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Sulfate Transport Anti-Sigma antagonist domains (Pfam01740) are found in all branches
of life, from eubacteria to mammals, as a conserved fold encoded by highly divergent
amino acid sequences. These domains are present as part of larger SLC26/SulP anion
transporters, where the STAS domain is associated with transmembrane anchoring of the
larger multidomain protein. Here, we focus on STAS Domain only Proteins (SDoPs) in
eubacteria, initially described as part of the Bacillus subtilis Regulation of Sigma B (RSB)
regulatory system. Since their description in B. subtilis, SDoPs have been described to be
involved in the regulation of sigma factors, through partner-switching mechanisms in
various bacteria such as: Mycobacterium. tuberculosis, Listeria. monocytogenes, Vibrio.
fischeri, Bordetella bronchiseptica, among others. In addition to playing a canonical role in
partner-switching with an anti-sigma factor to affect the availability of a sigma factor,
several eubacterial SDoPs show additional regulatory roles compared to the original RSB
system of B. subtilis. This is of great interest as these proteins are highly conserved, and
often involved in altering gene expression in response to changes in environmental
conditions. For many of the bacteria we will examine in this review, the ability to sense
environmental changes and alter gene expression accordingly is critical for survival and
colonization of susceptible hosts.

Keywords: STAS domain1, Pfam017402, sulfate transport anti-sigma antagonist3, STAS Domain only Proteins4,
bacterial gene regulation5, anti-sigma antagonist6, sigma factor7
INTRODUCTION

Sulfate Transport Anti-Sigma antagonist (STAS) domains (Pfam01740) can be found in all branches
of life, from eubacteria to mammals, as a conserved fold encoded by highly divergent amino acid
sequences (Aravind and Koonin, 2000). STAS domains are found as a single domain within small,
STAS Domain only Proteins (SDoPs) such as RsbV of B. subtilis and within larger, multidomain
proteins such as SulP of Escherichia. coli or SLC26 family of transporters in mammals. Our in-silico
analysis revealed the presence of SDoPs in all pathogenic bacterial species examined, however it is
possible that bacterial species may exist that lack an SDoP. Canonical SDoPs in B. subtilis have been
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shown to be involved in the regulation of sigma factors that bind
RNA polymerase to affect transcription (Kang et al., 1996;
Campbell et al., 2008). Here, we review the role of canonical
and non-canonical SDoPs present in B. subtilis and in different
species of bacteria, where they play a wide variety of roles in
regulating the expression of genes in response to an array of
external stimuli.

These SDoPs and the STAS domains within SulP/SLC26
anion transporters have a conserved structure consisting of
4 a-helices and 5 b-sheets, with a highly conserved loop between
the 3rda-helix and 2nd b-sheet (Aravind andKoonin, 2000). It has
been shown that B. subtilis SDoP SPOIIAA binds GTP (and to a
lesser extent ATP), and possesses weak NTPase activity that is
reduced by phosphorylation, or bymutation of serine residue 58 to
alanine in the conserved loop (Najafi et al., 1996; Masuda et al.,
2004). It has been suggested that the conserved loop is involved in
phosphate binding, with the downstream b-sheet being involved in
the accommodation of the rest of the NTP molecule (Aravind and
Koonin, 2000).

Canonically, these SDoPs positively regulate sigma factors by
interacting with their cognate anti-sigma factor, which has protein
kinase activity. This anti-sigma factor then phosphorylates the
SDoP on a conserved serine residue in the conserved loop,
inactivating it. The inactivated (phosphorylated) SDoP then
dissociates from the anti-sigma factor, allowing it to sequester
its cognate sigma factor. The SDoP can later be reactivated by an
input phosphatase, leading to dephosphorylation of the conserved
serine residue and interactions between the SDoP and the anti-
sigma factor (Aravind and Koonin, 2000).
STAS DOMAINS AS PART OF
SLC26/SULP FAMILY

Multidomain STAS domain containing proteins encoded by the
genomes of E. coli, and M. tuberculosis are members of the
SLC26/SulP family and are involved in various biological
functions, such as transporting ions and carboxylic acids
(Alper and Sharma, 2013). Additionally, there are examples of
STAS domains within larger multidomain proteins that are not
in the SLC26/SulP family, such as all4160 in Anabaena, which
encodes a glycosyltransferase and an N-terminal STAS domain
(Wang et al., 2007). SLC26/SulP anion transporters contain an
integral membrane domain with two inverted repeats of seven
transmembrane domains and a cytoplasmic STAS domain
(Compton et al., 2011; Compton et al., 2014; Geertsma et al.,
2015). The role of the STAS domain in these SLC26/SulP has not
been fully explored, but it has been suggested to be important
for targeting proteins to the membrane (Sharma et al., 2011;
Compton et al., 2014). However, recent work has demonstrated
that the STAS domain does not play a direct role in protein
targeting in bacteria, but instead is required for protein
stabilization and functionality (Birke and Javelle, 2016; Lolli
et al., 2016). In mammals, such as humans, SLC26 transporters
play a diverse and critical role as anion exchangers, with three
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
known mutations that can lead to early onset hereditary diseases:
chondrodysplasias, chloride diarrhea, and deafness (Compton
et al., 2011; Alper and Sharma, 2013; Compton et al., 2014).
While their relevance to human disease has led to these SLC26
transporters and their component STAS domain being the
subject of intensive study, there remains a lack of information
on the role of SDoPs in bacterial physiology and gene regulation.
CANONICAL STAS DOMAIN
ONLY PROTEINS

Perhaps the best studied example of SDoPs in bacteria is in the
regulation of sporulation in B. subtilis (Figure 1). Specifically,
these proteins regulate gene expression by indirectly affecting the
ability of the alternative sigma factor, sB, to bind the core RNA
polymerase (Dufour and Haldenwang, 1994; Rodriguez Ayala
et al., 2020). Generally, these systems can be described as
phosphorylation-dependent partner-switching regulatory
systems involving anti-sigma factors/serine kinases, serine-
threonine phosphatases, and anti-sigma antagonists (Rodriguez
Ayala et al., 2020). The Regulation of sB (Rsb) system is an
example of such partner-switching regulatory systems involved
in the rapid initiation of transcription of more than 150 general
stress proteins following exposure to environmental stress in B.
subtilis (Haldenwang and Losick, 1979; Binnie et al., 1986;
Hecker et al., 2007; Losick and Pero, 2018). In a normal,
unstressed state the anti-sigma factor RsbW binds to sB and
maintains it in an inactive state (Figure 1). Environmental stress
leads to the activation of an input phosphatase (e.g., RsbU),
which dephosphorylates the SDoP RsbV, at a conserved serine
residue. Dephosphorylated RsbV can then bind to and sequester
the anti-sigma factor RsbW, freeing sB to bind to the core RNA
polymerase and initiate transcription of general stress proteins
(Benson and Haldenwang, 1993; Alper et al., 1996; Price, 2001).
RsbW also has serine kinase activity which phosphorylates RsbV,
such that when the input phosphatase (triggered by
environmental/energy stress) is no longer active, RsbV remains
phosphorylated. RsbW then dissociates from phosphorylated
RsbV, allowing RsbW to sequester sB until another
environmental stress event is encountered (Figure 1) (Benson
and Haldenwang, 1993; Alper et al., 1996; Kang et al., 1996; Yang
et al., 1996; Rodriguez Ayala et al., 2020).

SpoIIAA, another SDoP in B. subtilis, also plays a role in
controlling sporulation-related genes by regulating sF via a
partner-switching mechanism with an anti-sigma factor,
similar to the regulation of sB system described above. Under
non-spore forming conditions sF is sequestered by the anti-
sigma factor SpoIIAB. Following exposure to spore forming
conditions (e.g., nutrient starvation), SpoIIAA is activated by
dephosphorylation of a conserved serine residue by SpoIIE, leading
to interactions between SpoIIAA and SpoIIAB. This interaction
between SpoIIAA and SpoIIAB frees sF to initiate transcription
of sporulation genes (Losick and Stragier, 1992; Duncan
et al., 1996; Piggot and Hilbert, 2004; Pedrido et al., 2013).
June 2021 | Volume 11 | Article 679982
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FIGURE 1 | Schematic of canonical SDoP in the Regulation of Sigma B pathway in B subtilis. Environmental stress leads to activation of the stressosome, allowing
for activation of the RsbT phosphatase activator. This allows RsbU phosphoserine phosphatase to dephosphorylate a conserved serine residue on SDoP – RsbV-
which in its unphosphorylated state interacts with anti-sigma factor RsbW, freeing sB to bind the core RNA polymerase and initiate transcription of genes in the
general stress response operon. The anti-sigma factor RsbW possesses serine kinase activity such that when the environmental stress is no longer present RsbV is
phosphorylated, leading to its dissociation from RsbW. RsbW then sequesters sB, leading to decreased expression of its operon.
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In addition to partner-switching with SpoIIAB, SpoIIAA also has
been shown to serve as a negative regulator of Spo0A activation.
This results in a negative feedback loop that tightly controls
regulation of sporulation genes, as transcription of SpoIIAA,
SpoIIAB and sF are regulated by Spo0A (Arabolaza et al., 2003).
This negative feedback loop contributes to blocking the expression
of Spo0A-dependent genes (SpoIIAA, SpoIIAB, sF), whose
products are no longer needed and are likely to contribute
to proper cell-specific activation of sF and sE (Arabolaza
et al., 2003).

While this phosphorylation-dependent partner-switching
regulatory system between an anti-sigma antagonist, an anti-
sigma factor/serine kinase, and a sigma factor was initially
described in B. subtilis, it has since been described in
pathogenic Gram-positive bacteria such as Staphylococcus
aureus (Ziebandt et al., 2001; Jonsson et al., 2004) and M.
tuberculosis (Beaucher et al., 2002; Parida et al., 2005).
Additionally, there are examples of similar partner-switching
regulatory systems containing an SDoP in pathogenic gram-
negative bacteria such as B. bronchiseptica (Mattoo et al, 2004),
Chlamydia trachomatis (Mattoo et al., 2004; Hua et al., 2006),
symbionts like Vibrio fischeri (Thompson and Visick, 2015), and
in environmental bacteria like Shewanella oneidensis (Bouillet
et al., 2016). In these systems, the SDoPs show distinct roles in
regulating pathways involved in 1) Type III secretion and
virulence (Mattoo et al., 2004; Kozak et al., 2005), 2) biofilm
formation (Thompson and Visick, 2015) and 3) growth
and stress adaptation (Thompson et al., 2015; Bouillet
et al., 2016).

Listeria monocytogenes, an enteric pathogen, utilizes a system
like the regulation of sB in B. subtilis in regulating its response to
acid stress, and impacting its ability to establish infection in the
gastrointestinal tract. L. monocytogenes encodes rsbR, rsbS, rsbT,
rsbU, rsbV, rsbW, rsbX and sB. Briefly, upon environmental
stress RsbT is released from the stressosome and initiates a signal
cascade by associating with serine phosphatase RsbU, which then
dephosphorylates a conserved serine residue on SDoP, RsbV.
The anti-sigma factor RsbW, which normally sequesters sB,
binds dephosphorylated RsbV with a higher affinity than
RsbW, freeing sB to initiate transcription of its operon. This
complex regulatory system contributes to survival of L.
monocytogenes, both inside and outside the host, by affecting
its virulence and survival under environmental stress,
respectively (Chaturongakul and Boor, 2004; Chaturongakul
and Boor, 2006; Shin et al., 2010; Utratna et al., 2014;
O’Donoghue et al., 2016; Guerreiro et al., 2020a; Guerreiro
et al., 2020b; Hsu et al., 2020).

In M. tuberculosis, a partner-switching system has been
described that controls the availability of sF and is referred to
as the Regulation of Sigma F (Rsf) system. In this system two
separate SDoPs, RsfA and RsfB, are involved in a partner-
switching system; with RsfB showing higher homology to RsbV
of B. subtilis. This allows for a level of functional redundancy in
the mycobacterial regulatory circuit and could allow for the
bacterium to readily adapt to a wide range of conditions
requiring differential activation of sF (Beaucher et al., 2002).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
RsfA-like proteins are present only in mycobacterial species that
cause tuberculosis, suggesting a possible role for these proteins in
virulence (Beaucher et al., 2002; Manganelli et al., 2004). In M.
smegmatis, RsfA has been shown to interact more strongly with
RsbW1 than RsfB (Singh et al., 2015), and acts as a stronger anti-
sF antagonist than RsfB (Oh et al., 2020). A serine residue at
position 63 of RsfB of M. smegmatis, and its phosphorylation by
RsbW2, determines the functionality of RsfB as an anti-sigma
antagonist. Furthermore, RsfB was identified as the major anti-
sF antagonist in M. smegmatis (Oh et al., 2020).

Similarly, a partner-switching system containing components
like those involved in the regulation of sB system in Bacillus have
been reported in Chlamydia trachomatis. The chlamydial
partner-switching system includes two SDoPs; RsbV1 and
RsbV2 (Mattoo et al., 2004), a homolog of the anti-sigma
antagonist RsbWCt, and the phosphatase RsbUCt (Hua et al.,
2006). However, unlike the alternate sigma factor sB which is
regulated in Bacillus, the housekeeping sigma factor s66 is
controlled by this partner-switching regulatory system in C.
trachomatis (Hua et al., 2006; Thompson et al., 2015). It was
found that RsbWCt interacts with unphosphorylated RsbV1 and
RsbV2, with a preference for RsbV1. Additionally, RsbUCt
exhibited in vitro phosphatase activity for RsbV1 but not
RsbV2 (Thompson et al., 2015). These findings led to a model
of the Rsb regulatory system in C. trachomatis: under steady-
state conditions the expression level of RsbUCt, RsbV1, and
RsbWCt provide an equilibrium in which s66 availability is high,
facilitating normal growth and development. An accumulation
of non-phosphorylated RsbV1, due to increased expression/
activity of the phosphatase RsbUCt, facilitates RsbV1 binding
to RsbWCt with a concomitant increase in the levels of s66

(Thompson et al., 2015). The current model suggests that
increased levels of alpha-ketoglutarate encountered in the host
cell leads to increased RsbUCt mediated phosphatase activity on
RsbV1, leading to dissociation of RsbWCt from its target protein
to re-phosphorylate RsbV1, allowing the target protein to affect
activation of the TCA cycle (Soules et al., 2020).

Another example of a bacterial SDoP has been described in
Pseudomonas aeruginosa, where the RsbV homolog PA3347
participates in a partner-switching regulatory system to affect
expression of genes involved in swarming (Hsu et al., 2008;
Bhuwan et al., 2012). In this system, it has been shown that
PA3347 is phosphorylated at serine 56 by its upstream
neighbour, PA3346 response regulator, which has both
phosphatase and kinase activities. In P. aeruginosa, the
histidine-containing phosphotransfer-B (HptB) is involved in
transferring phosphoryl groups from multiple sensor kinases to
PA3346, which in turn controls flagellar gene expression by
interactions with PA3347 (Bhuwan et al., 2012). When PA3347
(STAS domain) is dephosphorylated by PA3346, it binds to the
anti-sigma factor FlgM, allowing s28 to dissociate from FlgM and
bind to the core RNA polymerase, form an active holoenzyme,
and initiate transcription of flagellar genes. Interestingly, it was
also demonstrated that PA3346 can phosphorylate PA3347,
which in turn activates the C-terminal region of PA3346 to act
as an anti-s factor. These events lead to inactivation of an
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unidentified s factor, ultimately affecting transcription of genes
involved in swarming motility (Bhuwan et al., 2012).
NON-CANONICAL SDOPS

While the canonical systems with a SDoP, whose phosphorylation
at a conserved serine residue leads to dissociation from an anti-
sigma factor/serine kinase (Figure 1); there are several examples of
SDoPs that appear to be active in their unphosphorylated form,
interacting with unknown partners that may include sigma factors
(Figure 2). One such example is in the Vibrio fischeri symbiosis
polysaccharide (syp) locus, where unphosphorylated SDoP SypA is
active and serves as the output to initiate transcription of genes
involved in biofilm formation (Morris and Visick, 2010;
Morris et al., 2011; Morris and Visick, 2013a). In this system,
unphosphorylated SypA acts upon an unknown target to promote
biofilm formation (Morris and Visick, 2013a; Thompson and
Visick, 2015; Thompson and Visick, 2017). In non-biofilm
forming conditions, the dual serine kinase/phosphatase SypE
phosphorylates SypA at serine 56 and prevents it from activating
biofilm genes (Sievers et al., 2011; Thompson and Visick, 2015;
Thompson and Visick, 2017). This is like a Serine 55 residue in B.
bronchiseptica SDoP BtrV, which plays a key role in mediating
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
interactions with BtrW, where phosphorylation of this conserved
serine residue promotes binding to BtrW (Kozak et al., 2005), as
opposed to inhibiting binding as seen in other canonical SDoPs
described above.

As mentioned above, in B. bronchiseptica the phosphorylation
of an SDoP, BtrV, has been shown to promote binding to the
anti-sigma factor BtrW (Kozak et al., 2005), as opposed
to this phosphorylation in canonical systems leading to
dissociation of the SDoP from the anti-sigma factor. This
partner-switching mechanism between BtrV and BtrW
has been shown to play a role in regulation of the Type III
secretion system, which plays a critical role in the colonization of
a host by B. bronchiseptica (Mattoo et al., 2004; Kozak et al.,
2005). While BtrU, BtrV and BtrW show homology to the Rsb
system of Bacillus, the Bordetella system is different in that all
three of these are required for T3SS secretion and none act as a
negative regulator. Evidence suggests that BtrV exerts post-
transcriptional control required for translation, while BtrU and
BtrW are involved in regulation of the secretion process (Mattoo
et al. , 2004; Kozak et al., 2005; Ahuja et al., 2016;
Kamanova, 2020).

In Rhodobacter capsulatis, the SDoP RbaV serves as the
output of a regulatory system to affect expression of genes
involved in motility (Mercer and Lang, 2014). In this system,
FIGURE 2 | Schematic of several non-canonical SDoPs. Environmental signals lead to activation of various partner-switching mechanisms, leading to the activation
of a serine phosphatase which can dephosphorylate the SDoP at a conserved serine residue. This dephosphorylation allows the SDoP to affect gene expression
through various unknown targets to produce various phenotypes in different bacteria. These systems also generally contain an anti-Sigma factor which has serine
kinase activity and phosphorylates the SDoP, inactivating it, when the signal leading to activation of the pathway is no longer present.
June 2021 | Volume 11 | Article 679982

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Moy and Seshu SDoPs in Bacterial Gene Regulation
unphosphorylated RbaV works as the output of the system to
affect expression of an unknown target, consequently leading to
increased expression of horizontal gene transfer agents (Mercer
and Lang, 2014). Like previously described systems, RbaV has
conserved serine residues at positions 56 and 57, and it is
suggested that phosphorylation of one of these residues leads
to activation/deactivation of RbaV (Mercer and Lang, 2014). It is
unclear if the contributions of the anti-sigma factor RbaW by
itself, or the interactions between RbaV-RbaW, mediates the
control of a cognate s factor. Alternatively, it remains to be
determined if RbaV and its partner RbaW are directly affecting
gene expression through a partner-switching mechanism.

An additional example of a non-canonical SDoP has
been described in the hmp (hormogonium motility and
polysaccharide) locus of the filamentous cyanobacterium
Nostoc punctiforme (Riley et al., 2018). In this partner-
switching regulatory system, it is suggested that HmpV is
active when dephosphorylated by HmpU, and inactive when
phosphorylated by anti-sigma factor HmpW (Riley et al., 2018).
Currently, it is unknown whether unphosphorylated HmpV acts
directly on an unknown target, or if it interacts with another
protein to produce the observed regulatory effects.
SUMMARY

Partner-switching mechanisms utilizing SDoPs were originally
described in B. subtilis, as a regulatory system to control the
availability of sigma factors in response to environmental stress
(Losick and Stragier, 1992; Kang et al., 1996; Rodriguez Ayala et al.,
2020). In addition to the control of sigma factors in B. subtilis, these
SDoPs have been shown to regulate survival of L. monocytogenes
inside the host and contribute to the virulence of this pathogen
(Chaturongakul and Boor, 2004). Moreover, a partner-switching
regulatory system containing a SDoP controlling the Type III
secretion in B. bronchiseptica adds to the significance of this class
of proteins in regulating bacterial pathogenesis (Mattoo et al., 2004;
Kozak et al., 2005). These SDoPs also contribute to the survival of
M. tuberculosis and C. trachomatis within host cells (Beaucher et al.,
2002; Thompson et al., 2015). In the above examples, the regulatory
effects have been at least partially attributed to partner-switching of
the SDoPs with an anti-sigma factor, freeing a sigma factor to
initiate transcription of its respective operon. However, even in
these well studied systems there remain questions about
additional roles for these SDoPs in gene regulation in response to
external stimuli, which is often intrinsically tied to survival in a host
in several of the species examined here.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
As shown in Figure 2, SDoPs are also known to directly
influence gene expression through a variety of mechanisms as in
V. fischeri, R. capsulatis and N. punctiforme (Bhuwan et al., 2012;
Morris and Visick, 2013b; Mercer and Lang, 2014; Riley et al.,
2018). These examples highlight the multiple roles that these
SDoPs play in responding to external stimuli and warrants
further research into these ubiquitous regulatory proteins.

Here, we specifically focused on SDoPs, in comparison to the
larger SLC26/SulP superfamily of proteins which have been
characterized in greater detail. In many bacteria the
components of the partner-switching mechanisms mediated by
SDoPs show a high degree of homology in structure and function
to the canonical systems initially described in B. subtilis (Dufour
and Haldenwang, 1994) (Figure 1). However, there are examples
of non-canonical systems where this unique class of proteins
interacts with unknown targets to influence the physiology and
survival of bacteria within or outside of a host (Figure 2).
Moreover, several other bacterial species encode for homologs
of SDoPs, although their contribution to the pathophysiology of
these prokaryotes are yet to be established. In some cases, SDoPs
are part of operons involved in motility or chemotaxis with a
possibility of regulating sub-global gene expression levels specific
to the operon or exhibit a widespread global transcriptional
effect. It is also unknown if SDoPs as a class of proteins can
complement their functions in heterologous bacterial systems, or
if these SDoP confer narrow, organism-specific regulatory
effects consistent with the pathophysiology of the prokaryote.
A greater understanding of the role of SDoPs may unravel novel
global or sub-global regulatory networks critical in regulating
bacterial adaptation and survival in response to changes in
their environments.
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