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Abstract: Antibody–drug conjugate (ADC) is a milestone in targeted cancer therapy that 

comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization 

of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and 

pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, 

linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells 

successfully. This inventiveness of endocytosis and intracellular trafficking has given consi-

derable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is 

significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways 

efficiently and to design potent engineered conjugates and biological entities to boost efficient 

therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracel-

lular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate 

practically applicable ADCs.
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Introduction
Antibody–drug conjugate (ADC) is a milestone novel class of therapeutic agents in 

targeted cancer therapy. ADCs combine the antigenic specificity of an antibody with 

the assistance of potent tumorigenic effects of cytotoxic compounds. Traditionally, 

chemotherapeutic procedures have for quite some time been in practice to help dis-

tinctive tumors treatment. However, targeted cancer therapy gained major interest in 

anticancer therapeutics that convey highly cytotoxic drugs directly to a tumor site. This 

approach of antibody-mediated drug delivery elevates maximum tolerance and has 

gained a considerable momentum in cancer therapy with the recent approval of two 

ADCs by the US Food and Drug Administration (FDA), Kadcyla and Adcetris, along 

with .40 conjugates in clinical trials.1 Kadcyla, comprised of monoclonal antibody 

(mAb), Herceptin, conjugated by means of lysine residue to DM1 that hinders cell 

division.2 Adcetris comprised the cAC10, a human–mouse chimeric antibody, through 

monomethyl auristatin E (MMAE), a cysteine residue that inhibits tubulin polymeriza-

tion.3 These conjugates provide a unique opening of studying the mechanism of ADC 

action with tumor biology and cancer indication in drug development.

Cells constantly internalize extracellular molecules to lumen and degrade through 

complex enzymatic pathways. This inventiveness of endocytosis and intracellular traf-

ficking has given considerable momentum recently to develop specific antibodies and 

ADCs to treat cancer cells. It is profitable to accentuate endocytosis and intracellular 

trafficking pathways successfully for ADC design. This evolving approach of targeted 

therapy was because of the Ehrlich concept of “magic bullet”.4,5 Further maturity of 
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hybridoma technology by Kohler and Milstein6 in 1975 and 

recent advancements in antibody engineering, significantly 

enlighten the field of ADCs production.

Designing of ADC occurs in such a way that mimics 

toxicity of drugs and augments the antitumor activity of 

potent payloads, by inhibiting tubulin (eg, auristatin, may-

tansinoids), double-stranded DNA break, or minor groove 

binder/alkylators of DNA (eg, ducomycin)7,8 as shown in 

Table 1. These drugs are mostly derived from the natural 

source that triggers cell cycle arrest followed by apoptosis. 

Naito et al9 reported morphological changes before cell arrest 

at a G2/M phase in CD33-positive acute myeloid cells by 

using calicheamicin-676 drug. Despite numerous reports 

on drugs cytotoxicity, the intracellular trafficking studies of 

ADCs are still unclear. Current studies summarize knowledge 

of endocytosis and trafficking mechanism of ADCs with the 

current approach of their action.

Endocytosis and trafficking of ADC
ADC comprised of an mAb, linker, and cytotoxic payloads. 

The antibody counterpart binds specifically with target anti-

gen on the tumor cell surface. Different features of antibody 

enhance optimization of ADC as summarized in Figure 1. 

Physical and chemical properties of these conjugates are 

briefly studied in literature but degradation and intracellular 

trafficking properties of ADC are relatively unknown.10 

Successful optimization and development of ADC largely 

depend on its building units, tumor biology, antigen presen-

tation, binding site chemistry, linker stability and its types, 

payload potency of loading drug, and drug–antibody ratio 

(DAR).11–13 Ideally, ADC must have selectivity, effective 

lytic nature, and ability to release its guided drug in active 

form to deliver optimum potency in killing cancerous cells. 

Antigen expression level is a key and dynamic parameter 

for initiation of putative results, as it will determine how 

Table 1 Different compounds and their targets used in ADCs optimization

Names/compounds Targets Modes of action References

Maytansinoid conjugates Microtubules Microtubule dynamics interference and 
G2/M cell cycle arrest, resulting in cell death

112

Auristatin derivatives Microtubules Suppression and de-polymerization of 
microtubule dynamics

7

Calicheamicin derivatives Minor groove of DNA 
(TCCT-rich region)

Binding with minor groove of DNA, 
resulting in dsDNA break and cell death

113

Duocarmycin (MDX-1203, CC-1065) Minor groove of DNA 
(AT-rich sequences)

Alkylation of adenine 114

Vinca alkaloids/taxoids 
(vincristine/vinblastine)

Tubulin binding Microtubule dynamics interference 7, 115

Anthracycline drugs 
(doxorubicin/nemorubicin/daunorubicin)

Tubulin binding Re-ligation inhibition and double strand 
break in DNA, resulting in cell death

116, 117

Abbreviations: ADC, antibody–drug conjugate; dsDNA, double-stranded DNA; A, adenine; C, cytosine; T, thymine.

Figure 1 Significant and dynamic characteristics of ADC.
Notes: (A) Antibody, (B) linker, and (C) cytotoxic drug are three milestones in ADC optimization.
Abbreviations: ADC, antibody–drug conjugate; mAb, monoclonal antibody.
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much ADC will bind to the cancerous cell and internalize. 

Low expression level limits the binding and inadequate 

endocytosis, thereby restricting efficient delivery of ADC-

loaded drug.14

Endocytosis can be manifested by different internalization 

routes such as clathrin-mediated, caveolae-mediated, and 

clathrin–caveolin-independent endocytosis15 (Figure 2), but 

much work has been focused on clathrin-mediated endocyto-

sis (CME). The first two are receptor-mediated endocytosis, 

while the latter one is receptor-independent endocytosis. 

High binding interaction of antigen–antibody results in 

accumulation of more ADCs on the membrane surface. 

It is hard to distinguish among these pathways as some 

molecules are not restricted to a single pathway. CME was 

reported as the central route adopted by various ADCs. 

Trafficking of ADCs occurs with the aid of adaptor pro-

tein (AP2), dynamin, epsin, and phosphatidylinositol (4,5) 

bi-phosphate (PIP2).16

Precise ligands accomplished binding activity of antigen 

and antibody on tumor surface more actively. These ligands 

include protein molecules, small molecular receptors, 

antibodies, peptides and proteins, and carbohydrates.17–19 

The most prominent among these are target-specific mAb 

fragments,20 transferrin,21 peptides,22 and folate.23 Endocytosis 

of tiny, unionized hydrophobic molecules occurs passively, 

while large, charged polar, or conjugated molecules are car-

ried inside in the form of complex coordinated pathways by 

utilization of energy-rich sources.24–26 The most prominent 

recruitment pathway reported for transportation is clathrin-

mediated by the formation of clathrin-coated vesicles (CCVs) 

or membrane invagination coats that cover 2% total area.27,28 

The other less prominent pathways including caveolin-

mediated,29 clathrin–caveolin-independent,30 and cholesterol/

macropinocytosis-mediated are also reported in literature.31 

Mayor et al also reported that other small caveolae vesicles 

contain lipid microdomain involved in different transduction 

events with lack of clathrin protein function.32

After passing membrane barriers, conjugate marched 

toward endosomes and emptied there with indication 

of prominent markers, ie, Rab 5, Rab 7 and Rab 11.33,34 

Figure 2 Different endocytosis routes followed by ADC.
Notes: Endocytosis of ADC takes place through three different mechanisms, ie, CME, caveolin-mediated endocytosis, and clathrin–caveolin-independent endocytosis. 
ADC conjugates travel inside and reach endosome/lysosome lumen, where it reloads its payloads and targets cell binary structures to rupture tumor cell.
Abbreviations: ADC, antibody–drug conjugate; CaMe, caveolin-mediated endocytosis; CMe, clathrin-mediated endocytosis; CCie, clathrin–caveolin-independent 
endocytosis; CCP, clathrin-coated pits; CDC, cell division cycle; ee, early endosome; ePS15, epidermal growth factor receptor substrate 15; Le, late endosome; mono-Ub, 
mono-ubiquitylation; MVB, multivesicular antibody; PKC, protein kinase C; RAC1, Ras-related C3 botulinum toxin substrate 1; RE, recycling endosome; SRC, Rous sarcoma 
virus cellular protein; TK, tyrosine kinase.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2017:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2268

Kalim et al

Early endosome becomes late endosome by losing protein 

which plays the vital role in recycling. The decrease in pH 

occurs by utilization of proton pump.35 Late endosome fuses 

with lysosome resulting in pH decrease. ADCs’ degradation 

occurs due to acidic environment and enzymatic activities 

of lysosome.36,37

Recycling of membrane proteins and lipid occurs through 

the complex process by utilization of Rab proteins/GTPases 

to regulate mechanism of endocytosis and proteins balance 

at the membrane surface.33,34,38 CME and caveolin-mediated 

endocytosis utilized Rab 11 protein to recycle back ADC.34 

Nexinprotein performs this recycling activity from the endo-

some toward the membrane surface.33,39 Time optimization 

of recurring changes after 1 hour of endocytosis. The ADC-

carrying payload reaches the lysosome and releases the drug 

due to a breakage of a linker. The free payloads reach the 

targeted area resulting in a disruption of tubules or cell cycle 

arrest, which ultimately results in apoptosis of the cancer cell 

as shown in Figure 3.

Protein machinery in endocytosis
ADCs travel inside the cell via the bucket of clathrin-coated 

pits, become uncoated by the Hsp70 protein complex, and fuse 

with early endosomes to acquire the endosomal–lysosomal 

trafficking.39 ATP-dependent proton pump exists in endo-

some and lysosome and changes the pH of early endosomes 

(6.0–6.2), late endosomes (5.5), and lysosomes (4.5–5.0).40 

The acidification results in dissociation of ligands, such as 

insulin, epidermal growth factor (EGF), and low-density 

lipoprotein (LDL) from receptors in early endosomes, and 

vacant receptors get into surface membrane via recycling 

compartment of narrow tubules. Several kinds of literature 

reported an alternative set of protein machinery that led to 

the formation of the same morphological structures as in the 

case of endocytic tubes and caveolae.41 A progress report 

conducted by Sabharanjak et al42 in Satyajit Mayor (National 

Center for Bio Science, Bangalore) characterized clathrin-, 

dynamin-, and caveolae-independent internalization path-

ways for transportation of glycosylphosphatidylinositol 

Figure 3 Mechanism of endocytosis and intracellular trafficking of ADC.
Notes: (A) Shows surface localization of antigen–antibody complex, (B) shows mechanism of endocytosis, and (C) indicates final cell death of tumor cell.
Abbreviations: ADC, antibody–drug conjugate; CMe, clathrin-mediated endocytosis; ee, early endosome; FcRn, neonatal Fc receptor; Le, late endosome.
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(GPI)-anchored proteins and an addition of early endosomal 

compartments (GEEC) as an intermediate protein. Chadda 

et al43 also reported that cholesterol-dependent recruit-

ment and active Cdc42 stabilization on the plasma surface 

membrane initiate the pinocytic pathway that led localized 

actin polymerization. Cdc42 is controlled by Arf1, such as 

ARH-GAP10 and small GTPases, to regulate endocytosis. It 

was also reported that CME required adaptor proteins such 

as AP2, EPS-15, and clathrin triskelion for the formation 

of clathrin-coated pits at the membrane surface.44,45 Several 

pathways share the same requirements for dynamin and 

Arf6 (ADP-ribosylation factor). Donaldson46 also reported 

multiple roles of Arf6 in structure, signals, and membrane 

trafficking of a cell. Caveolae are generated by addition of 

a primary protein, caveolin, which is a specialized form 

of lipid rafts.47 Caveolae become caveosome, a caveolin-

enriched organelle, processed further by the endosome. 

Dynamin, protein kinase C, and Src kinases regulate the 

activation further.48 Clathrin- and caveolin-independent 

endocytosis is mediated by different protein machineries 

such as dynamin,49 CDC42, ARF150 and ARF6,51 tyrosine 

kinases,52 RacGTPases, and USP6NL.53 These studies show 

a broad framework of internalization kinetics and its impact 

on provision of ADC to entire tumor mass.16

Linker strategy and drug release
Endocytosis and trafficking of ADCs by tumor cells are 

typically sorted by endosomal/lysosomal pathways. Many 

studies reported the active release of drugs in lysosome 

either by cleavage of the linker or by antibody backbone 

degradation. This release of drugs largely depends on linker 

design and its chemistry. Generally, linkers must have high 

stability in circulation and the ability to release a drug in the 

targeted regions of tumor cells. Currently four different types 

of linkers in use are broadly divided into cleavable and non-

cleavable linkers.54 Acid-labile hydrazine linkers, peptide 

linkers, and disulfide linkers are included in cleavable linkers. 

Acid-labile hydrazine linkers are cleaved in the lysosome 

compartment as a result of low pH. Unfortunately, acid labile 

hydrazine linkers have established off-target release in clini-

cal examination.55,56 Peptide linkers conceivably selective for 

cleavage in lysosome by activity of cathepsin B.57 Unlike the 

hydrazine linker, peptide linkers show high serum stability 

and improved antitumor effects of ADC. Phe-Lys and Val-

Cit are physiological stable peptide linkers but hydrolyze 

rapidly in the presence of enzymes.58 The longer half-life of 

peptide linkers was recorded as compared to other cleavable 

linkers.59 Disulfide linkers also raise questions of non-specific 

cytotoxicity and instability and off-target release of drugs.

Recent advancement in linker technology has been 

covered by non-cleavable linkers. The chemical bond of 

non-cleavable linkers is highly stable in circulation and 

inside the cell. The release of an active potent drug inside 

a tumor cell is realized by degradation of antibodies in the 

lysosome.57 More importantly, the recently approved ADC, 

trastuzumab-DM1 (Kadcycla), also utilized non-cleavable 

linkers to treat metastatic breast cancer. More effective stud-

ies were also reported in vivo analysis by using non-cleavable 

linkers compared to their disulfide counterpart.60,61

The linker is one of the most vital components of ADCs 

that anchor cytotoxic drugs to an antibody. It must be stable 

in circulation and potent in effective drug release inside the 

cell to acquire maximal therapeutic windows.62 Once inter-

nalization was confirmed, it should be cleavable by enzymatic 

action or acidic change in lysosomes. Four different types of 

linkers were reported including disulfide and peptide base 

and acid cleavable and non-cleavable linkers. Three common 

strategies have been reported for a release of efficient drugs, 

ie, pH sensitivity, protease sensitivity, and glutathione sensi-

tivity. The protease of lysosome recognizes a specific peptide 

sequence in the linker.58 Lower pH of the endosome (5.0–6.0) 

and lysosome (4.8), as compared to cytosolic pH (7.4), elicits 

hydrolysis of a linker acid-labile group as in hydrazone. The 

third strategy of drug release exploits the higher ratio of 

intracellular glutathione as compared to plasma.16

Early development of ADC was conducted by utilization 

of the hydrazine linker, but a major downfall in its produc-

tivity, it undergoes spontaneous cleavage compared to dis-

ulfide and peptide linkers, was reported.63 These linkers are 

enzymatic in hydrolysis and can be selected for preferential 

expression, minimizing the spontaneous release of drugs in 

circulation.56,64 Peptide linkers exhibit improved antitumor 

activity and stability, demonstrating bystander cytotoxicity.65 

Cytotoxic drugs endure modification by disulfide reduction to 

methylation and have access to neighboring cells, resulting 

in lyses.66 This mechanism is very fruitful to eradicate the 

tumor cells that do not express the targeted antigen within 

the tumor cell.67,68

Efficacy of antibody and linker technology can be 

elevated by making changes in binding sites to confer con-

sistency of ADC.69,70 Lyon et al71 introduce a novel concept 

of maleimide linkers that catalyze their own thiosuccinimide 

ring hydrolysis, prevent drug loss, and develop a high stable 

ADC. King et al also reported a novel series of branched 

hydrazone linkers and made immune conjugates of mAbs 

BR96 and doxorubicin that were stable at pH 7. These 

conjugates release DOX molecules at lysosomal pH. They 

concluded a possible outcome of using a reduced amount 
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of mAb load via branched methodology to acquire desired 

cytotoxic activity.72 Recently, specificity of HER2 antibodies 

and enhanced activity of doxorubicin-labeled liposomes 

against cancer were also reported by our research group.73 

However, poor circulation stability of hydrazine linker was 

also recorded as in the case of gemtuzumab ozogamicin (GO), 

resulting in low clinical efficacy and safety.74

On the other hand, premature release in circulation is 

being prevented by utilizing non-cleavable linkers.56 Non-

cleavable linkers result in enzymatic degradation of ADC in 

lysosome and accurate release of drug with their conjugated 

amino acid lysine or cysteine.67 Active research by chemists 

to develop new linkers and discover novel potent effector 

molecules that suit ADC is currently being investigated.

Co-localization of ADC
Properties of cell surface proteins targeted by ADCs have 

not been fully exploited, of which the rate of internalization 

and the route of intracellular trafficking are of particular 

importance. Targeted delivery of anticancer drugs to tumor 

cells using mAb against cell surface receptors is an emerging 

therapeutic strategy. The rate of internalization was compared 

between ADCs with their antibodies, and similar effects 

were found as in the case of anti-CD30 (cAC10) and the 

antimitotic agent, auristatin.75 Similarly, it was also reported 

that conjugate of anti-MUC-1 in breast and ovarian cancer 

xenografts, with DNA minor groove binder, calicheamicin, 

have the same endocytosis rate.76 In contrast, some aurista-

tin conjugates efficiently internalized as compared to their 

antibody moieties. Ingle et al reported the efficiency of both 

CD19 and CD21, B cell surface receptors, and found that 

even at higher expressions of CD21 receptors, the ADC is 

unable to internalize. But the absence of CD21 results in 

efficient endocytosis of anti-CD19 ADC molecules. These 

receptor molecules develop a complex on B cell surfaces 

that mimics internalization of CD19 by CD21.77 Similarly, 

selective binding of antibodies contributes enormously in 

elevated endocytosis and potent toxicity of ADC. It was 

also recorded that there are no set parameters with optimal 

binding/internalization affinity, and maximum correlation 

of ADC and antibodies as strong binding results in faster 

internalization and efficient ADC trafficking.55 These reports 

attract consideration extensively to acknowledge molecular 

mechanism of receptor mediated endocytosis and particular 

cell target properties while designing ADC.

Law et al reported two different co-localization studies 

of anti-CD70 antibody and anti-CD20 with the anti-tubulin 

auristatin conjugate. Anti-CD70 conjugate followed CME 

and trafficked to the lysosome for payload release. The 

released payload, by the enzymatic activity of lysosomes, 

results in microtubule channels disruption and G2/M cell 

cycle arrest in metastatic renal cell carcinoma (RCC).78 

Anti-CD20 antibody and auristatin conjugate was carried by 

both CME and caveolin together. They used two anti-CD20 

conjugates, rituximab-vcMMAE and 1F5-vcMMAE, to 

selectively target B-lymphoma cell lines, trafficked to a cell. 

The enzymatic activity of lysosome results in linker destruc-

tion, releasing the payload and eventually caused G2/M phase 

arrest and apoptosis.79 One pre-clinical study was conducted 

previously by our research group by targeting CD20-positive 

B lymphoid malignancies, using ofatumumab auristatin con-

jugate ofatumumab-valine citrullin-monomethyl auristatin 

(OFA-vcMMAE), resulting in complete inhibition of CD20-

positive cells and exhibited enhanced activity as compared to 

unconjugated OFA.80 Recently, Pan et al recorded conjuga-

tion of TRAIL (Tumor-Inducing Factor-Related Apoptosis 

Inducing Ligands) with MMAE for efficient drug delivery 

to tumor cell.81

Co-localization of auristatin and anti-melanotransferrin 

conjugate was also reported in melanoma-sensitive cell 

lines (SK-MEL5 and A2058) and -resistant cell lines (L49-

vcMMAE).82 In sensitive cell lines, conjugate followed 

CME pathways for its endocytosis, while resistant cell lines 

utilized caveolin-II of caveolae to colonize the conjugate. 

One study revealed that inhibition of anti-CD30–trastuzumab 

conjugate occurs by clathrin inhibitor and internalized by 

caveolae-mediated endocytosis to cell.75 Acidic environment 

of endosome–lysosome slows down the trafficking of anti-

CD30, and its trastuzumab conjugate was also reported.75,83 

Higher concentration of ADCs in surrounding medium 

facilitates its endocytosis silently through the membrane 

surface as was reported in GO that non-specifically inhibits 

the CD33-negative acute lymphoblastic leukemia cells, while 

the lower concentration of GO in surrounding medium results 

in triggering of CME pathway to take ADCs into CD33-

positive malignant cells.84 The pinocytosis neither induces 

S-G2/M cell arrest nor apoptosis but results from necrotic 

lyses.85 However, the exact and precise quantification of 

ADC is still a topic of debate. These reports reveal different 

routes of ADC induction to the cell from surroundings and 

its trafficking to the targeted region of a cancer cell.

ADCs in clinical use and their 
mechanism studies
More than 100 different ADCs are in different stages of 

clinical evaluation, majority carrying microtubule disrupt-

ing loads (maytansinoids/auristatins). Subsequent para-

graphs describe detailed assessment of different ADCs and 
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their intracellular trafficking. Only three ADCs obtained 

approval by FDA. Two of them employ effective tubulin-

disrupting agents, either MMAE or maytansine derivatives 

(DM1), and the other one utilizes calicheamicin DNA 

strand-breaking agent as shown in Table 2. The trafficking 

studies of these drugs are still unknown. One quantitative 

model study is available in current literature that describes 

cellular processing, trafficking mechanism, internalization 

rate, proteolytic degradation, and binding mechanism of 

trastuzumab–maytansinoid conjugate.86

GO (Mylotarg)
GO was the first ADC that gained marketing approval from 

FDA in 2000. GO (Mylotarg) made conjugation with CD33-

positive cells by anti-CD30 counterpart and released its pay-

load calicheamicin compound to cell lumen due to breakage 

of hydrazone linker. GO was subsequently withdrawn from 

the market in 2010 due to its toxicity and insufficient clinical 

results.74 This conjugate got access to the cell through 

antigen-independent manner and was internalized from 

surrounding medium by pinocytosis and destroyed cells by 

necrotic lyses.85 CME was also reported of GO, resulting 

in S-G2/M cell cycle arrest and apoptosis of CD33+ acute 

myeloid leukemia cell.84

Prostate specific membrane antigen 
conjugate valine citrullin-monomethyl 
auristatin (PSMA-vcMMAe)
Prostate specific membrane antigen conjugate valine citrullin-

monomethyl auristatin (PSMA-vcMMAE) is composed 

of fully human anti-PSMA mAb, conjugated with MMAE 

through cleavable valine–citrulline linker.87 PSMA-vcMMAE 

Table 2 List of ADCs and their endocytosis and mode of action

Names of ADCs Targets Linkers/drugs Status Entry routes/mechanism References

Brentuximab vedotin 
(Adcetris, SGN-35)

CD30 val-cit/MMAe Launched CMe/S-G2/M arrest,  
tubulin inhibitor

75, 92

Ado-trastuzumab  
(Kadcyla, T-DM1)

HeR2 Thioether/DM1 Launched RMe/microtubule disruption 95

inotuzumab ozogamicin 
(CMC-544)

CD22 Hydrazone/calicheamicin withdrawn RMe/minor groove and  
dsDNA break

91

Gemtuzumab 
ozogamicin (Mylotarg)

CD33 Hydrazone/calicheamicin withdrawn Pinocytosis/CMe/DNA  
cleavage

74, 85

SAR3419 CD19 Disulfide/DM4 Ph ii RMe/microtubule disruption 104
RG7596 CD79b val-cit/MMAe Ph ii RMe/microtubule disruption 118
RG7593/DCDT29805 CD22 Dipeptide/MMAe Ph ii RMe/microtubule disruption 119
Glembatumumab 
vedotin (CDX-011)

GPNMB val-cit/MMAe Ph ii RMe/spindle degradation 110

PSMA-ADC PSMA val-cit/MMAe Ph ii RMe/tubulin disruption 87
BT-062 CD138 Disulfide/DM1 Ph i RMe/microtubule disruption 103
Lorvotuzumab 
mertansine (iMGN901)

CD56 Disulfide/DM1 Ph i HeR3/P13K/AKT signaling, 
apoptosis, cell death

105

Milatuzumab 
doxorubicin (iMMU-110)

CD74 Hydrazone/doxorubicin Ph i RMe/re-ligation inhibition and 
dsDNA break

105

SAR566658 CA6/DS6 Disulfide/DM4 Ph i RMe/microtubule disruption 120
BAY-79-4620 CA-1X val-cit/MMAe withdrawn Tubulin polymerization 

inhibitor, G2/M arrest
121

BAY-94-9343 Mesthelin Disulfide/DM4 Ph i RMe/microtubule disruption 122
SGN-75 CD70 Maleimidocaproyl/MMAe Ph i RMe/tubulin inhibitor 123, 124
Labetuzumab-SN-38 CD66e/CeACAMS Phe-lys/SN-38 Ph i/ii RMe/topoisomerase i inhibitor 125
MDX-1203 CD70 val-cit/MGBA Ph i DNA break 126
BiiB015 Cripto Disulfide/DM4 withdrawn RMe/microtubule disruption 102
iMGN388 (CNT0365) integrin Maytansinoid/DM4 withdrawn RMe/microtubule disruption 100
iMGN853 FRγ (folate) Disulfide-sulfo-SPDB/DM4 Ph i RMe/microtubule disruption 127
iMGN289 eGFR SMCC Thioether/DM1 Ph i RMe/microtubule disruption 128
SGN-CD33A CD33 Protease/PBD Ph i DNA minor groove cross-linker 70
AGS-22Me Nectin 4 val-cit/MMAe Ph i RMe/tubulin inhibitor 129
iMGN529 CD37 Thioether/DM1 Ph i RMe/microtubule disruption 130
AGS-5Me AGS-5 val-cit/MMAe Ph i RMe/tubulin inhibitor 131

Abbreviations: ADC, antibody–drug conjugate; CeACAMS, carcino embryonic antigen cell adhesion molecule; CMe, clathrin-mediated endocytosis; dsDNA, double-
stranded DNA; HeR2, human epidermal growth factor receptor 2; MMAe, monomethyl auristatin e; MMAF, monomethyl auristatin F; PBD, pyrrolobenzodiazepine; RMe, 
receptor-mediated endocytosis; SPDB, N-succinimidyl-3-(2-pyridyldithio) butyrate; Val-cit; valine–citrulline dipeptide linker.
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is the second evaluated ADC in clinical studies, while the first 

one, MLN2704, was restricted in 2008 due to less efficacy 

and limited peripheral neuro-therapy.88 Internalization of this 

conjugate takes place through antigen-mediated pathways 

and trafficking to lysosome. Releases of MMAE synthetic 

dolastatin 10 analogs have taken place by cathepsin action in 

lysosome that results from inhibition of tubulin polymerization 

in prostatic cancer cells.87 Gao et al reported Yajie prostate 

specific membrane antigen (YPSMA)-1-modified micelles 

that exhibited a rapid release behavior at endosomal/lysosomal 

pH. They introduced for the first time that both lysosome 

and endosomal escape exist for pH-sensitive micelles. The 

modified micelles enhance the cytotoxicity of the drug due to 

increase uptake of PSMA-positive prostate cancer cells. One 

possible approach of pH sensitivity to deliver drugs efficiently 

to PSMA-positive cells was also investigated.89

inotuzumab ozogamicin (CMC-544)
CMC-544 is a second NAc-γ calicheamicin–conjugate 

that links via hydrazone linker and targets CD22 on B-cell 

malignancies. This ADC was found highly constant, effec-

tive, dynamic, and precise both in vitro and in vivo. Phase III 

trials are being reported in various clinical trials as in acute 

lymphoblastic leukemia (ALL), but due to lack of improve-

ment and constancy in overall cell, it is withdrawn from this 

trial in CD22-positive non-Hodgkin’s lymphoma.90,91

Brenduximab vedotin (Adcetris, SGN-35)
Adcetris is a conjugate of synthetic anti-tubulin agent MMAE 

(dolstatin-10) and chimeric CD30 antibody (cAC10) linked 

by valine–citrulline dipeptide linker.92 It ties with CD30-

positive cells and internalizes though CME, trafficked to the 

lysosome where discharge its conveying payload. MMAE 

binds with tubulin and inhibits its polymerization through 

G2/M phase arrest in CD30 lymphoma cells.75 Monotherapy 

of unconjugated anti-CD30 antibody (cAC10) and drug con-

jugate MMAE–brenduximab vedotin was investigated sepa-

rately to examine the response rate. Insufficient 8% response 

rate was recorded by using single antibody treatment, while 

complete eradication response was calculated by using ADC, 

prompted sharp approval by FDA in 2011.93,94

Ado-trastuzumab emtansine (T-DM1)
T-DM1 comprised trastuzumab antibody conjugated with 

maytansinoid by means of lysine by utilizing non-cleavable 

thioether linker, demonstrating promising viability against 

HER2-positive metastatic cancer.95 T-DM1 is internalized 

through receptor-mediated endocytosis and trafficked to 

lysosome to release its carrying drug. This intracellular 

release of maytansinoid prevents microtubule assembly and 

polymerization and disrupts HER3/PI3K/AKT signaling 

pathway and Fcγ receptor-mediated engagement of effec-

tor immune cells directed to mitotic arrest, apoptosis, and 

antibody-dependent cellular cytotoxicity.96,97 Pre-clinical 

studies of T-DM1 demonstrate potent anti-proliferative 

activity both in vitro and in vivo as compared to trastuzumab 

alone. More interestingly, it was found effective against 

trastuzumab-resistant cells and also xenografts models.95 

Other studies indicate that T-DM1 also potentiates antibod-

ies activity (such as pertuzumab and B20-4.1), chemothera-

peutic agents (such as carboplatin and 5-fluorouracil), and 

kinase inhibitor molecules (such as laptinib and PI3 kinase 

inhibitor) against HER-2 tumor cells.98 These data led to Ado-

trastuzumab emtansine being approved in 2013 by FDA to 

treat HER2-positive metastatic breast cancer patients.99

indatuximab ravtansine (BT062)
Indatuximab ravtansine (Biotest AG Dreieich, Germany) 

is composed of anti-CD138 mAb (nBT062) conjugated 

through disulfide linker with maytansinoid DM4 toxin. 

CD138 was highly expressed in solid tumor and specifically 

on multiple myeloma cells. Internalization of indatuximab 

ravtansine occurs and processed further to release DM4 by 

the proteolytic activity of lysosome. DM4 inhibits tubu-

lin polymerization and subsequently cell cycle arrest and 

tumor death.95,96

Maytansinoid conjugates
This conjugate includes different ADCs such as IMGN388,100 

SAR3419,101 BIIB015,102 and nBT062103 that utilized may-

tansinoid disulfide cleavable linker. These conjugates are 

internalized through receptor-mediated endocytosis and 

trafficked to lysosome to release their active drugs. The 

maytansinoid conjugate binds to tubulin, disrupts the micro-

tubule, and led to inhibition of cell division and ultimately 

result in cell death.104 The clinical trials of BIIB015 in 2010 

and IMGN 388 in 2011 were prematurely stopped in Phase 

I studies due to their limited scope and insufficient efficacy 

as shown in Table 2.

Lorvotuzumab mertansine
Lorvotuzumab mertansine (BB-10901, hu N901-DM1, or 

IMGN901), a humanized version of the N901 antibody 

linked via a disulfide linker to DM1, targeting CD56 in most 

small cell lung cancers (SCLCs) was reported by Whiteman 

et al105 in detail. They also presented the potent activity of 
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lorvotuzumab mertansine in the combination of different 

agents to activate different killing pathways or sensitization 

of one agent killing by other. DM1, synthetic derivative of 

maytansinioid,106 is a potent anti-microtubule cytotoxic agent 

that binds to tubulin at a vinca alkaloid binding site that leads 

to inhibition of tubule assembly and proliferation, resulting 

in cell death.107

Glembatumumab vedotin (CDX-011)
CDX-011 comprised of human IgG2 anti-gpNMB 

antibody – osteoactivin – and MMAE linked via cleavable 

valine–citrulline protease sensitive linker. Phase I/II study of 

this ADC was undertaken.108,109 Vaklavas and Forero reported 

multiple steps that involved from endocytosis/trafficking 

to final release of this drug. Drug acquired access to a cell 

through receptor-mediated endocytosis followed by lyso-

somal degradation of proteases, targeting mitotic spindles in 

metastatic breast cancer cells.110 At present, CDX-011 is in 

the premature stage in the clinical evaluation of melanoma 

and breast cancer.

Conclusion and future prospects
Antibody-based cancer treatment has been intensively 

studied and is well known that it has direct or indirect effects 

on a cancer cell. The potency is shown by these conjugates 

and different action performed by signal inhibition, limit-

ing proliferation, apoptosis induction, cytotoxic drugs or 

radiation delivery, induction, and activation of immune cells 

and cytotoxicity, cell inhibition, or payload delivering to 

targeted area.111 Recent approval of Adcetris and Kadcyla 

realized the potential benefits of ADCs. Our current review 

attempts to describe the developmental progress of ADC 

optimization, evaluation of extensive and better knowledge-

related endocytosis, intracellular trafficking, and targeted 

action on tumor cells. Endocytosis and trafficking of ADCs 

performed the most critical role in affecting the target cells. 

Past investigations conclude that ADCs recognize their 

particular focuses on the cell surface, tie with the antigen, 

and intervene endocytosis that tile exceptional knowledge 

in ADCs viability. Protein machinery, lysosomal lumen 

nature, and linker procedure hold an imperative part in drug 

discharge that transported ADC to its focused area. Biologists 

are struggling to concentrate on the cell surface antigen, for 

specific attachment and further intracellular trafficking of 

ADCs. Recent studies indicate that an engineered antibody 

can be utilized to exploit the endocytosis pathway that gives 

a substantial inclination for future studies and better design 

of ADC. The experimental analysis provides knowledge of 

the intracellular process in greater aspects, dissolves recent 

divergences, and enhances our ability to select novel and 

efficient targets for antibody attachment and internalization of 

ADC. Additional fundamental research studies of tumor cell 

toxicity, target receptor modification, and cascade signaling 

analysis of receptor modulation by antibodies are needed to 

enrich the field of cancer immunotherapy and design better 

treatments for tumor therapy.
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