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Abstract
Background: Fibroblast growth factor receptor 3 (FGFR3) is expressed in the growth plate of
endochondral bones and serves as a negative regulator of linear bone elongation. Activating
mutations severely limit bone growth, resulting in dwarfism, while inactivating mutations
significantly enhance bone elongation and overall skeletal size. Domesticated dogs exhibit the
greatest skeletal size diversity of any species and, given the regulatory role of FGFR3 on growth
plate proliferation, we asked whether sequence differences in FGFR3 could account for some of
the size differences.

Methods: All exons, the promoter region, and 60 bp of the 3' flanking region of the canine FGFR3
gene were sequenced for nine different dog breeds representing a spectrum of skeletal size. The
resultant sequences were compared to the reference Boxer genome sequence.

Results: There was no variation in sequence for any FGFR3 exons, promoter region, or 3' flanking
sequence across all breeds evaluated.

Conclusion: The results suggest that, regardless of domestication selection pressure to develop
breeds having extreme differences in skeletal size, the FGFR3 gene is conserved. This implies a
critical role for this gene in normal skeletal integrity and indicates that other genes account for size
variability in dogs.

Background
Fibroblast growth factor receptor 3 (FGFR3) is a mem-
brane-bound tyrosine kinase receptor that regulates cellu-
lar proliferation within the growth plate of long bones. In
bone elongation, FGFR3 serves to limit the proliferative
activity of the chondrocytes while promoting differentia-

tion and contributing to the mineralization at the chon-
dro-osseus junction [1]. Mice and humans with a gain of
function mutation have impaired bone elongation, result-
ing in achondroplasia [2-4], whereas loss of function
mutations result in skeletal overgrowth and severe appen-
dicular abnormalities [5-7].
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In mice and humans, the FGFR3 gene contains 19 exons
[8] that are differentially spliced to form two distinct iso-
forms that differ in tissue expression, ligand binding affin-
ity, and cellular response [9]. The two FGFR3 isoforms,
IIIb and IIIc, are generated by alternative RNA splicing of
exon 7 to either exon 8 or 9. A third isoform, IIIa has been
described for other members of the FGFR family but not
for FGFR3 [10]. The alternative splicing creates receptors
with distinct extracellular binding domains with different
ligand binding specificities and differential expression:
FGFR3 IIIb is expressed in epithelial cells and FGFR3 IIIc
is expressed in mesenchymal-derived cells [6,11]. Mice
lacking FGFR3 IIIc display significant skeletal overgrowth,
exaggerated limb growth, distorted growth plates indica-
tive of elevated proliferation, and diminished mineraliza-
tion [6]. Mice lacking the FGFR3 IIIb isoform do not
exhibit those skeletal phenotypes [6] indicating the IIIc
form as critical for normal skeletal development.

Mutations in the ligand binding domain, the transmem-
brane domain, or the tyrosine kinase domains have all
been associated with constitutive activation and short
stature [11]. In contrast, genetically engineered mice that
fail to express functional FGFR3 exhibit extreme skeletal
overgrowth [12,13]. In sheep, a naturally-occurring muta-
tion in FGFR3 causes inactivation of a kinase domain and
results in similar excessive growth [14]. Furthermore,
sheep heterozygous for the naturally-occurring loss of
FGFR3 function mutation exhibit enhanced frame size
without the detrimental skeletal effects associated with
two mutant alleles [15]. The reported FGFR3 mutations in
humans, mice and sheep arise predominantly from point
mutations in the coding regions [16,17]. Depending on
the location of a single nucleotide polymorphism (SNP)
in FGFR3, "graded activation" of the gene occurs, generat-
ing a spectrum of skeletal size [17]. For example, a SNP in
the transmembrane domain of FGFR3 commonly results
in achondrodysplasia, a specific skeletal disorder that
results in short stature and disproportionately short limbs
[18]. However, point mutations in the second tyrosine
kinase domain of FGFR3 can result in lethal thanato-
phoric dysplasia or severe achondroplasia with develop-
mental delay and acanthosis nigricans [17,18].

As a consequence of domestication and selective breed-
ing, dogs exhibit the greatest range of skeletal size diver-
sity in any single species. Given the pivotal role of FGFR3
in modulating skeletal size, we asked whether SNPs
within the FGFR3 gene could account for height variations
seen in the three different Poodle varieties specifically
selected on wither height: Toy (less than or equal to 25.4
cm), Miniature (between 25.4 and 38.1 cm), and Stand-
ard (greater than 38.1 cm). In addition, the FGFR3 gene
was sequenced in several dog breeds defined as chondro-
dysplastic by Stockard [19]. These breeds exhibit dwarfism

as a fixed trait with the entire population of a given breed
sharing the same mutation and exhibiting the same
altered limb morphology [20,21]. Similarities between
human and canine phenotypes suggest a potential role for
FGFR3 in different dog breeds displaying dwarfism.

Methods
The Ensembl FGFR3 gene model was used to define puta-
tive exons for the canine FGFR3 gene [22] including the
FGFR3 IIIb and FGFR3 IIIc isoforms. The primer pairs for
the promoter, the 19 exons comprising FGFR3 IIIb and
FGFR3 IIIc, and 60 bases at the 3' end of the FGFR3 gene
(Table 1) were developed based on the homology of the
canine Ensembl reference Boxer sequence and the pub-
lished human genome sequence. In many cases the ampli-
con for a given exon included adjacent intronic sequences.
A predicted exon defined in the Ensembl FGFR3 IIIc iso-
form model, located between exon 4 and 5, was excluded
from sequencing because of complete lack of homology
to other FGFR3 cDNA transcript sequences (human,
mouse, and cow).

All amplicons were sequenced for three to eight dogs of
each of the three Poodle varieties, and, representing chon-
drodysplastic breeds, a single Basset hound, Dachshund,
Pekingese, Cardigan Welsh Corgi, and Pembroke Welsh
Corgi were sequenced. A Nova Scotia Duck Tolling
Retriever and Chesapeake Bay Retriever, both affected
with short stature, curved limb skeletal dysplasia, were
also sequenced as was a Dalmatian that exhibited no skel-
etal abnormalities. All dogs sequenced were registered
purebreds with the American Kennel Club with the Poo-
dles unrelated at the grandparent level. The Nova Scotia
Duck Tolling Retriever and Chesapeake Bay Retriever were
diagnosed as affected with chondrodysplasia by x-ray.
Buccal swab-derived DNA was extracted for each Poodle
as previously described [23] and then subjected to PCR
amplification using primers specific for the regions of
interest. The 20 μL PCR reactions contained 0.5 U Ampli-
taq Gold DNA Polymerase (Applied Biosystems, Foster
City, CA, USA), 200 μm dNTPs (Applied Biosystems), 1.5
mm MgCl2 (Applied Biosystems), 1 × Geneamp PCR Gold
buffer (Applied Biosystems); 0.2 μm of each forward and
reverse oligonucleotide primer (Operon Biotechnologies,
Huntsville, AL, USA), and 10–20 ng template genomic
DNA. Reaction mixtures were subjected to a thermal
cycling program of 94°C for 12 min, followed by 35
cycles of 94°C for 30 s, 45 s at the annealing temperature
(see Table 1), and 72°C for 45 s and a final elongation
stage of 72°C for 10 min were completed. Blood samples
for the other breeds were collected from patients of the
University of California, Davis, Veterinary Medical Teach-
ing Hospital. DNA was extracted using the QiaAmp Blood
Mini Kit (Qiagen) and PCR amplified as described. The
amplified products for each region for each dog were gel
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purified with a gel-purification kit (Qiagen, Valencia,
Calif.) and sequenced at an automated DNA sequencing
facility (Davis Sequencing Inc, Davis, Calif.). Alterna-
tively, some amplified products were purified with the
QiaQuick PCR Purification Kit (Qiagen), sequencing reac-
tions carried out using the Big Dye Terminator v3.1 cycle
sequencing kit (Applied Biosystems), and products proc-
essed on an ABI 3100 Genetic Analyzer.

The derived sequences for each exon and the flanking pro-
moter and 3'end were aligned with the reference Boxer
sequence (Vector NTI Advance, version 10.3.0, Invitrogen
Corp, Carlsbad Calif). Any potential SNPs in the
sequences were confirmed or rejected by sequencing the
complementary strand as well as sequencing additional
dogs of the breed that exhibited the SNP. The 699 bp
upstream of exon 1 was analyzed for the presence of pro-
moter elements using the Genomatix [24] software tools
Gene2Promoter and MatInspector [25].

Results
Remarkably, Poodles of all three varieties that differed in
skeletal size had fully conserved FGFR3 sequence across
all 19 exons, the promoter region, and the downstream 3'
flanking sequence. Looking across breeds that exhibit
extreme skeletal morphologic differences also revealed
100% exon sequence conservation relative to the pub-
lished reference Boxer sequence. As predicted by Ensembl,
there are 17 introns for the canine FGFR3 gene. The prim-
ers used for sequencing the exons also included complete

intron sequencing for ten of those introns and partial cov-
erage for the remaining seven. Based upon the predicted
sizes of the introns, partial sequence coverage ranged from
a high of ~99% of the intronic region sequenced to a low
of just over 15% for the largest introns. The only sequence
variation observed relative to the reference Boxer
sequence, across all dogs evaluated, was in intronic
regions. Single SNPs were identified within introns 1, 8,
10, 12, and 16 for a total of 5 SNPs (Table 2). The identi-
fied intronic SNPs were sporadic and not present in all the
dogs exhibiting a common phenotype.

Analysis of the 699 bp region upstream of exon 1 using
the Gene2Promoter software indicated that no classical
promoter elements were apparent although MatInspector

Table 1: The sequences of the forward and reverse primers flanking the promoter, 19 exons, and 3'flanking sequence for canine FGFR3 
(Genbank Accession: EU853457), annealing temperatures, and amplicon sizes

Ensembl Exon Forward Reverse Anneal (°C) Amplicon (bases)

Promotera gacgcgtggcctagattc gagcatgtgcccctgatac 60 699
1 and 2 caaacctcccagaacaggac cccgcagggatacagtctt 61.5 833
3 cgtgtgcaggtgctcagtat gtgtcctcagcctcatcctc 60 495
4 cgtgcgtgtgacaggtaaat ctgcagtacaggtccccaac 59 394
5 accatgtggcttagccttga tgtttctccacaacgcatgt 59 472
6 ccatctcgtggctgaagaac gctgtacaccttgcagtgga 58 437
7 acatgcgttgtggagaacaa taccacttctcccctgatgg 55 399
8 IIIbb cagcatttctgactgcagga ggctcggaacctggtatcta 58 401
8 IIIcc atgtggactctggctgtggt cacgagttctgtggagcaag 60 301
9 acacccccttctccattctc gagtgcagtgcgagtctcag 59 407
10 tggagcctgggttatttgtc cagtcatcacactgcccatc 59 500
11 aaggttgtggggcaagtatg ccaggtctgagaggtccttg 59 358
12 aggccatcggtattgacaag gtacaggggtcttggagcag 60 349
13 tccttcctgcacagatgatg aagctcccaagtggtcctg 58 461
14 ttctccctccccccccttccccagac tcccgagggcaggggcccttgtc 59 350
15 cagccaggccctggctgccgccac agggcacctggccgtcaacatgc 59 394
16 accgagtctacacccaccag acaatgcctcccatgacc 59 426
17 atggacaagccagccaact ccgacaggtccagatactcc 60 401
18 and 3' flanking gcagctagtggaggatctgg cacaccaccagcagcatagt 60 361

a. Amplicon represents the putative promoter region
b. Exon indicating the FGFR3 IIIb isoform
c. Exon indicating the FGFR3 IIIc isoform

Table 2: Location and number of sequenced single nucleotide 
polymorphisms (SNPs) identified within canine FGFR3 intronsa

Intron Locationb SNPc SNP frequencyd

1 541 C > T 1 of 18
8 400 C > T 31 of 34
10 22 G > T 4 of 33
12 11 C > T 21 of 37
16 35 G > A 1 of 20

a. The intronic SNPs were not present in all the dogs exhibiting a 
common phenotype
b. Number of bases from intron start
c. Typical change relative to reference Boxer genome
d. Number of dogs with SNP relative to total number of dogs 
sequenced
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identified several possible transcription factor elements
within the promoter region sequenced. The most notable
transcription factor elements included two CCAAT box
promoter elements, a GA box, three cAMP response ele-
ments, three GC box Sp1-binding sites, two RXR het-
erodimer binding sites, and two estrogen response
elements. Additionally, two Prox1 binding sites were
identified in the intron between exons 1 and 2.

Discussion
In addition to differential skeletal size observed in sheep
carrying mutations in FGFR3, greater than 95% of human
dwarfism achondrodysplasia cases are caused by a gain-
of-function mutation in FGFR3 [4]. Thus, the FGFR3 gene
is the foremost candidate gene for regulating the diversity
of skeletal size observed in dog breeds. The lack of
sequence divergence in the FGFR3 gene or its regulatory
regions across all the dogs and dog breeds assessed in this
study suggests that selection pressure to maintain this pre-
cise sequence remains very strong. The conservation of
this gene persists even in the face of human breeding
schemes and breed development as seen by the absence of
sequence mutations within the coding region of the gene
across all the diverse dog breeds analyzed. Rare and only
minor sequence divergence was observed for intronic
regions. The intronic SNPs identified were deemed neutral
as they were not associated with a common phenotype or
height category. Due to the homozygosity present in
breeds exhibiting fixed traits, it was unnecessary to
sequence additional individuals from each breed.

Achondroplasia in humans is most frequently due to con-
stitutive activation mutations within the transmembrane
domain of FGFR3 [2]. However, when Martinez et al., [26]
sequenced only the FGFR3 transmembrane domain, they
found no difference in that sequence when comparing
achondroplastic dogs to a non-achondroplastic dog, the
German shepherd. Likewise, dwarfism in Dexter cattle is
not due to mutations in the transmembrane domain of
FGFR3 [27]. These findings, coupled with the current
results, imply the essentiality of the FGFR3 gene in normal
skeletal development. Spontaneous inactivating or genet-
ically engineered null mutations of the FGFR3 gene result
in appendicular abnormalities, enhanced proliferation of
growth plate chondrocytes, and reduced cortical bone
thickness [6,28]. Furthermore, lifespan is reduced in
genetically FGFR3 null mice [29].

The FGFR3 protein and mRNA show a high degree of
sequence homology across divergent mammalian species.
For example, a pairwise alignment of the dog, human, and
mouse FGFR3 protein sequences exhibits a 96% homol-
ogy for consensus of amino acid pairs among all
ungapped positions in the IIIb isoform. Similarly in the
dog FGFR3 IIIc isoform, a pairwise alignment to the

human and mouse protein sequence results in 95% and
94% homology, respectively. As expected, when the
sequenced dog FGFR3 genomic exons were compared
with published dog ESTs (mRNA) they were identical and
when aligned with human and mouse ESTs exhibited
homologies similar to human and mouse protein align-
ments as described above [30].

Expression of FGFR3 has been proposed to be the essen-
tial link to coordinate growth plate cell proliferation with
the osteogenesis and mineralization necessary to structur-
ally support the elongating skeleton [6]. Disruption of
this coordination could jeopardize the integrity of the
skeleton in terrestrial species. The pathology in animals
with gain of function mutations likewise exhibit dysregu-
lation between cellular proliferation at the growth plate
and ossification [5]. Thus, the selection pressure to main-
tain a coordinated balance between bone elongation and
ossification apparently outweighed any human selection
pressure to develop dog breeds with distinct morpholo-
gies.

Recent reports have identified a QTL association between
IGF-I and skeletal size in the dog [31], reiterating the asso-
ciation between IGF-I and growth in livestock [32-34].
The IGF-I gene has a more expansive set of target tissues
when compared to the restrictive targets of FGFR3. The
systemic effects of IGF-I, with its multitude of actions,
would be subject to less stringent selection pressure than
a gene that balances structural support with overall size.
Therefore, genetic change in the IGF-I locus could be tol-
erated whereas sequence change in FGFR3 would not be
permitted.

Although a classical promoter was not identified by the
sequence analysis of the dog FGFR3 promoter region,
many genes utilize diverse core promoters that vary from
the standard TATA-dependent promoters (reviewed in
[35]) including the murine FGFR3 [10]. The in silico
FGFR3 promoter analysis did underscore the similarities
and differences between dogs, mice, and humans. A pair-
wise alignment of the dog FGFR3 promoter region with
mouse, and human resulted in a poor identity (52% and
49%, respectively). Nevertheless, the key functional tran-
scriptional enhancer elements characterized in the mouse
and human FGFR3 gene, such as cAMP response ele-
ments, SP1, and Prox1 binding sites [36,37], were identi-
fied in the canine FGFR3 promoter region. This suggests
common regulation of the expression and function of the
FGFR3 gene. Interestingly, potential estrogen binding
domains were identified within the dog FGFR3 promoter
region. Estrogen is known to play a major role in growth
plate arrest and ossification [38]. Although the mecha-
nism used in growth plate closure is unknown, the pres-
ence of estrogen binding domains suggests a mechanism
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for estrogen regulation of chondrocyte activity through
FGFR3 during skeletal maturation [39].

Conclusion
The present study revealed homogeneity across many dif-
ferent breeds of dogs, indicating the essentiality of the
FGFR3 gene product in maintaining skeletal integrity.
Deviations from the consensus sequence appear to be
quickly subjected to purifying selection in purebred dog
breeds such that they are not maintained.
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