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Abstract
The incubation period of infectious diseases, the time from infection with a microorganism to onset
of disease, is directly relevant to prevention and control. Since explicit models of the incubation
period enhance our understanding of the spread of disease, previous classic studies were revisited,
focusing on the modeling methods employed and paying particular attention to relatively unknown
historical efforts. The earliest study on the incubation period of pandemic influenza was published
in 1919, providing estimates of the incubation period of Spanish flu using the daily incidence on ships
departing from several ports in Australia. Although the study explicitly dealt with an unknown time
of exposure, the assumed periods of exposure, which had an equal probability of infection, were
too long, and thus, likely resulted in slight underestimates of the incubation period.

After the suggestion that the incubation period follows lognormal distribution, Japanese
epidemiologists extended this assumption to estimates of the time of exposure during a point
source outbreak. Although the reason why the incubation period of acute infectious diseases tends
to reveal a right-skewed distribution has been explored several times, the validity of the lognormal
assumption is yet to be fully clarified. At present, various different distributions are assumed, and
the lack of validity in assuming lognormal distribution is particularly apparent in the case of slowly
progressing diseases. The present paper indicates that (1) analysis using well-defined short periods
of exposure with appropriate statistical methods is critical when the exact time of exposure is
unknown, and (2) when assuming a specific distribution for the incubation period, comparisons
using different distributions are needed in addition to estimations using different datasets, analyses
of the determinants of incubation period, and an understanding of the underlying disease
mechanisms.

Background
The incubation period is defined as the time from expo-
sure to onset of disease [1], and when limited to infectious
diseases, corresponds to the time from infection with a
microorganism to symptom development. According to a
rigorous descriptive review [2], historical descriptions of

the incubation period can be traced back to the mid-16th
century when Girolamo Fracastoro (Fracastorius) (1478–
1553), an Italian physician, documented for the first time
the incubation period of rabies in 1546 [3]. The incuba-
tion period of infectious diseases ranges from the order of
a few hours, which is common for toxic food poisoning,
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to a few decades as seen in the case of tuberculosis, AIDS
and variant Creutzfeldt-Jakob disease (vCJD). Since symp-
tom onset reflects pathogen growth and invasion, excre-
tion of toxins and initiation of host-defense mechanisms,
the length of the incubation period varies largely accord-
ing to the replication rate of the pathogen, the mechanism
of disease development, the route of infection and other
underlying factors.

During the incubation period of acute infectious diseases,
which is subsequently followed by a symptomatic period,
it should be noted that the infected host can be infectious.
Whereas the incubation and symptomatic periods are dis-
tinguished by symptom onset, other epidemiologic terms
are distinguished by acquisition of infectiousness. That is,
the time from infection to acquisition of infectiousness is
referred to as the latent period, which is subsequently fol-
lowed by the infectious period [4]. These two concepts are
clearly separated by definition and are not directly related.
The incubation period of infectious diseases offers various
insights into clinical and public health practices, as well as
being important for epidemiologic and ecological studies.

To enhance our understanding of the incubation period
distributions of infectious diseases, it is useful to revisit
previous efforts and reassess explicit models. In particular,
it is of practical importance to reanalyze historical works
to clarify the present day implications. This paper dis-
cusses relatively unknown historical efforts, paying partic-
ular attention to diseases with an acute course of illness.
Previous classic works on models of incubation period are
discussed, including the earliest method to estimate the
incubation period using incomplete data, the earliest
attempt to model the distribution, and estimations of the
time of exposure during an outbreak with a common
harmful influence and a very brief time of exposure (i.e.,
a point source outbreak).

Analysis
The usefulness of understanding the incubation period
Before entering into details of historical works on the
incubation period, the various uses of the incubation
period distribution are briefly discussed. Table 1 summa-
rizes a number of common examples, presenting histori-
cal as well as recent major uses [1,5-27]; however, it is
worth noting that this list does not cover all utilities in
full.

In clinical practice, the incubation period is useful not
only for making rough guesses as to the causes and
sources of infection of individual cases [5], but also for
developing treatment strategies to extend the incubation
period (e.g., antiretroviral therapy for HIV infection [1])
and for performing early projection of disease prognosis
when the incubation period is clearly associated with clin-

ical severity due to dose-response mechanisms (e.g., dis-
eases caused by exotoxin) [6,7]. Moreover, during an
outbreak of a newly emerged directly transmitted disease,
the incubation period distribution permits determination
of the length of quarantine required for a potentially
exposed individual (i.e., by restricting movement of an
exposed individual for a duration sufficiently longer than
the incubation period) [10]. Further, if the time lag
between acquiring infectiousness and symptom onset
appears long (i.e., if the incubation period is relatively
long compared to the latent period), it implies that isola-
tion measures (e.g, restriction of movement until the
infectious individual loses infectiousness) are likely to be
ineffective, complicating disease control [1,11].

Understanding the incubation period distribution also
enables statistical estimation of the time of exposure dur-
ing a point source outbreak [12] as well as a hypothesis-
testing to determine whether the outbreak has ended [13];
the former is discussed below. The distribution is also use-
ful in statistical approaches of epidemic curve reconstruc-
tion and short-term predictions of slowly progressing
diseases; the backcalculation method uses the incubation
period to estimate HIV prevalence and project the future
incidence of AIDS [14,15]. During the last decade, this
method has also been extended to prion diseases such as
Bovine Spongiform Encephalopathy (BSE) [16,17], vCJD
[18-22] and Kuru [23]. Although backcalculation is not
discussed in this paper, several rigorous reviews have been
published with regard to diseases with a long incubation
period [15,17,22,28]. This approach has also recently
diverged to quantification of the transmission potential of
diseases with an acute course of illness [24] and infec-
tiousness relative to disease-age [25]. Moreover, in cases
such as the short and long incubation periods of Plasmo-
dium vivax malaria in temperate zones, the incubation
period also enhances ecological understanding of adapta-
tion strategies; in temperate zones, clearly separate bimo-
dal peaks with approximate lengths of 2 and 50 weeks are
observed [26,27], helping malaria transmissions continue
over the winter season when transmission is usually
greatly reduced due to seasonal entomologic characteris-
tics.

The earliest model developed using incomplete data
Whereas the incubation period is conveniently extracted
from specific data indicating the time of exposure, i.e.,
experimental inoculation data and case travel histories
[2], most infection events are not directly observable for
diseases transmitted by non-sexual direct contact. Thus, it
is often difficult to determine the incubation period with-
out explicit information of the time of exposure. The
majority of epidemiologic data informs us that exposure
(i.e., infection) occurred in a defined period, data of
which is referred to as interval censored [29]. This is a
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common concern for acute infectious diseases transmitted
by droplets and droplet nuclei and, most noteworthily,
was discussed in detail during the outbreak of severe acute
respiratory syndrome (SARS) [30,31]. Previous studies on
the population dynamics of influenza tend to make
assumptions with regard to the incubation period distri-
bution without employing observed data [32,33], perhaps
mainly due to difficulties in identifying the time of expo-
sure. The incubation period distribution of influenza
remained almost unknown until a recent study reanalyzed
the data of influenza transmission on an aircraft with a
short duration of flight [34,35]. Assuming Weibull distri-
bution, this study estimated the mean (and standard devi-
ation (SD)) incubation period as 1.48 (0.47) days [35].
Not only was the sample size of the estimate limited (i.e.,
37 secondary cases), but since no other estimates are cur-
rently available, the present paper revisits a historical
study on this topic.

The earliest study concerned with estimating the incuba-
tion period of influenza was published by Anderson Gray
McKendrick (1876–1943) and J. Morison in the Indian
Journal of Medical Sciences in 1919 [36]. Dr. McKendrick,
a physician and epidemiologist, applied various mathe-
matical methods to the field of medicine and is a known
pioneer in the biomathematics of infectious disease epi-
demiology [37-39]. Whereas Dr. McKendrick, in collabo-
ration with William Ogilvy Kermack (1898–1970)
[40,41], is relatively well known as the first to suggest the
deterministic epidemic model given by differential equa-
tions, his analysis of the incubation period of Spanish flu
preceded this, and remains relatively unknown even
among specialists (see Online Additional File 1 for the
original). Except for this work, no other historical study

on influenza has explicitly accounted for the unknown
time of exposure or identified the time of exposure in a
specific setting (as in the above mentioned study docu-
menting transmission on an aircraft [34,35]).

In Dr. McKendrick's study, an attempt was made to infer
the incubation period of pandemic influenza using the
daily incidence of cases on ships departing, with incubat-
ing individuals, from several ports in Australia. The inci-
dence was recorded according to the date of voyage after
departure. The original epidemiologic data was based on
observations of 92 departing voyages, summarized by Dr.
John Howard Lidgett Cumpston (1880–1954), Director
of Quarantine of the Commonwealth of Australia [42]
(the original material is available online [43]). In this
dataset, onset of 64, 17, 5 and 2 cases was observed on the
1st, 2nd, 3rd and 4th day of voyage, i.e., after departure,
on the documented ships (Figure 1). No influenza case
developed symptoms on or after the 5th day of voyage
and the observed cases were thought to have been exposed
to influenza before departure. Since the data for each voy-
age mainly included only a few initial cases that devel-
oped influenza on board, it is assumed that potential
secondary transmission on board was negligible, and
potential asymptomatic transmission was also ignored
(detailed information on the observed and excluded sec-
ondary transmissions are documented in the original [43]
and Dr. McKendrick also addressed the issue of secondary
transmission by limiting the number of cases per ship).
Further technical details are given in the Additional File 2.

Using the data in Figure 1 (with a total of N cases), the
number of cases, G(t), t days after departure was modeled
as:

Table 1: Common uses of the incubation period distribution of infectious diseases

Major field of use Explanation and example Ref.

Clinical practice Rough estimates of the time of exposure of bedside cases (e.g., to determine the causes and/or sources of 
infection)

5

Development of a treatment strategy that extends the incubation period (e.g., antiretroviral therapy for HIV/AIDS) 1
Early projection of disease prognosis when the incubation period is clearly associated with clinical severity (e.g., 

diseases caused by exotoxin)
6, 7

Clinical investigations of the impact of infecting dose on the clinical appearance of a disease (i.e., the dose-response 
mechanism)

8, 9

Public health practice Determination of the length of quarantine required for a potentially exposed individual (e.g., limiting the movement 
of those exposed to SARS within a household)

10

Epidemiologic study Determination of the eradicability of a disease (e.g., determination of the effectiveness of isolation measures) 11
Estimation of the time of exposure during a point source outbreak (e.g., in identification of the source of infection 

during large-scale food poisoning)
12

Determination of the end of a point source outbreak (i.e., statistical tests that determine if case onset is over) 13
Reconstruction of epidemic curves and short-term predictions of slowly progressing diseases (e.g., backcalculation 

of HIV/AIDS and prion diseases)
14–23

Estimation of the transmission potential and infectiousness relative to disease-age (e.g., estimation of the relative 
infectiousness of smallpox)

24,25

Ecological study Determination of the adaptation strategy of a parasite (e.g., evolution of vivax malaria owing to seasonal selection 
pressure)

26,27
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where f(t) and F(t) are the probability density and cumu-
lative distribution functions of an incubation period of
length t (see Additional File 2). From this, Dr. McKendrick
suggested that the mean incubation period was 32.71
hours, which is consistent with recent estimate [35]. How-
ever, this value was likely slightly underestimated, because
the model implicitly assumed the possible time of expo-
sure as being from time 0 to infinite before departure; it
has been extensively discussed that data assuming long
possible periods of exposure is likely to be uninformative.
Moreover, in a recent work on SARS concerned with anal-
ysis of data with short periods of exposure [44], the equal
probability of exposure for each possible date was likely to
have overestimated the variance of the incubation period
distribution [31]. Thus, to obtain a precise estimate of the
incubation period, appropriate censoring methods with
well-defined short periods of exposure are needed in addi-
tion to a large sample size [30,45]. However, despite these
technical concerns, it is remarkable that Dr. McKendrick
was able to estimate the incubation period of pandemic
influenza considering the unknown time of exposure in
the given data.

Classic right-skewed distribution
After Dr. McKendrick's initial work and his use of implicit
assumptions to determine the incubation period distribu-
tion, John R. Miner (1892-unknown), a biologist and epi-
demiologist at Johns Hopkins University, is believed to
have documented the first explicit model of the incuba-
tion period distribution [46]. Dr. Miner collected epi-
demic records of several outbreaks of typhoid fever,
claiming that the length of the incubation period clearly
differs by source of infection (i.e., comparing water- and
food-borne outbreaks, he found that the food-borne out-
breaks had a much shorter incubation period, most likely
reflecting dose-response phenomena). During his analy-
sis, Dr. Miner paid close attention to variance in the incu-
bation period, describing a distribution that always
skewed to the right. In calculating "moments" of the incu-
bation period in a water-borne outbreak at the Old Salem
Chautauqua, 1916, he used the following equation to
explain the epidemic curve:

where y and x are the expected number of cases and time
after exposure, respectively (Figure 2). The general form of

eqn. (2) is referred to as Pearson's type I distribution,
which is given by [47]:

where m1/a1 = m2/a2. During the early 20th century, it was
deemed useful to apply Karl Pearson's (1857–1936) "sys-
tem of frequency curves" to observed data, because the
parameters could be arithmetically obtained from
moments determined by the descriptive statistics; a
"moment" refers to the expected value of a positive inte-
gral power of a random variable (i.e., the nth moment of
a distribution is the expected value of the nth power of the
deviation from a fixed value). Among Pearson's curves,
type I distribution is the most standard and relatively flex-
ible, and can realize right-skewed distribution [47].
Although no other works concerned with models of the
incubation period have been identified, Major Green-
wood (1880–1949) applied Pearson's type III distribution
to the distribution of the serial interval (i.e., the time from
symptom onset in a primary case to symptom onset in a
secondary case [48]) of measles within a number of
households [49].

Lognormal distribution proposed by Philip Sartwell
The epidemiologist Philip E. Sartwell (1908–1999), who
previously acted as chairman of the Department of Epide-
miology, Johns Hopkins School of Hygiene and Public
Health, contributed most to the foundation of incubation
period distribution modeling [50]. Dr. Sartwell initially
found that the incubation period of acute infectious dis-
eases tends to follow lognormal distribution [12], and
applied the distribution to various diseases [51,52].
Observing that the distributions often skewed to the right,
Dr. Sartwell suggested the use of two parameters (i.e., an
estimated "median", which is also the geometric mean
due to the characteristics of lognormal distribution, and a
"dispersion factor" as a measure of variability) rather than
the sample mean and standard deviation. Lognormal dis-
tribution has a probability density function (pdf) of:

for x > 0, where μ and σ are the mean and standard devi-
ation of the variable's logarithm [53]. The coefficient of
variation (CV), a dimensionless number, is a measure of
dispersion of the distribution given by:

Figure 3 shows the frequency distributions of the incuba-
tion periods of measles and poliomyelitis based on care-
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ful observations of the times of exposure and onset
[54,55] (the maximum likelihood method was used to
obtain Fig. 3 and will be discussed later). Both incubation
periods were reasonably generalized using lognormal dis-
tributions, yielding maximum likelihood estimates of μ
and CV of 2.47 log(days) and 28.0% and 2.37 log(days)
and 47.4%, respectively. The goodness-of-fit to lognormal
distribution was then visually assessed by drawing lognor-
mal quantile plots (Figs. 3B and 3D).

Even at present, it is frequently assumed that the incuba-
tion period of acute infectious diseases follows lognormal
distribution [25,56,57]. Using the lognormal assumption
for incubation period, Dr. Sartwell further developed a
method to estimate the time of exposure during a point
source outbreak [52]. Since the contribution of Dr. Sart-
well has been revisited several times elsewhere [2,58] and
is relatively well known among experts in this field, simi-
lar and directly relevant models proposed by Japanese epi-
demiologists are discussed in the following.

Lognormal models proposed by Japanese epidemiologists
Dr. Sartwell's suggestion on the tendency for the incuba-
tion period to follow lognormal distribution largely influ-
enced early theoretical epidemiologic studies in Japan,
especially those related to estimations of the time of expo-
sure during a point source outbreak. The earliest Japanese
work appeared immediately after Dr. Sartwell's first pub-

lication and was conducted by Takeshi Hirayama (1923–
1995), an epidemiologist who, later in life, worked
mainly on the epidemiology of various cancers [59,60].
The theoretical basis of Dr. Hirayama's method is illus-
trated in Figure 4, the logic of which is explained in the
following.

Since all cases in a point source outbreak share the same
time of exposure, the epidemic curve, which is drawn
according to the time of onset (i.e., incidence), is equiva-
lent to the incubation period distribution (Figure 4). Sup-
pose that the median point of the case frequency was
observed x days after exposure and, further, that there are
α percentile points on both sides of the observed distribu-
tion (upper and lower percentiles α) with the distances
from the median to both percentiles points being a and b
days, respectively, the following relationship is given
(because the logarithm follows normal distribution):

ln(x) - ln(x - a) = ln(x + b) - ln(x). (6)

This is rearranged as:

Consequently, the time of exposure can be inferred using
the distance from the time of exposure to the median, x,
by taking the distances to any equal percentiles on both
sides:

This estimator is theoretically the same as that suggested
by Dr. Sartwell in his later work [52]. Although this model
can theoretically assume any α (for 0 <α < 0.5), Dr.
Hirayama implicitly suggested the use of α = 0.16 to
obtain a precise estimate of x and small SD, but this sug-
gestion was made based on observational experience
alone and analytical expression for the SD was unfortu-
nately lacking. Since recall bias is unavoidable in retro-
spective epidemiologic studies of food poisoning
requiring huge efforts of food traceback [61], this method
appears to be very useful in determining the most plausi-
ble time of exposure and narrowing down the amount of
information to be traced. A similar method has been
applied to the epidemiology of cancer and other chronic
diseases [62,63].

Another lognormal assumption was made by a research
group on Theoretical Epidemiology at Osaka City Univer-
sity Medical School, mainly and initially led by Kazuya
Horiuchi and Hiroshi Sugiyama [64,65]. The methodol-
ogy has been frequently applied to field data in Japan
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The relationship between the incubation period and observed onset of influenza after departure from Australia, 1918–19Figure 1
The relationship between the incubation period and 
observed onset of influenza after departure from 
Australia, 1918–19. Daily frequencies of influenza onset 
were observed after departure. Those who developed symp-
toms on board were assumed to have experienced exposure 
before departure. Since the time of exposure was difficult to 
identify explicitly, it was necessary to consider all possible 
times of exposure before departure. Asymptomatic infec-
tions and potential secondary transmissions on board were 
ignored. See supporting material for original descriptions and 
original data [36, 42, 43].
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[66,67] and is relatively well known among Japanese pub-
lic health workers [68-70]. Dr. Horiuchi examined the
validity and precision of Dr. Hirayama's method using
Monte Carlo simulations, claiming that the method could
be improved further [71] and suggesting that the incuba-
tion period should be assumed to follow "non-central"
lognormal distribution when an epidemic curve is used
[64]. That is, although Dr. Hirayama used the distance
from the time of exposure to the median (x in eqn. (6)),
this is unknown information in field observations, and
thus, Dr. Horiuchi and his colleagues suggested the use of
x-C, where C is the time of exposure. This permitted the
more convenient use of calendar time. For example, let X
be a random variable following non-central lognormal
distribution, ln(X-C) should follow a normal distribution,
N(μ, σ 2), and consequently, the following t becomes a
linear function of ln(X-C):

When we assume that the random variable X is a function
of t, eqn.(9) can be rearranged as:

X(t) = exp(σt + μ) + C. (10)

Further, considering different values of t, e.g., t+h, yields:

Using eqns.(10) and (11), an estimate of C was obtained
by graphically plotting these two functions on vertical and
horizontal axes, respectively, and then finding the inter-
sect. Estimation of the time of exposure using similar
assumptions was extensively discussed in Japan during
the 1950s and 60s. These discussions included the follow-
ing: (i) the definition of the incubation period (e.g.,
which to use as the time of onset during a food-borne out-
break, the onset of diarrhea or fever? [72,73]), (ii) exten-
sion of the estimation method when the data is truncated
[68], (iii) the influence of host- and pathogen-related fac-
tors and routes of infection on the incubation period [74],
and (iv) outbreaks that include cases resulting from
human-to-human secondary transmissions (e.g., shigello-
sis [75]).

More modern studies employing lognormal distribution
Although the studies described above have offered useful
and practical methods based on an understanding of the
characteristics of lognormal distribution, the classic meth-
ods likely included sampling errors and did not achieve
acceptable precision. Indeed, it has been pointed out that
the estimates obtained using the methods of Drs. Sartwell
and Hirayama largely depend on optional percentile
points, α [76], while that proposed by Dr. Horiuchi and
his colleagues is also thought to be highly sensitive to an
optional value, h [77]. Thus, estimates of the time of expo-
sure should be addressed statistically by precise solution
of the three-parameter lognormal distribution [78,79].
Accordingly, in line with this, the maximum likelihood
method was proposed [77,80,81]. Although Dr. Hill was
the first to document the application of the maximum
likelihood method [80], it unfortunately remained rela-
tively unknown, especially among Japanese epidemiolo-
gists, until Toshiro Tango, a statistician at the National
Institute of Public Health, Japan, attempted to propagate
the method and propose reasonable estimators during the
1990s [77,81]. Let γ be the time of exposure, the pdf of the
three-parameter lognormal distribution is given by:

for x > γ . Other parameters are as in eqn.(4). The likeli-
hood function is given by the pdf:
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The incubation period distribution of typhoid fever in Old Salem Chautauqua, 1916, fitted to Pearson's Type I distribu-tionFigure 2
The incubation period distribution of typhoid fever in 
Old Salem Chautauqua, 1916, fitted to Pearson's 
Type I distribution. The incubation period started at an 
assumed time of exposure due to a flood that occurred 4 
days before closing the water supply to Chautauqua. Since 
there were 4 possible days of exposure to contaminated 
water, the original study used the mid-point as a single time 
point of exposure. See [46] for the original descriptions.
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where n is the total number of cases observed in an out-
break. Although maximum likelihood estimates of γ, μ
and σ are obtained by minimizing the negative logarithm
of eqn.(13), it is often the case that the iteration does not
converge [82], and thus, Dr. Tango proposed his estima-
tors [77,81]. Assuming that γ is known, maximum likeli-
hood estimators of μ and σ are given by:

Using these, the maximum log likelihood is given as a
function of γ :

ˆ( ) ln( ),μ γ γ= −∑1

1n
xi

n
(14)

ˆ ( ) ln( ) ˆ( ) .σ γ γ μ γ2 2

1

1= − −{ }∑n
xi

n
(15)

The incubation period distributions of measles (A and B) and poliomyelitis (C and D) fitted to lognormal distributionsFigure 3
The incubation period distributions of measles (A and B) and poliomyelitis (C and D) fitted to lognormal distri-
butions. A &C) Observed frequencies (bars) are compared with predicted frequencies (solid line) based on the maximum like-
lihood method assuming lognormal distribution. The ends of the box represent the 25th and 75th quantiles (i.e., quartiles), and 
the line across the middle of the box identifies the median sample value. The means diamond indicates the sample mean and 
95% confidence interval. The whiskers extending from both ends show additional quantiles (5th, 10th, 90th and 95th) on the 
response axis (note: for poliomyelitis (C), some quantiles are overlapping, and therefore only the 90th quantile is displayed). B 
& D) Lognormal quantile plots of the incubation periods. The diagonal reference lines show the line of fit and the two dashed 
lines denote confidence limits of 95% equal precision bounds with a = 0.001 and b = 0.99. See [54,55] for original data.
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which is the profile likelihood of γ ; the estimate of γ max-
imizes eqn.(16). A Bayesian method was also proposed by
Dr. Hill, in addition to the maximum likelihood method
[80].

The validity of a lognormal assumption
Despite rigorous studies, it should be noted that we have
limited explicit explanations for the biological validity of
assuming lognormal distribution for the incubation
period. The fundamental biological reason to assume log-
normal distribution is related to an inoculation study of
ectromelia virus (mouse pox) [83], which suggested expo-
nential growth of pathogens within the host during the
initial phase. Another similar study suggested that a fixed
threshold likely exists when the host response is observed
[84]. Based on these findings, pathogen growth in inocu-
lation experiments was modeled using the birth-death
process, supporting right skewed distribution of the incu-
bation period and its long tail [85-87]. Also, given similar
results from further birth-death process models [76,88]
and another previous model [89], what we have learnt to
date can be described as follows: if the growth rate of a
microorganism is implicitly assumed to follow normal
distribution, and if there is a fixed threshold of pathogen
load at which symptoms are revealed due to the host
response, exponential growth of microorganisms should

result in an incubation period sufficiently approximated
by lognormal distribution.

Given the above reasonable explanations, a previous Jap-
anese study examined 86 outbreak records for which the
date of infection was known and the population exposed
was homogeneous [90]. By assessing the goodness-of-fit,
61 out of the 86 examples (70.9%) were accepted as log-
normal at a 5% level of significance or better, from which
it was concluded that, in general, lognormal distribution
represents the incubation period of acute infectious dis-
eases [90,91]. Through such efforts, the validity of the log-
normal assumption has been supported by the
accumulated experience of Dr. Sartwell and the above
mentioned Japanese epidemiologists. It may also be true
that the lognormal distribution was preferred because of
its statistical usefulness (as described in the above Japa-
nese study). However, the host-defense mechanism,
which is almost entirely responsible for symptom onset,
was later shown to be far more complex than previously
expected. For example, fever is induced by very complex
reactions and by several factors including circulating
cytokines such as interluekin-2 [92]. Thus, whereas log-
normal distribution may be applied to the incubation
periods of many acute infectious diseases, it is necessary to
bear in mind that the assumption is supported only by
previous experience.

A further critique of the lognormal assumption
Until recently, the validity of assuming lognormal distri-
bution has not been explicitly compared with that of
other distributions. As discussed above, Weibull distribu-
tion with a threshold (i.e., three parameter Weibull distri-
bution) was assumed for the incubation period of
influenza [35]. Such study indicates that a simple lognor-
mal assumption does not always hold in practice. Other
studies have assumed gamma distribution for the incuba-
tion periods of SARS and smallpox [24,30,93-95], and
regarding the latter, lognormal distribution has also been
assumed [25,96]. Figure 5 compares the quantile plots of
lognormal and gamma distribution for the incubation
period of smallpox, showing that both fit almost equally
well with the observed data. For both distributions, the χ2

goodness-of-fit test revealed no significant deviation
between the observed and predicted values (χ2

12 = 11.6, p
= 0.48 and χ2

12 = 16.8, p = 0.16 for lognormal and gamma
distributions, respectively). However, two-parameter
Weibull distribution did not represent well the probabil-
ity density functions of the incubation period (p < 0.001).
These discussions imply that comparisons using different
distributions are needed; it is important to at least com-
pare the goodness-of-fit of different and arbitrarily chosen
distributions for acute infectious diseases.

ln ( ) ln sup ( , , ) ( ( ) ln ( )) ( log( )
,

L L n
n∗∗ ≡ = − + − +γ γ μ σ μ γ σ γ π

μ σ 2

2

2
1 2 ))

(16)

A method for estimating the time of exposure during a point source outbreakFigure 4
A method for estimating the time of exposure during 
a point source outbreak. The horizontal axis shows the 
time since exposure and the distribution the frequency of 
cases according to the time of onset. The vertical dashed line 
is the median incubation period observed x days after expo-
sure. The remaining two vertical lines indicate the times 
when fractions α and 1-α of cases developed the disease. 
The intervals between the median and other two vertical 
lines represent a and b, respectively. The illustration was 
drawn by the author with reference to [59].
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The validity of lognormal assumption is particularly lack-
ing for slowly progressing diseases. One important reason
for this is that the mechanisms of disease development for
AIDS and prion diseases, for example, are far more com-
plicated than those of acute infectious diseases. In the case
of AIDS, where Weibull distribution is frequently
assumed for the incubation period [15], symptom onset is
induced by immunodeficiency resulting from HIV infec-
tion followed by various opportunistic infections. For BSE
and vCJD, various distributions have been assumed for
the backcalculation, permitting some uncertainty analyses
[19,20,22,97]. Although the disease mechanisms of vCJD
are yet to be clarified, considering within-host dynamics it
is evident that the incubation period cannot be explained
by the above simple explanation [98,99]. That is, for these
diseases, the above mentioned explanation for the lognor-
mal assumption is not justified, and thus, the choice of
distribution for the incubation period needs to be care-
fully assessed using sensitivity and uncertainty analyses.
Indeed, various right skewed distributions are often used
in sensitivity analysis, revealing whether or not the final
results depend on the arbitrarily chosen standard distribu-
tion for the incubation period [19,20,97].

Two conclusions can be drawn from the above discus-
sions. First, the lognormal assumption does not always
hold. Thus, as far as we continue to rely on observed fre-
quencies and arbitrarily chosen specific distributions, it is
essential that comparisons using different distributions
are made; any assumptions should be explicitly evaluated

by means of significance tests and visual assessments. Sec-
ond, the biological validity of assuming specific distribu-
tions for the incubation period remains an open question
[100,101], and thus, further information is needed. For
example, within-host dynamics would help clarify disease
onset mechanisms in the most explicit way [102]. Moreo-
ver, if information associated with within-host dynamics
is not available, an accumulation of distributions
obtained using different datasets would be of interest, as
would examination of various characteristic factors (e.g.,
dose-response mechanisms [6,7,9], and variable suscepti-
bility due to age, race and genetic factors (for example, see
[45,94])).

Conclusion
The present study revisited previous works concerned
with models of the incubation period of acute infectious
diseases. In particular, the following were highlighted: (i)
the earliest modeling effort conducted using incomplete
data of a pandemic influenza, (ii) the explicit distribution
of the incubation period, (iii) the application of a lognor-
mal assumption to estimations of the time of exposure
during a point source outbreak, and (iv) the validity of
assuming lognormal distribution for the incubation
period. Although it was not highlighted in the present
paper, Norman T. J. Bailey also formed a framework using
a chain binomial model, which is useful for household
transmission data [103,104]. This method estimates the
incubation period as the sum of the mean latent period,
which follows normal distribution, and a further fixed

Comparison of the quantile plots for the incubation period distributions of smallpox assuming (A) lognormal and (B) gamma distributionFigure 5
Comparison of the quantile plots for the incubation period distributions of smallpox assuming (A) lognormal 
and (B) gamma distribution. The diagonal reference lines show the line of fit. The maximum likelihood estimates of the 
mean (μ) and standard deviation (σ) for lognormal distribution were 2.47 (95% CI: 29.1, 38.6) and 0.36 (0.31, 0.41), respec-
tively. The shape (α) and scale (β) parameters for gamma distribution were estimated as 33.6 (95% CI: 29.1, 38.6) and 0.36 
(0.31, 0.41), respectively. See [96] for detailed descriptions.
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infectious period; however, the estimated period does not
precisely imply the incubation period, but rather is closer
to what is presently referred to as the serial interval
[48,105]. That is, the incubation period that can be
extracted from household transmission data remains to
be clarified.

The lessons that can be learnt from the presented discus-
sion are as follows: (I) although it is historically remarka-
ble that the incubation period of pandemic influenza was
assessed based on an explicit understanding of an
unknown time of exposure, the assumed periods of expo-
sure were too long and equal probability of exposure was
assumed for each possible date. Well-defined short peri-
ods of exposure are needed to decipher the incubation
period distribution using appropriate statistical methods.
Taking this point into account will be critically important
in estimating the incubation period of newly emerging
diseases in the future. (II) The epidemiologic usefulness of
the lognormal assumption was highlighted with respect to
the basic characteristics of lognormal distribution, but
this assumption is likely to remain unwarrantable until
details of disease mechanisms are fully clarified; thus, this
assumption may be merely an approximation of the right-
skewed distribution. For example, considering the mech-
anisms of disease development, the lognormal assump-
tion does not hold for HIV/AIDS and prion diseases.
However, this limitation of the lognormal assumption
does not imply that such approximation of the incubation
period distribution is meaningless. Rather, it suggests that
when parametric models are assumed, it is at least neces-
sary to compare the goodness-of-fit for several distribu-
tions in order to overcome some of the uncertainty.
Various datasets on the same disease would also help
assess the uncertainty. Further, it would be informative if
the determinants could be clarified even by simple strati-
fications (e.g., with respect to sex, age and genetic factors).
Ideally, assumptions in the future should be supported by
a detailed understanding of the underlying disease mech-
anisms provided by observations of within-host dynam-
ics. Since the incubation period of infectious diseases is
directly relevant to prevention and control, and because
such knowledge can enhance our theoretical understand-
ing of the spread of disease, further clarifications of the
above points are deemed necessary.
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