolome is desirable to
uncover more potential metabolite markers. However, short anal-
ysis time and uncompromised differentiation performance are
beneficial for high-throughput analysis. To develop a potent
analytical strategy enabling the differentiation of various ginseng
varieties, the data acquisition modes and methods (e.g., compari-
son among full-scan MS, selective ion monitoring (SIM), MRM, and
ion pairs generation in MRM) and chromatographic separation time
were sequentially optimized.

3.1.1. Comparison of metabolic features acquisition modes
Considering that the untargeted full scan and targeted SIM and
MRM can be utilized in the acquisition of metabolic features, four
different methods, involving full scan of UHPLC/QTOF-MS (Method
1) and 2DLC-QTOF-MS (Method 2), targeted-MS of UHPLC/QTOF-
MS (Method 3), and MRM of UHPLC/QTrap-MS (Method 4), were
compared to evaluate their performance in discriminating the
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similar ginseng varieties (using the QC; sample containing PG and
RG). The former two methods are based on full-scan MS but differ
in chromatographic separation (detailed information is provided in
the Supplementary data), whereas Method 4 records the MS/MS
data. Method 3 is essentially the SIM mode that utilizes the
targeted-MS function.

The different performances of these four methods could be
embodied in four aspects: the number of recorded metabolic fea-
tures, data repeatability, detected ion response range, and classifi-
cation effectiveness. First, when viewed by their ability to detect
metabolic features, Method 2 using 2DLC-MS separated and
detected the most metabolites (690), followed by Method 1 using
LC-MS (367), Method 3 using targeted-MS (268), and Method 4
using MRM (154). This indicated that 2DLC-MS method was more
effective in acquiring the entire metabolome information than
those based on one-dimensional chromatography strategies. Sec-
ond, data repeatability reflecting system stability is significant in
large-batch metabolomics analysis, which is usually evaluated us-
ing the coefficient of variation (CV). By observing the clustering of
the QC; data, PCA score plot can embody data quality. The QC; data
gathered by Method 4 using MRM were the closest, whereas those
obtained by Method 2 were severely separated (Fig. 3A). Fig. 3B
shows the cumulative percentage of the compounds versus the CVs
measured using all four approaches. Consistently, the MRM data
showed less than 10% of compounds with CV > 0.7, whereas
Method 1 and Method 2 data displayed higher compound
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percentages with CV > 0.7. Notably, Method 3 contained more than
50% of the compounds with a CV > 0.7. Impressively, the median CV
for Method 4 was approximately 0.5, and about 50% of the com-
pounds had a CV < 0.5. Additionally, the relative standard deviation
(RSD) of 35% of the compounds in Method 4 was less than 5%, and
the compounds with RSD >30% accounted for 11%, demonstrating
the least variation among the four methods (Fig. 3C). Third, the
detected ion response range is another key parameter for estab-
lishing a robust metabolomics approach aimed at discovering
untargeted markers [29]. For the same analytes using different
batches of ginseng samples (data of 13 reference compounds;
Table S5), a wider ion response detection range could better reflect
the real content variations among the different groups. Conse-
quently, Method 3 and Method 4 exhibited superior coverage
across orders of magnitude, compared with the other two methods.
Compared to Method 3, Method 4 using MRM demonstrated a
similar or even more consistent performance (Fig. 3D). Fourth, the
classification effect on PG and RG was evaluated using a machine-
learning algorithm called RF in terms of F1 score, area under the
curve (AUC), and number of features [46] (Table S6). Using the RF
model in Python, we iteratively adjusted the number of decision
tree branches to optimize the F1 and AUC values. Both Method 1
using LC-MS (MS!) and Method 4 using MRM achieved F1 values of
1, which were higher than those of targeted-MS and 2DLC-MS
(MS!) methods. Moreover, the number of differential metabolic
features by Method 4 MRM (17) was smaller than that of the other
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three methods, indicating that the MRM method could select the
most relevant or informative features to effectively classify data
using the minimum number of metabolic features. Thus, we
concluded that the MRM method could distinguish ginseng sam-
ples more accurately and efficiently. Therefore, the MRM-based
pseudo-targeted metabolomic profiling method was selected for
comprehensive metabolome comparison of the ginseng varieties.

3.1.2. Comparison of the ability to generate ion pairs in establishing
a high-coverage pseudo-targeted metabolomics approach

Based on the selected MRM pseudo-targeted acquisition mode,
we sought to expand the composition of ion pairs to cover the most
comprehensive ginseng metabolome (using the QCs sample
composed of 12 different ginseng varieties). For this purpose, six
MS? data acquisition approaches, available on three LC-MS plat-
forms, were examined and assessed: 1) MSE and HDMSE (data-in-
dependent), DDA and high-definition DDA (HDDDA) (data-
dependent) on Vion IM-QTOF-MS; 2) enhanced MS scan-
information dependent acquisition-enhanced product ion scan
(EMS-IDA-EPI) on QTrap 4500; and 3) DDA (auto-MS/MS) on 6550
QTOF-MS. An open-access method was utilized to establish the ion
pairs and align the retention times determined between the three
LC-MS and QTrap 4500 platforms (used to construct the MRM
approach). In this section, the number of ion pairs was utilized as
the sole criterion. These six methods were ranked in the following
order: MSE (5153), HDMSE (3954), DDA (412), HDDDA (323), auto-
MS/MS (219), and EMS-IDA-EPI (60). This demonstrated a much
higher coverage of data-independent acquisition strategies in
acquiring the MS/MS information of the ginseng metabolome.
Enabling IM separation (HDMSE) can significantly enhance the
resolution of components, thereby largely reducing the false-
positive results recorded by MSE in inducing reliable matching
between the precursor and product ions, as previously reported
[47]. The balanced detection sensitivity and data quality rendered
HDMSE an excellent choice for generating rich ion pairs related to
the ginseng metabolome. Therefore, we chose HDMSE mode to
obtain the MRM transitions to discriminate among ginseng
varieties.

3.1.3. Comparison of chromatographic separation time to enable
high-throughput analysis

The chromatographic conditions in LC-MS can affect the
acquisition of metabolic features, thus determining the perfor-
mance in differentiating ginseng varieties. According to related
literature, the gradient elution program of reversed-phase HPLC
used to separate the ginseng metabolome typically ranged from 30
to 70 min [34,36]. However, studies investigating the relationship
between the separation time and differentiation performance in
metabolomics are rare. In this study, different degrees of
compression were applied to the elution gradient (45-, 35-, 23-, and
12-min gradients) based on a 57-min chromatographic gradient
that could effectively resolve the major compounds. Here, we
examined their differentiated ability in detecting 50 ginsenoside
reference compounds (common to the ginseng varieties, 20 pug/mL
for each; Table S7) and generating associated ion pairs separately
from a mixed standards solution and the QC, sample, caused by
different chromatographic separation time.

From the perspective of mixed standard solutions, all ginseno-
side compounds were detectable using 45-, 35-, and 23-min gra-
dients. However, m-Rb3 (m/z 1163.5856) was not detected in the
57- and 12-min elution programs. The number of generated ion
pairs was the highest for the 35-min gradient (46), followed by 23-
min (44), 45-min (43), 57-min (42), and 12-min (31) gradients
(Table S8). For the QC, sample, the average number of compounds
detected through three injections were 48 for the 57- and 45-min
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gradients, followed by 47 for the 35-min, 46 for the 23-min, and
45 for the 12-min gradients. Owing to the complexity of ginseno-
sides in the QC, sample, the MS? information of the co-eluted
compounds with a low response was masked, leading to a reduc-
tion in the generated ion pairs. The number of converted ion pairs
were 35 for the 57- and 45-min gradients, 33 for the 35-min, 32 for
the 23-min, and 26 for the 12-min gradients. The resulting
metabolomic data were evaluated for comparison. PCA score plot
indicated that QC; aggregation based on the 23-min elution was the
closest (Fig. 3E). From the mixed standards sample (three parallel
injections), the most stable performance was gained by the 45-, 35-,
and 23-min gradients, with the ions having RSD < 5% accounting
for 98%, followed by the 57-min (94%) and 23-min (98%)
(Tables S9—-S13). From the QC, sample, the ions that exhibited the
variation of RSD < 5% were the most stable for the 57-min gradient
(86%), followed by the 23-min (84%), 35-min (81%), 45-min (73%),
and 12-min (59%) gradients (Tables S14—S18). Based on these re-
sults, it was concluded that the number of detected reference
standards and corresponding ion pairs from the data of 23-min
gradient were comparable to those obtained by longer chromato-
graphic gradients, such as 57- and 45-min. However, the 23-min
gradient significantly improved the analysis efficiency. Addition-
ally, the stability of the compounds collected using the 23-min
gradient was good, indicating that short-term chromatographic
separation was more conducive to maintain the stability of the
detected compounds. Following the established metabolomics data
processing approach (peak picking), the quantities of extracted
metabolic features were in the following order: 777 (45-min
gradient) > 735 (35-min) > 708 (23-min) > 687 (57-min) > 531
(12-min). The 23-min gradient yielded the lowest proportion
(23.43%) of features with RSD > 30%. RF classifier was used to
compare the clustering differences resulting from the settings of
the five different elution gradients (Table S19). The results indicated
that the number of selected differential components based on 23-
min data was fewer than that screened by the other four gradient
approaches. This suggested that the 23-min method could distin-
guish between the two groups with fewer variables. Moreover, by
selecting differential compounds with VIP >1.0, F1 values of the 23-
, 45-, and 35- gradients were equal to or greater than those of the
57-min approach. This indicated a better performance of the 23-,
45-, and 35-min methods in differentiating the similar ginseng
varieties. Therefore, the 23-min gradient was regarded as the most
effective and was subsequently utilized to establish an MRM
pseudo-targeted metabolomics approach for distinguishing the
ginseng varieties.

3.1.4. Comparison between MRM and sMRM

MRM can be operated in regular and scheduled modes. SMRM
has a higher capacity for ion pairs. In this mode, the spectrum for
each ion pair is recorded in a predefined time window, rather than
throughout the entire LC run. To encompass metabolome infor-
mation covering more ginseng varieties, we analyzed the negative
HDMSE data for the QC; sample, which generated a total of 526 ion
pairs. For such a heavy detection task within 23 min, it was
necessary to compare the performances of the regular MRM and
sMRM.

To establish the SsMRM approach on QTrap 4500 LC-MS plat-
form, we performed a retention time correction with reference to
the retention differences of 10 ginsenoside compounds to cover the
pre-, mid-, and post-chromatographic gradients [40]: 20-0-gluco-
sylginsenoside Rf (20-0-glu-Rf), Re, ginsenoside Rh1 (Rh1), ginse-
noside Ral (Ral), noto-S, ginsenosides Rs1, Rg4, Rk3, 20(R)-
ginsenoside Rg3, and ginsenoside Mc. Notably, we used a ready-
made function in R statistical scripting language for retention
time calibration. Each MRM transition was detected within a



M. Jiang, Y. Sha, Y. Zou et al.

retention time window, and the drift in retention was calibrated to
prevent false negatives [48]. The final retention information for 526
ion pairs is provided in Table S20, and the retention time correction
deviation met the SMRM detection time window of 60 s (retention
time + 30 s).

The principles of SMRM and MRM were elucidated and their
respective representative chromatograms (using the QCs sample)
are shown in Fig. 4. Typically, allocating a minimum 10-ms dwell
time for each ion pair without compromising the reproducibility of
the integrated peak in MRM is necessary [49]. The cycle time was
equal to the total dwell time of all transitions plus all pause times
(Fig. 4A). In the present study, up to 526 ion pairs were monitored
in negative ESI mode, resulting in a calculated cycle time of 2.9 s.
Therefore, it was unsatisfactory to use MRM, as approximately five
data points were recorded (Fig. 4B). Notably, the data points can
vary for different compounds according to their peak widths after
chromatographic separation. Additionally, compared with MRM,
the narrow detection window (60 s) of sMRM reduced the number
of concurrent ion pairs, and the dwell time was automatically
maximized without requiring a long cycle time (Fig. 4C). Approxi-
mately 12 representative chromatographic peaks were obtained
using SMRM, which met the requirements for a reliable quantita-
tive assay (Fig. 4B). Moreover, the peaks recorded by sSMRM showed
larger or comparable peak areas to those in regular MRM chro-
matograms. Meanwhile, owing to the sufficient dwell time for each
ion pair, the detected noise level was lower than that in MRM.
Accordingly, a pseudo-targeted ginsenoside profiling approach was
developed on QTrap 4500 LC-MS platform using a 23-min gradient
elution and highly specific sSMRM mode.

We further assessed the quantitative performance of the
established pseudo-targeted metabolomics method in terms of
linearity and precision (intra- and inter-day). Notably, 1169

A C

7 Magnified view of noise m PPT

Journal of Pharmaceutical Analysis 15 (2025) 101116

metabolites were obtained through the 80% rule treatment on 1980
transitions, covering 12 ginseng varieties across the entire 256-fold
dilution series of QCs. Of these, 300 metabolites showed an integral
peak, which were subjected to statistical analysis to evaluate the
linearity of the MRM transitions. The percentages of metabolites
with R? > 0.95 and R? > 0.8 were 39% and 81%, respectively (Fig. 5A).
If more than 80% of the metabolites had R? > 0.8, the results were
considered to be acceptable [50]. Owing to the excessive number of
ion pairs and incomplete integration of some minor or trace com-
pounds, metabolites with complete peak integration were selected
to assess the precision, which was evaluated by calculating the CV
values of repeated injections on the same day (intra-day) and over
three successive days (inter-day). As a result, 75.7% of the metab-
olites (accounting for 99.55% of the total peak area) showed RSD <
15% on the first day (Fig. 5B). For three consecutive days, 73.3% of
the metabolites, accounting for 99.52% of the total peak area,
exhibited variation with RSD < 15% (Fig. 5C). These results
demonstrated the robustness of the established pseudo-targeted
metabolomics approach for large-scale ginseng metabolome
analyses.

3.2. Comparison of the differentiation performance between DNN
and other models

In the practice of discriminating easily confused herbal medi-
cines using multivariate statistical analysis, challenges often arise
from the small sample size and tendency of the classification model
to overfit. DNN can overcome these challenges through feature
learning, fitting capabilities, and regularization. To demonstrate the
potential merits of our established DNN model in discriminating
between P] and PJvm (two highly similar ginseng varieties), we
evaluated the performance of DNN and other classic models
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(involving machine-learning models, such as RF, SVM, XGBoost,
and common deep-learning multilayer perceptron (MLP)) sepa-
rately, based on the entire metabolome dataset (original) and
dataset after feature selection. To minimize the impact of random
partitioning on the results, we utilized five-fold cross-validation to
assess the prediction performance of the proposed model. In this
section, multidimensional indicators, such as accuracy, precision,
recall, F1 score, AUC, and receiver operating characteristic (ROC)
were utilized for a comprehensive performance comparison. The
results obtained from the original metabolome dataset and dataset
after feature selection (those with VIP > 1.0 by OPLS-DA were
selected) are presented in Table 1.

The DNN model evidently outperformed the existing methods
with significant advantages for all examined indicators. Compared

Table 1

Comparison of the performance of established deep neural network (DNN) in
differentiating between Panax japonicus (PJ) and Panax japonicus var. major (PJvm)
with the other conventionally utilized methods.

Models  Accuracy (%) Precision (%) Recall F1 score
Original® FSD Original® FSD® Original® FSD" Original® FSDP
RF 0.875 0.875 0.85 0.85 0.909 0919 0.870 0.895
SVM 0.85 0.9 0.9 09 0.874 0.919 0.966 0.888
XGBoost 0.775 0.85 0.75 09 0.793 0.84 0.737 0.867
MLP 0.9 0.95 0.95 095 0914 096 0.916 0.949
DNN 1 1 1 1 1 1 1 1

2 The entire ginseng metabolome data.

b Feature-selection dataset (FSD) was provided by the partial least squares-
discriminant analysis (PLS-DA) model with variable importance in projection (VIP) >
1.0.

RF: random forest; SVM: support vector machine; XGBoost: extreme gradient
boosting; MLP: multilayer perceptron.

with XGBoost, our current classification system demonstrated a
relative improvement of 35.6% in terms of F1 score. Notably, the
DNN system achieved 100% classification accuracy without feature-
selection or additional processing, which is extremely difficult to
accomplish using the existing methods. Based on the feature-
selection dataset, the performance of all methods was signifi-
cantly improved, compared to the original metabolome dataset. For
instance, XGBoost achieved relative improvements of 9.7% and
17.3% in terms of accuracy and F1 score, respectively. Despite this,
existing systems (such as RF (the implementation details of RF
classifier are shown in Fig. S2, SVM, XGBoost, and MLP) failed to
create a flawless classification model for differentiating between PJ
and PJvm. Our proposed method performed best on a feature-
selection omics dataset.

The DNN method demonstrated superior performance
compared to existing approaches for both the original and feature-
selection datasets. This indicated that our method could learn
robust representations from the complex omics datasets. Moreover,
the DNN method can be easily trained and deployed end-to-end,
making it a convenient solution for data analysis.

To further analyze its performance, the model size and
computational cost were evaluated and compared with those of
other deep-learning-based approaches such as MLP. A widely used
metric to measure the computational cost is the number of
floating-point operations (FLOPs), which defines the number of
multiple adds. Deep-learning models are renowned for their
complexity and the massive number of computations they perform
[51], making the computational cost a significant consideration. In
practical situations, the computational cost is closely related to the
resources required. Model parameters play a crucial role in the
functioning of neural networks, which form the backbone of many
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plotted by two ginseng varieties vs. 23 ginsenoside markers. (D) The multi-channel scheduled multiple reaction monitoring (SMRM) chromatograms to show the detection of
representative ginsenoside markers. (E) Box charts illustrating the content difference for three marker compounds between two ginseng varieties. QC: quality control; p-RP1:
pseudoginsenoside RP1; p-Rt1: pseudoginsenoside Rt1; chiku-IV: chikusetsusaponin IV; Rg1: ginsenoside Rg1; pRT2: pseudoginsenoside RT2; p-F11: pseudoginsenoside F11; Rd2:
ginsenoside Rd2; OA-GlurA-Glc-Xyl-Ace-3H,0: oleanolic acid-glucuronic acid-glucose-xylose-acetate-trihydrate; vina-R8: vinaginsenoside R8; Re: ginsenoside Re; Rf: ginsenoside
Rf; noto-R2: notoginsenoside R2; Ro: ginsenoside Ro.
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deep-learning models. During the training process, these parame-
ters are learned, and the ability of the network to make accurate
predictions is determined. Model parameters refer to the weights
and biases associated with each neuron or node in the network.
These parameters control the strength and direction of the con-
nections between neurons, enabling the network to learn complex
patterns and relationships in the data. Table S21 details all com-
parison results in terms of the model parameters and computa-
tional cost (FLOPs). Based on these findings, it is evident that the
computational costs and parameter requirements of the employed
deep-learning model are quite small. The MLP is a well-established
deep-learning model that frequently yields favorable results for
sequence data analysis tasks. However, it remains difficult to clas-
sify PJ and PJvm effectively. The proposed DNN model utilizes the
benefits of Conv1D to effectively extract features. The results indi-
cate that our proposed DNN model has only a slight disadvantage in
terms of running speed and model calculation compared with the
MLP method. Our method has only 6.7% of model parameters of
MLP, making it compact and suitable for deployment on hardware
devices, while significantly saving computing resources.

To demonstrate the effectiveness of the proposed deep-learning
model, we compared it with a traditional chemometric pattern
recognition method. As shown in Fig. 6A, the samples were not fully
distinguishable in PCA score plot between PJ and PJjvm (based on the
data of 659 metabolic features). This finding indicated that the
chemometric pattern recognition method had difficulty in dis-
tinguishing between these two similar ginseng varieties. A permu-
tation plot was used to assess the integrity of OPLS-DA model
(Fig. 6B), which demonstrated a satisfactory general interpretation
rate (R2X = 0.636 and R’Y = 0.874) and predictive ability
(Q? = 0.787). When the VIP cutoff value was set to 1.0, 32 ginseno-
sides (Table S22) were selected, which were identified by compar-
ison with reference compounds or through integrated analysis of
their negative-mode collision-induced dissociation-MS? data [27].
Among them, the content variations of 23 ginsenosides, including
eight OA-type, four protopanaxadiol (PPD)-type, four ocotillol (OT)-
type, three protopanaxatriol (PPT)-type, two malonylated, and two
others, significantly contributed to the distinction between PJ and
PJvm, as shown in the heatmap (Fig. 6C). Fig. 6D shows the MRM
spectra of the characteristic ginsenoside markers in representative
ginseng samples. Box charts displaying the differences in the con-
tent of important ginsenoside markers are shown in Fig. GE.
Importantly, the relative abundance (peak area ratio) of some gin-
senoside markers may provide key identification points for PJ and
PJvm. First, both P] and PJvm were characterized by the richness of
OA-type ginsenoside Ro (Ro) (m/z 955.4926), chikusetsusaponin
(chiku)-IV (m/z 925.4806), and chiku-IVa (m/z 793.4397), whereas
neutral PPD-type ginsenoside Rd (Rd) and PPT-type Rg1 were also
common in these two ginseng varieties. These ginsenoside markers
can be used to distinguish different ginseng varieties. Second, chiku-
IV, Rg1, and Rd, showed high potential to discriminate between PJ
and PJvm. PJ contained richer chiku-IV and Rg1 than PJvm, while Rd
was more abundant in PJvm: 1) chiku-IV/Ro > 2 (27 out of 30 batches
satisfied, 2.08—6.92) for PJ, while chiku-IV/Ro < 2 (27 out of 30
batches, 0.52—1.97) for PJvm; 2) Rg1/Ro > 0.1 (23 out of 30 batches,
0.1-0.24) for PJ, while Rg1/Ro < 0.1 (26 out of 30 batches,
0.09-0.001) for PJvm; and 3) Rd/Ro > 1 (28 out of 30 batches,
1.27-7.01) for PJvm, while Rd/Ro < 1 (17 out of 30 batches,
0.01—-0.93) for PJ.

In summary, the advantages of the DNN model, compared with
traditional chemometric models, lie in the performance benefits
(achieving a performance comparable to the traditional methods
using the feature-selection dataset), computational efficiency
(suitable for modern high-performance computing hardware, such
as GPU acceleration, processing multiple batches of P] and PJvm

1

Journal of Pharmaceutical Analysis 15 (2025) 101116

data in only 3 s, whereas traditional pattern recognition requires
complex data preprocessing and analysis), and generalization
ability (capable of better handling and adapting to new data;
models trained on P] and PJvm datasets require little or no modi-
fication for the transformed application to the datasets of other
ginseng varieties).

4. Conclusion

A powerful strategy was presented to differentiate easily
confused herbal medicines by integrating pseudo-targeted metab-
olomics and DNN modeling. The established DNN model exhibited
perfect classification performance in terms of accuracy, precision,
recall, F1 score, AUC, and ROC. It showed renowned merits over the
widely utilized RF, SVM, XGBoost, and MLP models. It also has ad-
vantages in terms of computational efficiency and generalization
ability. Moreover, we successfully established a pseudo-targeted
metabolomics data acquisition method, which could enable holis-
tic metabolomic comparison among common ginseng varieties in an
efficient manner. The combination of pseudo-targeted metab-
olomics data acquisition and DNN modeling renders it a potent
vehicle for facilitating metabolomics comparison studies of easily
confused medicinal herbs, such as ginseng, which is beneficial for
QC in a wide variety of research fields.
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