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Abstract: The tube contours in two‐dimensional images are important cues for optical three‐dimen‐

sional reconstruction. Aiming at the practical problems encountered in the application of tube con‐

tour detection under complex background, a fully convolutional network (FCN)‐based tube contour 

detection method  is proposed. Multi‐exposure  (ME)  images are captured as  the  input of FCN  in 

order to get information of tube contours in different dynamic ranges, and the U‐Net type architec‐

ture is adopted by the FCN to achieve pixel‐level dense classification. In addition, we propose a new 

loss function that can help eliminate the adverse effects caused by the positional deviation and jag‐

ged morphology of tube contour labels. Finally, we introduce a new dataset called multi‐exposure 

tube contour dataset (METCD) and a new evaluation metric called dilate inaccuracy at optimal da‐

taset scale  (DIA‐ODS)  to reach an overall evaluation of our proposed method. The experimental 

results show that the proposed method can effectively improve the integrity and accuracy of tube 

contour detection in complex scenes. 

Keywords: fully convolutional network; tube contour detection; multi‐exposure images; U‐Net;   

dilation operation 

 

1. Introduction 

Tubes are widely used in the fields of aerospace, automobiles, ships, and other fields 

for transporting liquids or gases such as fuel, coolant, and lubricating fluid. These tubes 

are generally metallic. The contours of tubes in two‐dimensional images usually appear 

as edges containing certain shallow features (such as gradient, intensity) and deep fea‐

tures (such as texture, shape, and spatial relation), as shown in Figure 1a. Accurate detec‐

tion of these contours is very important for achieving three‐dimensional reconstruction 

and measurement of tubes [1–3]. In theoretical research and practical applications, many 

scholars have proposed various methods that can be used for the detection of tube con‐

tours. 

In the field of image processing, many edge detection algorithms have been proposed 

[4,5], and some of them have been used to perform tube contour detection in some single 

tube measurement applications [3,6]. These kinds of methods only require the gradient 

information in the image to complete the edge detection work. Therefore, these methods 

have the advantage of simple design, easy operation and high efficiency. However, due 

to  the  lack  of high‐level  features,  these methods  are  easily disturbed  by messy  back‐

grounds, uneven lighting and ambient noise. 

There are some other researchers [7,8] who adopted the combination of multiple fea‐

ture descriptors, such as texture, shape and spatial relation, to realize the tubular object 

recognition under general background. To a certain extent, these kinds of methods im‐

prove  the  robustness  and  stability  of  the  result.  However,  these  methods  need  a 
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Abstract: The spread of the Coronavirus (COVID-19) pandemic across countries all over the world
urges governments to revolutionize the traditional medical hospitals/centers to provide sustainable
and trustworthy medical services to patients under the pressure of the huge overload on the com-
puting systems of wireless sensor networks (WSNs) for medical monitoring as well as treatment
services of medical professionals. Uncertain malfunctions in any part of the medical computing
infrastructure, from its power system in a remote area to the local computing systems at a smart
hospital, can cause critical failures in medical monitoring services, which could lead to a fatal loss of
human life in the worst case. Therefore, early design in the medical computing infrastructure’s power
and computing systems needs to carefully consider the dependability characteristics, including the
reliability and availability of the WSNs in smart hospitals under an uncertain outage of any part of the
energy resources or failures of computing servers, especially due to software aging. In that regard, we
propose reliability and availability models adopting stochastic Petri net (SPN) to quantify the impact
of energy resources and server rejuvenation on the dependability of medical sensor networks. Three
different availability models (A, B, and C) are developed in accordance with various operational con-
figurations of a smart hospital’s computing infrastructure to assimilate the impact of energy resource
redundancy and server rejuvenation techniques for high availability. Moreover, a comprehensive
sensitivity analysis is performed to investigate the components that impose the greatest impact on the
system availability. The analysis results indicate different impacts of the considered configurations on
the WSN’s operational availability in smart hospitals, particularly 99.40%, 99.53%, and 99.64% for the
configurations A, B, and C, respectively. This result highlights the difference of 21 h of downtime per
year when comparing the worst with the best case. This study can help leverage the early design of
smart hospitals considering its wireless medical sensor networks’ dependability in quality of service
to cope with overloading medical services in world-wide virus pandemics.

Keywords: Internet of Things (IoT); smart hospital; energy resources; availability; stochastic Petri net

1. Introduction

The Internet of Medical Things (IoMT) has become an important computing paradigm
in recent years due to the emergence of new diseases around the world. In IoMT, wireless
medical devices and sensors are integrated and harmonized into a common network in
smart hospitals [1]. IoMT is a medical monitoring system that provides continuous real-
time monitoring and observation services to patients through wearable health sensors and
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devices with wireless body area network (WBAN), artificial intelligence (AI), and remote
monitoring techniques [2]. With the functional advantages of IoMT, an early warning
system equipped with real-time data collection and storage can do in-depth and rapid
analysis to control the spread of infectious diseases and decrease the workload of healthcare
services. Wireless sensor data generated by hardware devices, such as cell phones, are
usually transmitted to a cloud/fog computing platform for decision making. Therefore, the
operational continuity of the IoMT’s overall infrastructure, from its power supply network
in remote areas to the IT systems of local hospitals, is essential in this period.

Smart hospital infrastructures have many functions that keep them running [3], such
as (i) medical equipment (wireless sensors) for remote monitoring and remote diagnos-
tic diagnostics; (ii) networked medical equipment (bracelet heart rate monitor wireless
thermometer, blood glucose meter, etc.); (iii) network device (transmission media routers
gateways, etc.); (iv) data (related to patient or staff information); and (v) buildings and
facilities (some sensors are distributed throughout the hospital). The proper functioning
and integration of these five macro-resources must be rigorously ensured and continuously
maintained. Computer systems in hospitals often need to run as efficiently as possible
with minimal latency. However, local servers alone are not enough to handle the large
volumes of data generated during severe pandemic cases. Therefore, using not only edge
servers but also cloud servers is imperative. Such a complex and distributed infrastructure
involving sensors, actuators, and servers could not be missing any component. In some
cases, failure of one component can lead to a complete failure of the patient monitoring
system. Therefore, it is essential to carry out studies to ensure the maximum availability of
such systems.

Without exception, IoMT is certainly prone to partial crashes and system crashes [4].
In the context of a pandemic, the ability to maintain 24/7 medical services from your IoMT
is essential, but it is difficult due to the large number of data transactions that can lead
to unexpected events, unexpected medical events, and even serious losses of life. The
possibility of actual active incidents of IoMT in medical centers has been demonstrated in
reports in practice. At LDS Hospital in Salt Lake City, Utah, USA, a computerized hospital
information system called Health Assessment Through Logic Programming (HELP) handles
17,000 logins per day [5,6]. A survey of Electronic Medical Record (EMRD) downtime in a
crowded urban emergency department from May 2016 to December 2017 in [7] found there
was a total of more than 58 h of downtime, and 12 episodes of EMRD occurred during the
study period with 5-h unpredictable intervals. The EHR system at the National Institutes of
Health Clinical Center (NIHCC) in the United States unexpectedly closed on 13 May 2010,
resulting in all patients suddenly losing access to available clinical information, potentially
affecting patient care and safety [8]. These factors require IoMT researchers to understand
the nature of availability issues and their solutions through detailed modeling and system
design evaluation before the system is deployed.

Assessing the availability of hospital computer systems is important but sometimes
unfeasible to perform in real environments. Hospital computer systems are sensitive as they
handle critical patient data. These systems and equipment usually have a high monetary
cost, making on-site experiments unfeasible. Two aspects that initially directly impact the
availability of smart hospitals are the electricity service quality provided to the hospital and
issues related to the software system’s aging. If the hospital does not have electricity, its
systems will be off. If software performance is affected by computational aging (memory
leakage, for example), it will also cause general availability to drop somewhat. Thus, the
question that guides this paper is: What is the impact of using different energy sources and
software rejuvenation methods on the availability of smart hospital computer systems?

This work has two main focuses—energy issues and the smart hospital. The re-
lated work has focused on one of the two contexts in isolation. Oueida et al. [9] and
Greco et al. [10] were the only works that focused on IoT. Araujo(b) et al. [11] was unique in
the context of smart buildings. All experimental works in the energy context used reliability
or availability metrics without directing them to the hospital context. Some smart hospitals
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performed availability analysis without observing energy issues and software aging. The
works by Oueida et al. [9], Greco et al. [10], Chen et al. [12], and Araujo(a) et al. [13] used
metrics more focused on the performance area. Therefore, to the best of our knowledge, our
work is unique in exploring availability and reliability in the hospital context by looking at
energy and software aging issues.

The availability analysis of hospital systems supported by IoMT is often unfeasible
in real environments. Formal mathematical models such as queue networks, Markov
chains, and Petri nets can be adopted at an early design stage or evaluate the complex
configurations required in an operating system. This paper proposes a series of stochastic
Petri net (SPN) models [14–16] to represent and evaluate a smart hospital architecture
looking at energy issues and software aging. Petri net is a mathematical form based on
probability theory that allows evaluating any system that undergoes some state change.
SPN can represent synchronization, sequencing, parallelization, and concurrency, among
other aspects of any distributed system. SPN has already been adopted in previous
studies in the hospital context, however, without focusing on energy issues and software
aging [17,18]. Therefore, the main contributions of this paper are:

• Three availability SPN models to evaluate the availability feature of a smart hospi-
tal system. The models may calculate the availability of the IoMT system. Two models
are the extensions of the first one. Thus, the first model includes only energy resources
with a power grid and a diesel power generator that delivers energy to the hospital.
The second model includes a redundant point at the energy supply by including a
solar system energy resource. The third model explores a rejuvenation strategy under
some important model components. These three models can be the reality of a real
smart hospital, and this work can provide these models to guide system designers to
optimize their infrastructures, for example.

• An SPN model that calculates the IoMT reliability. Reliability is the probability that
the system has performed its function up to a predetermined and uninterrupted time
limit. We have varied a specific parameter related to the cloud aging time in the third
proposed configuration model. Thus, experiments have shown that the cloud aging
time impacts system reliability.

• A sensitivity analysis of the base model. The analysis has shown which components
have the greatest impact on IoMT system availability. The power grid, for example,
was the most impacting component in one of the IoMT system configurations. In other
cases, the aging aspects of edge and cloud had a greater impact on the availability.

The rest of this paper is organized as follows: Section 2 presents related works.
Section 3 presents an overview of the architecture of the modeled system. Section 4 presents
the proposed SPN models, their functioning, and their peculiarities. Section 5 shows the
results of the sensitivity analysis of the availability model. Section 6 presents the results
for three case studies, which serve as a practical guide for a system administrator. Finally,
Section 7 concludes this work and discusses possible future work.

2. Related Work

This section presents some related work with similar approaches or contexts to this
work. Oueida et al. [9] proposed a resource preservation net (RPN) framework using Petri
nets. The work presents a framework capable of generating non-consumable resource
models that are theoretically described and validated. The work aims to measure some
performance indicators of an intelligent hospital system with edge and cloud processing
components. Among the performance metrics of the study, there is the patient’s length of
stay (LoS), resources usage rate, and average waiting time. Santos et al. [17] propose analyt-
ical models of Petri nets and a reliability block diagram (RBD) to assess the availability of an
intelligent health monitoring system that depends on edge, fog, and cloud infrastructures.
Santos et al. [17] still use a multi-objective optimization algorithm (NSGA-II) to improve
system availability, taking into account its cost as a limitation.
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Greco et al. [10] propose a technological and architectural solution based on open
source big data technologies to perform real-time data flow analysis on wearable sen-
sors. The architecture proposed by the work comprises four layers: the sensing layer,
the pre-processing layer, the cluster processing layer, and the persistence layer. Each
layer’s performance analysis was performed to gauge each layer’s memory and CPU
usage. Chen et al. [12] propose an Edge-Cognitive-Computing-based (ECC-based) smart-
healthcare system. The system can monitor and analyze the status of patients using cogni-
tive computing. Furthermore, the system can allocate resources according to the patient’s
degree of risk. Experiments have shown that the system improves the user experience,
optimizes resources, and increases patient survival chances in sudden emergencies.

Araujo(a) et al. [13] propose a high-level model capable of characterizing the behavior
of an mHealth system. The objective of the work was to identify the probability of a system
message being delivered in t time. The paper did not analyze availability, but some parts
of the model were characterized as an availability model. Lisboa et al. [19] propose a
patient monitoring architecture using sensors and cloud and fog processing. The work
also presents a sensitivity analysis that identifies the components that most impact system
availability. Santos et al. [20] also propose a monitoring architecture using cloud and fog.
However, ref. [20] extends the idea proposed in [19] and adds a model that can calculate
performance metrics and identify possible bottlenecks in the system.

Rodrigues et al. [18] propose models capable of calculating performance and availabil-
ity metrics in a smart hospital system. The work presents a performance model capable
of calculating Mean Response Time, Resource Utilization, and Discard. The work also
presents an availability model and performs a sensitivity analysis on this model. The
results show optimal settings for system performance and availability. The article by [18] is
one of two works that this work extends. The study by Araujo(b) et al. [11] proposes an
energy availability model for intelligent construction. The paper investigates the impact
of different types of solar panel energy systems on the availability of smart buildings. In
addition, the work also makes a cost comparison for the adopted energy systems.

Diaz et al. [21] developed a methodological strategy to improve the conditions of
autonomous photovoltaic systems through reliability research in the laboratory and rural
areas. Collins et al. [22] propose an RBD model capable of calculating failure rates for
different components of large photovoltaic systems. The work results show the relationship
between availability and reliability concerning system uptime. The work by Sayed et al. [23]
proposes an analysis of the availability, reliability, and maintainability of a photovoltaic
system. RBD can represent a myriad of possibilities in terms of component relationships
or parameters. Finally, Cai et al. [24] propose a framework for evaluating the reliability of
grid-connected photovoltaic systems with intermittent failures using Dynamic Bayesian
Networks (DBNs). The work uses the framework to assess the availability and reliability of
different photovoltaic systems. Table 1 displays related works. The works were classified
considering seven aspects: context, metrics, evaluation method, whether it considered the
use of energy, sensitivity analysis, availability, and reliability.
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Table 1. Related Works.

Work Context Metrics Evaluation Method Consider the Use
of Energy

Sensitivity
Analysis Availability Reliability Rejuvenation

[9] Smart Healthcare
and IoT

Patient Length of Stay
(LoS), Resource Utilization,

and Average Patient
Waiting Time

Petri Net No No No No No

[17] Smart Healthcare
and IoT Availability Stochastic Petri Net No No Yes No No

[10] IoT Resource Utilization Layered Model No No No No No
[12] Smart Healthcare QoS Practical Test No No No No No

[13] Smart Healthcare Message Delivery
Probability Stochastic Petri Net No No Yes No No

[19] Smart Healthcare Availability and Downtime Stochastic Petri Net No Yes Yes No No

[20] Smart Healthcare Availability, Throughput,
and Service Time Stochastic Petri Net No Yes Yes No No

[18] Smart Healthcare

Mean Response Time,
Resource Utilization,

Discard, Availability, and
Downtime

Stochastic Petri Net No Yes Yes No No

[11] Smart Building
and Energy

Availability and Energy
Cost Stochastic Petri Net Yes No Yes No No

[21] Energy Reliability Mathematical Model Yes No No Yes No

[22] Energy Availability and Reliability Reliability Block
Diagram Yes No Yes Yes No

[23] Energy Availability and Reliability Reliability Block
Diagram Yes No Yes Yes No

[24] Energy Availability and Reliability Framework Yes No Yes Yes No

This Work Energy and Smart
Healthcare Availability and Reliability Stochastic Petri Net Yes Yes Yes Yes Yes
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The first classification criterion is the work’s context. The context concerns the main
theme of the work. This work has two main contexts: energy issues and smart hospi-
tals. The other works focused on one of the two contexts in isolation. Oueida et al. [9],
Santos et al. [17], and Greco et al. [10] were focused on IoT. Araujo(b) et al. [11] was unique
in the context of smart buildings. This work is focused on both the context of smart hospitals
and the context of energy supply.

The second classification criterion was the investigated metric. All works in the energy
context used reliability or availability metrics without directing them to the hospital context.
Some smart hospitals performed availability analysis without observing energy issues and
software aging. The works by Oueida et al. [9], Greco et al. [10], Chen et al. [12], and
Araujo(a) et al. [13] used metrics more focused on the performance area. Our work is
unique in exploring availability and reliability in the hospital setting by looking at energy
issues and software aging.

The third ranking criterion is the evaluation method. Analytical models were the most
common method due to their practicality and agility in generating results. The most used
analytical models were Petri nets and reliability block diagrams. Among the cited works,
only Greco et al. [10] chose a layered model. Chen et al. [12] carried out a practical test.
The work by Diaz et al. [21] was unique because they adopted a low-level mathematical
model to evaluate its project. Our work adopted the highly representative stochastic Petri
net models.

The fourth classification criterion is to verify whether the work considered energy
use in the architecture. Our work considers the use of energy for the hospital’s internal
functioning. The fifth classification criterion was the sensitivity analysis. Sensitivity analy-
sis allows us to discover which components are more important to each system metric. The
table shows that articles measuring availability often use this type of analysis. Availability
is typically used in conjunction with sensitivity analysis as it points to the component that
can be improved in the architecture. Our work uses sensitivity analysis to help with the
availability and reliability metrics and to help with the component rejuvenation technique.

The sixth classification criterion was availability. Araujo(a) et al. [13] used the avail-
ability metric to help measure the main metric, without exposing the results of the metric
itself. The seventh criterion was reliability. The papers that performed a reliability analysis
used it as the main metric with availability. Furthermore, again, the work by Araujo(a)
et al. [13] considered the reliability to measure the main metric but did not show the reliabil-
ity results. The last criterion was rejuvenation. This work was the only one surveyed that
applied rejuvenation techniques while joining the context of smart hospitals with energy
and verified their impact on system availability.

3. Architecture Overview

This section presents the characteristics of the modeled architecture. Figure 1 presents
the IoMT architecture adopted in this paper. The architecture has been divided into two
parts to make it easier to organize and understand. The Power System represents the
entire power supply for the hospital. Smart Hospital represents the hospital itself and its
internal components.

The Power System has three energy sources: the Power Grid, Power Generator, and
Solar Panel System. The Power Grid represents the public energy offered by public or pri-
vate companies that, normally, have no connection with the hospital. The Power Generator
is a power generator that normally runs on diesel and is usually used in most hospitals for
eventual power outages. The photovoltaic system consists of a solar panel, charger control,
battery storage, solar inverter, and switch power. The Solar Panel represents one of the
photovoltaic system sources that transforms the thermal energy generated by the sun into
electrical energy. Battery Storage is a battery system that stores the produced solar energy.
The batteries used to store solar energy are still considered limited nowadays [25]. Thus,
batteries keep the hospital supplied for a short period until the main power is restored. The
Charger Control regulates the amount of energy from the solar panel to the batteries. The



Sensors 2022, 22, 1595 7 of 23

Solar Inverter transforms the energy generated from the direct current to the alternating
current. Switch Power is an actuator that decides which energy source should be used:
solar, public/private power grid, or generator. Finally, the system works, considering that
energy comes primarily from solar panels. The Power Grid will be used if solar power fails.
The generator will be activated when the other two resources fail.

Battery Storage

Solar Panel

Solar InverterCharger
Control

Power Grid

Switch Power

Room

Router

SupervisorGateway

Edge Server

Cloud Server

Sensor

Smart Hospital

Power Generator

POWER SYSTEM

12 V

Data

Energy

SMART HOSPITAL

Figure 1. Proposed architecture of a smart hospital system.

Inside the Smart Hospital, some components will be used to monitor patients. These
components distribute information across the other components. The hospital has several
rooms with sensors that capture patient data from their beds. The sensors are connected
to the Gateway. The Gateway collects information from all sensors and transmits it to the
Router and Supervisor. The Supervisor is responsible for observing and analyzing patient
data in case of an emergency. The Router will distribute the Gateway data to an edge
server located in the hospital and a remote cloud server. The edge server will store the data
locally at the hospital for reporting and any future queries. The cloud Server will store
the data remotely to have a backup copy of the data, mainly to monitor a patient remotely.
Finally, all internal components of the hospital need the energy to be available for as long
as possible, and the cloud server is located at a remote place.

Operational configurations: To investigate the impact of energy resource redundancy
and server rejuvenation on the smart hospital’s dependability, we consider three different
configurations, as shown in Table 2. Configuration A represents a conventional smart
hospital, including a power grid and a generator. Configuration B represents a smart
hospital with a sustainable energy system. Configuration C reinforces configuration B
against software aging problems running on cloud/edge servers. Configuration C does
not involve an additional physical component; instead, a server rejuvenation mechanism
at the cloud and edge, along with two logical components that control the rejuvenation
process, is taken into account. The Rejuvenation Trigger is responsible for managing
rejuvenation, while the Peakhour Indicator manages the rejuvenation together with the
Rejuvenation Trigger if there is a peak hour policy for the hospital. Configuration B
involves the components of the photovoltaic system, including the Solar Panel, Battery
System, Charger Control, Solar Inverter, and Switch Power.
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Table 2. Operational configurations.

Config. Smart Hospital Power Grid Generator Photovoltaic
System

Rejuvenation
Trigger

Peakhour
Indicator

A X X X
B X X X X
C X X X X X X

4. Proposed SPN Models

In this section, availability and reliability SPN models are developed following the
considered operational configurations of the smart hospital’s computing infrastructure.

4.1. Availability Models

This subsection presents the three SPN models focused on availability calculation.

4.1.1. Model A: Base Architecture with Basic Power Source

Figure 2 shows model A. Model A corresponds to configuration A presented in the
last section. Therefore, model A does not consider the photovoltaic system. This model
represents a more common power source architecture for hospitals in general [26–28].
Model A will serve as a base model to compare with the following models presented in this
section. The hospital is in operative mode in model A when all the internal components
are active and when one of the external energy components is functioning. Two building
blocks centralize the control of the two sides of the architecture using guard expressions,
Power System, and Smart Hospital. Such control centralization enabled us to calculate the
availability only focused on these two building blocks. All transitions with a red index
mark are configured with a guard expression. Table 3 summarizes all guard expressions.
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Figure 2. SPN model A.

Figure 3 shows the Power System and Smart Hospital building block components
in more detail. The Power System building block component represented the system’s
power status. The Power System is considered up when there is a token at POWER_SYSTEM_U.
The Power System is not working when there is a token at POWER_SYSTEM_D. The change
between active and inactive states is controlled by BLACKOUT and RESTORED transitions.
BLACKOUT and RESTORED transitions have guard expressions. The BLACKOUT transition is
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activated when all energy sources are inactive, given by expression g01 = (#PG_U>0) OR
(#EDG_U>0). The RESTORED transition is activated when there is at least one power source
active, given by expression g02 = (#PG_U<1) AND (#EDG_U<1).

Table 3. Guard expressions for model A transitions.

Guard Index Guard Expression

g01 (#PG_U>0) OR (#EDG_U>0)
g02 (#PG_U<1) AND (#EDG_U<1)

g03 ((PS_U<1) OR (#IN_U<1) OR (#CC_U<1) OR ((#SP_U<1) AND (#BS_U<1)))
AND (#PG_U<1)

g04 ((PS_U>0) AND (#IN_U>0) AND (#CC_U>0) AND ((#SP_U>0) OR
(#BS_U>0))) OR (#PG_U>0)

g05 ((#CS_U>0) AND (#ES_U>0) AND (#RT_U>0) AND (GT_U>0) AND
(F_D=0) AND (SV_U>0)) AND (POWER_SYSTEM_U>0)

g06 (#CS_U<1) OR (#ES_U<1) OR (#RT_D>0) OR (GT_D>0) OR (F_D>0) OR
(SV_D>0)

g07 (#POWER_SYSTEM_D>0)
g08 (#POWER_SYSTEM_U>0)
g09 (#POWER_SYSTEM_D>0)
g10 (#POWER_SYSTEM_U>0)
g11 (#POWER_SYSTEM_D>0)
g12 (#POWER_SYSTEM_U>0)
g13 (#POWER_SYSTEM_D>0)
g14 (#POWER_SYSTEM_U>0)
g15 (#POWER_SYSTEM_D>0)
g16 (#POWER_SYSTEM_U>0)
g20 (#ES_D>0)
g21 (#CS_D>0)
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Power System Smart Hospital

Figure 3. Power System and Smart Hospital building block control components.

The Smart Hospital building block component represents the hospital system status.
The hospital is active when all the Smart Hospital components are active. The hospital
is deactivated when at least one of the components has tokens in the inactive state. The
Smart Hospital is up when there is a token HOSPITAL_U. The Smart Hospital is not working
when there is a token in HOSPITAL_D. The change between active and inactive states is
caused by the transitions FAIL and RECOVER. Thus, the FAIL transition is activated when all
energy sources are inactive, given by expression g05 = ((#CS_U>0) AND (#ES_U>0) AND
(#RT_U>0) AND (GT_U>0) AND (F_D=0) AND (SV_U>0)) AND (POWER_SYSTEM_U>0).
The RECOVER transition is activated when there is at least one energy source active, given
by expression g06 = (#CS_U<1) OR (#ES_U<1) OR (#RT_D>0) OR (GT_D>0) OR (F_D>0)
OR (SV_D>0).

Figure 4 shows the Power Generator component in more detail. The power generator
behaves differently from the other model components. The power generator has a cold
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standby mechanism [29]; that is, it will be only active when a certain condition is reached.
The SWITCH_TIME transition will ensure the power generator is only activated when there
is no other active energy source. SWITCH_TIME is supported by the guard expression:
g03 = ((PS_U<1) OR (#IN_U<1) OR (#CC_U<1) OR ((#SP_U<1) AND (#BS_U<1))) AND
(#PG_U<1). The TURN_OFF transition will ensure that the power generator will be immedi-
ately deactivated when any other energy source start working again through the expression
g04 = ((PS_U>0) AND (#IN_U>0) AND (#CC_U>0) AND ((#SP_U>0) OR (#BS_U>0))) OR
(#PG_U>0)

Power Generator

[g03]

[g04]

Figure 4. Power Generator component.

Figure 5 shows the aging mechanism that was used in detail. Software aging is
modeled on the edge server and cloud server through a four-phase Erlang subnet [30]. The
number of phases depends on the parameters obtained for each component’s aging. The
use of four aging phases is based on the previous study of Melo et al. [30]. The Erlang
subnet can represent software aging by increasing the [31] failure rate. When the immediate
transition TI122 triggers, four tokens (four phases) move to the ES_TO_AGE place, and
another token moves back to ES_U, keeping the system alive and aging on the Erlang
subnet. When the timed transition ES_AGING triggers, a token moves from ES_TO_AGE to
ES_AGED, representing the end of one of the aging phases. When ES_AGED has all four
tokens, the immediate transition TI112 triggers, moving all tokens to ES_AD, putting the
system on aging failure.

Edge Server
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Figure 5. Software aging mechanism.

The sum of the four phases of ES_AGING represents the total time for server aging.
When the timed transition ES_AMTTR triggers, the system is repaired and becomes active
again. The immediate transitions TI132 and TI142 “clean up” the aging, removing the
tokens from ES_TO_AGE and ES_AGED. The aging cleansing process occurs when the system
fails or starts the rejuvenation process. The rejuvenation process will be presented in
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Section 4.1.3. The immediate transition T1 shuts down the edge server when the Power
System is unavailable due to failure. When T1 fires, a token moves from ES_U to ES_D,
putting the edge server in a failed state. The same behaviors happen to the cloud server.

As the metric assumes that the Power System and Smart Hospital building blocks
must be in an active state for availability, different fault tolerance levels can be configured
by changing their guard expressions. For example, the hospital can be considered active if
at least one server or N of the M beds is active. We consider that all internal components
must be active for the hospital to be available.

4.1.2. Model B: Model with Photovoltaic System Inclusion

Figure 6 shows model B. Model B considers the Power System and the Smart Hospital.
For model B, the Power System will be improved by adding a photovoltaic system. All
components are organized as they appear in the architecture for easy visualization. The
components have the following characteristics: (i) Sensors are attached to patients in beds
that collect a patient’s vital information and data; (ii) Patient information is distributed to
the Supervisor and edge/cloud servers (for storage and monitoring); (iii) the Solar Panel
will generate energy by receiving sunlight; (iv) Charger Control must adjust the level of
charge that is sent to the batteries and the Solar Inverter; (v) Battery Storage must store
energy to support the Solar Panel if it is not enough, and in the last case, it must sustain the
hospital for a brief period that is sufficient to repair the Solar Panel; (vi) the Solar Inverter
converts direct current energy (which is used by the solar panel and batteries) to alternating
current, which is used by the hospital devices; (vii) Switch Power must choose which
energy source to assume when another source fails; (viii) the Power Generator will only be
activated if all other possible power sources fail.
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Figure 6. SPN model B.

For model B, the Smart Hospital part and the Smart Hospital building block component
will work the same way as in model A. The entire photovoltaic system becomes part of
the Power System for model B. The g01 and g02 guard expressions have been changed to
update the functioning of the Power System building block component. Table 4 presents the
guard expressions that have been changed for model B. The Power System building block
component now considers that the internal components of the photovoltaic system need to
be working. The g01 guard expression was updated to g01 = ((PS_U>0) AND (#IN_U>0)
AND (#CC_U>0)AND ((#SP_U>0) OR (#BS_U>0))) OR (#PG_U>0) OR (#EDG_U>0). The
g02 guard expression was also updated to g02 = ((PS_U<1) OR (#IN_U<1) OR (#CC_U<1)
OR ((#SP_U<1) AND (#BS_U<1))) AND (#PG_U<1) AND (#EDG_U<1) to cover the new
behaviors of the photovoltaic system.
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Table 4. New guard expressions for the model B transitions.

Guard Index Guard Expression

g01 ((PS_U>0) AND (#IN_U>0) AND (#CC_U>0) AND ((#SP_U>0) OR (#BS_U>0)))
OR (#PG_U>0) OR (#EDG_U>0)

g02 ((PS_U<1) OR (#IN_U<1) OR (#CC_U<1) OR ((#SP_U<1) AND (#BS_U<1)))
AND (#PG_U<1) AND (#EDG_U<1)

Finally, as already mentioned, the Power System and Smart Hospital building block
components serve to centralize the status of each part of the architecture and simplify the
metric equations (availability and downtime). P represents the probability, and # represents
the number of tokens in a given place. The downtime (D) can be obtained by Equation (1),
where A represents the system availability and 8760 the number of hours in the year. The
equation that calculates availability for all models is given by Equation (2), that is, the
probability that the Power System and Smart Hospital are both working at the same time. It
is noteworthy that the user can change the guard expression of the central building blocks
for other configurations.

D = (1−A)× 8760 (1)

A = P{(#HOSPITAL_U > 0)AND(#POWER_SYSTEM_U > 0)} (2)

4.1.3. Model C: Model B with Rejuvenation Technique Inclusion

Software rejuvenation is a technique that usually improves system availability [32].
Rejuvenation has the function of preventing crashes and reducing performance. The
technique involves occasionally stopping the software from running to clear its state and
restarting it [33]. Figure 7 shows model C, which extends model B. The extension is based
on the rejuvenation process under the cloud and edge servers. A Rejuvenation Trigger
component represents peak times. The other energy and hospital components work the
same as in model B. Rejuvenation introduces planned interruptions. It can be advantageous
to differentiate the peak and off-peak periods to plan the [33] rejuvenation strategy. We
consider peak hours as day periods and off-peak hours as night periods (12 h each). The
peak component has two locations called PEAK_HOUR and OFFPEAK_HOUR PEAK_HOUR and
OFFPEAK_HOUR represent peak hours and off-peak hours, respectively. The peak component
also has two timed transitions. When TIME_PEAK is triggered, it puts the system in peak
hours. When TIME_OFFPEAK is triggered, the system goes to off-peak hours.

The sensitivity analysis presented later pointed out the edge server as the most sen-
sitive component. Thus, rejuvenation was applied to the edge server since many studies
prove that servers suffer from software aging, which impacts system availability [32,34,35].
The rejuvenation model was based on the model proposed by Garg et al. [36]. ES_U rep-
resents that the edge server is active. ES_D indicates that the edge server has failed and
is disabled. When the ES_MTTF transition is triggered, a token moves from ES_U to ES_D,
putting the edge server in a failed state. When the ES_MTTR transition is triggered, the edge
server is repaired, putting it back into the active state. The remaining component was
explained in Section 4.1.1.
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Figure 7. SPN model C for availability.

Another component presented in model C is the Rejuvenation Trigger, which is when
the edge server will rejuvenate. The aging and rejuvenation process was based on the
model proposed by [37]. The Clock place is used to store the edge server rejuvenation
token. When the TRIGGER transition is triggered, a token moves from CLOCK to TIME_TO_REJ,
indicating that the system is ready to begin rejuvenation. The TRIGGER represents the time-
until-rejuvenation, i.e., the time interval until the rejuvenation process occurs again. When
TIME_TO_REJ has a token, the immediate transition START_REJ triggers, moving a token
from ES_U to REJ, putting the system in a rejuvenation state. When REJ has a token, the
immediate T0 transition triggers, moving the token from TIME_TO_REJ to CLOCK, starting
the countdown for the next rejuvenation. When REJ has a token, the immediate transitions
TI132 and TI142 clear the aging phase progress. When the timed transition REJ_TIME
triggers, a token moves from REJ to ES_U, rejuvenating the system. The REJ_TIME transition
represents the time to rejuvenate the edge server. During the rejuvenation process, the
system is unavailable. Table 5 shows some guard transitions added and modified to grant
the new behaviors of the rejuvenation mechanism.

Table 5. New guard expressions for the model C transitions.

Guard Index Guard Expression

g17 * (OFFPEAK_HOUR>0)
g18 (#REJ>0)
g19 (#TIME_TO_REJ>0)
g20 (#REJ>0) OR (#ES_D>0)

* Only used if there is a peak hour policy.

The model uses two rejuvenation policies with peak times (no-peak policy and peak
policy). The no-peak policy ignores peak times. The TRIGGER transition indicates the time
for the rejuvenation to occur regardless of being in a peak period or not. The peak policy
prevents the system from starting rejuvenation during peak hours. When the system
is off-peak (has a token in OFFPEAK_HOUR), the rejuvenation behaves the same as the no-
peak policy. However, when the system is in peak hours (it has a token in PEAK_HOUR),
the TRIGGER transition is not triggered even after the associated time unit has elapsed.
Considering model C, the system is available when the edge server token is active (a token
in ES_U. Finally, Equation (2) defines the availability of model C.
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4.2. Reliability Model

Reliability is the conditional probability of a system remaining operational over a time
interval [0, t], considering that it was operational at t = 0. Figure 8 presents the reliability
models of the proposed system. The three possible configurations were organized into a
single figure. In principle, the model works the same as the availability SPN models. In this
model, the components do not have the transitions that allow their recovery. The reliability
of the presented models can be calculated using Equation (3). Finally, p calculates the
probability that the system is unavailable. The equation can generate a curve that shows
how reliability declines over time.

R = 1− (P{((#HOSPITAL_D > 0)OR(#POWER_SYSTEM_D > 0))}) (3)
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Figure 8. Reliability models created from availability models.

5. Sensitivity Analysis

This section presents the sensitivity analysis. Table 6 shows the results for the sensi-
tivity of the availability models’ components. The sensitivity experiment was obtained
through stationary simulation. This decision was determined by the system’s significant
number of possible states. Because of the numerous components, only the first ten results
were selected for each model.

Table 6. Sensitivity analysis results for the 3 availability models.

Model A Model B Model C

Component Index Component Index Component Index

PG_MTTF 8.80 × 10−4 ES_AGING 3.36 × 10−3 CS_AGING 2.39 × 10−3

ES_AGING 8.18 × 10−4 CS_AGING 2.42 × 10−3 ES_MTTF 1.90 × 10−3

ES_MTTF 7.64 × 10−4 ES_MTTR 2.37 × 10−3 CS_MTTR 1.87 × 10−3

ES_MTTR 7.53 × 10−4 CS_MTTR 1.88 × 10−3 CS_MTTF 1.51 × 10−3

CS_AGING 6.06 × 10−4 ES_MTTF 1.48 × 10−3 ES_AGING 1.39 × 10−3

CS_MTTR 4.38 × 10−4 CS_MTTF 1.45 × 10−3 ES_MTTR 1.00 × 10−3

CS_MTTF 4.19 × 10−4 GT_MTTF 6.31 × 10−5 TIMECLOCK 1.05 × 10−4

SW_MTTR 1.93 × 10−4 SW_MTTF 5.73 × 10−5 SW_MTTR 6.53 × 10−5

GT_MTTR 1.59 × 10−4 N 2.79 × 10−5 SU_MTTF 6.24 × 10−5

SE_MTTR 3.48 × 10−5 CC_MTTF 2.20 × 10−5 PG_MTTF 6.10 × 10−5

Model A uses the Power Grid and a diesel generator to keep the hospital active. Thus,
it can be seen that the Power Grid was the most critical component of the architecture; that
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is, its sensitivity index causes a significant impact on system availability. Power issues
impact the final availability of the system, and the Power Grid has a slightly more critical
sensitivity index than the second place, which is the edge’s aging time. From the second
position onward (model A), all components are internal to the hospital, as the generator is
only occasionally turned on. The other two components that proved to be more critical are
the edge and cloud servers due to their low failure and recovery times and their respective
aging. The edge server and cloud server can be considered critical because they presented
a higher sensitivity index than the other components.

Model B brings redundancy when adding the photovoltaic system, an unusual con-
figuration in hospitals today. The Power Grid index is no longer among the ten most
critical. The edge aging (ES_AGING) sensitivity index becomes more critical and takes the
first position, followed by cloud aging (CS_AGING). The photovoltaic system increases
system availability. However, aging is still a critical factor for availability. The cloud
and edge-related components were the most critical for model B, they were also more
critical than most components in model A, but their values grew from 10−4 to 10−3. The
number of sensors represents a very small impact on the system, even though it appears
among the ten most critical. The variation in the number of sensors did not significantly
impact availability.

In addition to proposing using the photovoltaic system, model C also proposes re-
juvenating the edge component. The edge server became more critical in model B, so
rejuvenation was applied. The most relevant indices for this model are still around 10−3

and decrease to values in 10−5. The most critical index for this scenario is the cloud’s aging
time. The edge’s aging index decreases due to the rejuvenation applied to the component.
As the rejuvenation was not applied in the cloud, it remained with the same index. Edge
and cloud failure and recovery components continue to occupy the top positions of the sen-
sitivity table along with aging times. The criticality reduction in cloud and edge recovery
and failure indices could be solved with some form of redundancy. However, the objective
of this work was to check rejuvenation issues to make the process cheaper.

Figure 6 shows the variation of the two most critical indices for each model. Figure 9a
shows the impact of PG_MTTF parameter variation on system availability. Availability
ranged from about 99.25% to 99.45%. As the curve presents an exponential behavior, it
can be deduced that the less reliable the energy, the more abruptly the value tends to fall.
Figure 9b shows the impact of edge aging in model A. The variation in the edge aging time
caused the availability to vary greatly, but the maximum and average values were lower
than those seen in the PG_MTTF variation. Figure 9c shows the impact of edge aging on
model B availability.

Figure 9d shows the impact of cloud aging on model B. The cloud aging time variation
resulted in slightly higher availability, but the edge aging had a large enough variation to
surpass the cloud aging time as the most critical component. Figure 9e shows the impact of
the CS_AGING parameter on the availability of model C. Values range from about 99.38%
to about 99.62%. The variation is still large, given the parameter’s sensitivity index value,
which is expected. However, the addition of edge rejuvenation caused the beginning and
end of the sensitivity result interval to increase. The range in the previous scenarios started
just below 99.30%, whereas in this scenario, it starts above 99.30%. The same behavior is
repeated for the upper range, increasing more than the model B sensitivity result. Finally,
Figure 9f shows the impact of the edge failure time on model C’s availability. Cloud aging
had a noticeably longer range between values, so the edge recovery time was the second
most important.
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Figure 9. Results for the sensitivity of availability models: (a) PG_MTTF ×model A; (b) ES_AGING
× model A; (c) ES_AGING × model B; (d) CS_AGING × model B; (e) CS_AGING × model C;
(f) ES_MTTF ×model C.

6. Case Studies

The results of different experiments with the models proposed in the previous sec-
tion are presented. Table 7 presents the parameters used to feed the proposed models.
The values used were taken from other validated studies. The values were taken from
four papers [11,18,38,39]. The TIME_PEAK and TIME_OFFPEAK values represent daytime and
nighttime, respectively. The SWITCH_TIME has been set to 0.0833333 h. Edge server and
cloud server aging times were based on their MTTFs, as per the work of [37]. The experi-
ments were performed using the Mercury modeling tool [40]. All model transitions work in
single server mode, except Beds component transitions. The Beds component works in Infi-
nite Server mode. Beds work in infinite server mode due to their nature, as the sensors work
and are repaired in parallel. The availability experiment was obtained through a stationary
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simulation due to the model size and rejuvenation particularities. The reliability experiment
was carried out through a transient simulation for the above-mentioned reasons.

Table 7. Input parameters for proposed models.

Availability Parameters

Component MTTF (Hours) MTTR (Hours)
Sensors/Actuators 300,000 1

Gateway 480,770 8
Supervisor 44,957 1

Router 698,220 8
Cloud Server 760 0.74
Edge Server 940 1.37
Solar Panel 219,000 8

Battery System 47,829 8
Charge Control 70,080 8
Solar Inverter 24,820 8

Emergency Diesel Generator 636 37
Power Grid 8757 4.807

Rejuvenation Parameters

Transition Time (Hours)
TRIGGER 20–200 (steps od 20)
REJ_TIME 0.0333333
ES_AGING 200
CS_AGING 150

TIME_OFFPEAK 12
TIME_PEAK 12

6.1. Case Study 1—Availability and Downtime Analysis of the Three Models

In this section, the results of the availability model will be shown. Figure 10 shows the
results for availability and downtime for different models. Figure 10a shows the results for
availability. Model A had the lowest availability, with approximately 99.40% availability.
With approximately 99.53% availability, model B increased about 0.13% compared to model
A. Model C achieved the highest available value, with approximately 99.64% availability.
Overall, there was an increase of about 0.24% between models A and C. Model C showed
an increase of 0.11% compared to model B proposed in this work.
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Figure 10. Results for availability models: (a) availability; (b) downtime.

Figure 10b shows system downtime based on different Configurations. Model A
showed the longest downtime, with approximately 52 h of downtime. With approximately
40 h of downtime, model B showed a reduction of about 12 h compared to model A. Model
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C had the lowest downtime, with around 31 h of downtime. Model C shows a difference of
about 21 h concerning model A—almost a full day. The reduction in model C considering
model B was about 9 h.

The results for availability vary considerably little, but looking at the downtime results,
we can see that it is an obvious difference. Availability has slightly low variance, as power
itself is a component that must be reliable; thus, it rarely fails. However, the inclusion of the
solar energy system further increases the availability as it is a more reliable source of energy
than a public one.The addition of the photovoltaic system showed the greatest increase
in availability among the scenarios. Energy is indeed a component to be considered in
modeling this type of system. Model C did not show an increase as big as model B, as
it only adds a rejuvenating mechanism, but it is still a visible increase. Furthermore, a
rejuvenation case in the cloud could increase the result of the last scenario. However, this
paper has focused more on internal components in the hospital’s control.

6.2. Case Study 2—Analysis of Availability and Downtime of Rejuvenation Policies in Model C

Figure 11 shows the availability and downtime of the rejuvenation model. Again,
the simulation method was used with the Mercury tool [40] considering the availability
model B and the two rejuvenation policies in model C. Figure 11a shows the availability
of the system for model B and model C of rejuvenation in non-peak and peak policies.
The deterministic transition time TRIGGER is varied in the simulations from 20 to 200, with
intervals of 20 h, based on the model proposed in [33]. When time-until-rejuvenation
(TRIGGER) is at 20 h, the no-peak policy has lower availability than the extended model, at
about 99.46% availability. After the time-until-rejuvenation reaches 40 h, the no-peak policy
availability improves significantly, outpacing the extended model availability.

The availability of the no-peak policy continues to increase as the time-until-rejuvenation
increases. When the time-until-rejuvenation was at 20 h, the rejuvenation happened so often
that it hindered system availability. Too frequent rejuvenation impairs availability as the
system goes down for a short period during rejuvenation. After the time-until-rejuvenation
reaches 40 h or more, rejuvenation occurs less frequently. Rejuvenation prevents the system
from having more serious failures and improving availability. As time-until-rejuvenation
increases, availability improves, as rejuvenation occurs at more strategic times until it peaks
at 140 h with an availability of 99.64%. After the time-until-rejuvenation exceeds 140 h,
rejuvenation begins to take too long to occur, making the system prone to more serious
failures and decreasing system availability.
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Figure 11. Comparison of levels of availability and downtime in relation to the rejuvenation model:
(a) availability; (b) downtime.
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The peak policy behaves differently from the no-peak policy. When the time-until-
rejuvenation is at 20 h, the peak policy hits its highest availability peak at 99.61%. As
time-until-rejuvenation increases, the availability of the no-peak policy decreases. The
peak policy only rejuvenates if the system is off-peak, conducting far fewer rejuvenation
processes than the no-peak policy. The time-until-rejuvenation in 20 h is already the
ideal time for rejuvenating the peak policy. As the time-until-rejuvenation increases,
rejuvenation takes a long time, impairing system availability. After exceeding 160 h until
rejuvenation, the peak policy availability is lower than that of the extended model. In
general, rejuvenation was able to increase system availability greatly. All non-peak and
peak policy values were better than model B values, especially shorter until rejuvenating.
While the no-peak policy has far better availability than the peak policy, rejuvenating
during peak hours may not be the best choice. The peak policy is also a smart choice in
a scenario where this cannot happen, with better results than model B, especially in 20 h
until rejuvenation.

Figure 11b shows the system downtime for model B and the rejuvenation model in
both peak and non-peak hour policies. This graph reflects the availability graph, showing
downtime over a year. When the time-until-rejuvenation is at 20 h, the no-peak policy is at
its best downtime of 33.92 h. As time-until-rejuvenation increases, downtime also increases.
The lower the availability, the greater the downtime. After the time-until-rejuvenation
passes 180 h, the peak policy’s downtime reaches 41.30 h, surpassing the 40.68 h of model B.
The no-peak policy has the longest downtime at 46.78 h when the time until rejuvenation is
20 h. However, downtime decreases as the time-until-rejuvenation increases until 31.36 h
per year when the time-until-rejuvenation is 140 h. After 140 h until rejuvenation, the
downtime starts to increase, reaching 33.42 h when the time-until-rejuvenation is 200 h.
Therefore, the two rejuvenation policies had a lower downtime than model B, especially
when each policy’s time-until-rejuvenation is at its peak.

6.3. Case Study 3—Analysis of the Impact of Time-Until-Rejuvenation and Edge MTTF
on Availability

Figure 12 presents a 3D surface graph to show the system’s behavior considering
availability by varying two factors with a high impact on availability. Edge MTTF and
time-until-rejuvenation factors were varied in five ranges: base value, minus 25%, minus
50%, plus 25%, and 50%. Colors are related to the result of availability. The bar on the
right indicates the magnitude of the results. The upper part of the bar indicates the highest
availabilities, while the lower part indicates the lowest availabilities achieved. Thus, the
red color means the highest availability, and the purple color means the lowest availability.
Changing the MTTF is more impactful than changing the time-until-rejuvenation. The
color red is present in most of the Edge MTTF projections. If the MTTF value is low, the
availability always tends to be low, even changing the time-until-rejuvenation. Therefore,
the result indicates that increasing the MTTF improves system availability. However,
finding an ideal value for time-until-rejuvenation will also benefit the system’s availability.
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Figure 12. Availability analysis by varying concomitant factors.

6.4. Case Study 4—Reliability Analysis

This section displays the results for the model’s reliability metric. Figure 13 shows the
results for reliability over 20,000 h varying the cloud aging time (CS_AGING) for model C.
The cloud aging time was chosen due to its high sensitivity index. There are three reliability
models. However, varying model C proved more relevant when analyzing the sensitivity
analysis results. The cloud does not have a rejuvenation mechanism. Thus, the cloud
became the most critical component system. The experiment simulates a reliability analysis
in scenarios where the cloud cannot be rejuvenated, and a more or less reliable cloud must
be chosen. All results decrease over time, as this is the nature of this experiment. In other
words, the reliability of a system always tends to decrease over time.
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Figure 13. Reliability results varying the CS_AGING parameter in model C.
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The scenario where the cloud’s aging time is reduced by 50% presented values that
remain below the values presented in the other two scenarios.The base scenario also
touches the X-axis at values above 20,000 h. The scenario where the cloud has its aging time
increased by 50% shows better results than all other scenarios, staying above the others
from the start and following through for practically the entire time interval.

The +50% scenario also touches the X-axis at values greater than the 20,000 h of the
experiment as in the other scenarios. The +50% scenario remains above the other scenarios
at the 20,000 h endpoint on the chart, with around 3% of confidence versus around 2% for
the other two scenarios. The results show a trend towards increased reliability in obtaining
a slower aging cloud, which is expected. The main point of this case study is that, given
a budget, it is feasible to select the most advantageous cloud for the company as long as
it meets the established dependability criteria. For example, if there is a need for a cloud
that makes the system at least 20% reliable after 3000 h, the base cloud would be enough to
meet the demand without investing more in a more expensive cloud.

7. Conclusions and Future Works

This paper proposed stochastic Petri net models for an architecture of intelligent
hospitals to help system administrators plan computing architectures. The models consider
several factors that influence the total availability of the system. Energy is one of the major
factors considered, and the use of solar energy, in addition to making the hospital more
sustainable, showed a considerable increase in availability. The aging of more complex
components, such as servers, has also had a major impact on system availability. The use of
rejuvenation to treat aging was considered in the model, and the analysis shows that the
model can estimate the ideal time between rejuvenation for a given model. The availability
model can be configured using about 20 different parameters, while the reliability model
has about half that amount.

Models provide accurate estimates of availability, downtime, and reliability metrics.
The models were demonstrated by carrying out four case studies, one of them for the
reliability analysis and the other three for further availability analyses. The results show
how each model behaves with varyied parameters by sensitivity analyses. The case studies
provide a practical guide that shows how a system administrator can apply the model to
perform assessments of various configurations for a sustainable smart hospital architecture.

This work presents some limitations that are important to highlight: (i) Aiming to
avoid the “state-space explosion” problem, a couple of simplifications were necessary
for the models. There are complex components such as the power grid and cloud server,
for example, that are treated as encapsulated components with single corresponding
MTTF/MTTR parameters. (ii) The availability is sometimes influenced by user interaction,
security risks, and environmental issues. None of these aspects were investigated, only
the aging processes. (iii) The rejuvenation strategy was applied only at the cloud/edge
servers. However, the other hardware equipment (router, supervisor, and gateway) may
also suffer from aging. We did not consider that. (iv) We have used only heterogeneous
redundancy (distinct power supply sources) at the power system side. The hospital can
have, for example, more than one power diesel generator, but we did not consider such a
possibility. Future work intends to carry out a performance analysis to verify the impact
that the availability of components can have on the response time and throughput of
the system. More external factors can also be considered, such as the functioning of the
photovoltaic system on cloudy days.
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