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Abstract

Motivation: The estimation of phylogenetic trees is a major part of many biological dataset ana-

lyses, but maximum likelihood approaches are NP-hard and Bayesian MCMC methods do not scale

well to even moderate-sized datasets. Supertree methods, which are used to construct trees from

trees computed on subsets, are critically important tools for enabling the statistical estimation of

phylogenies for large and potentially heterogeneous datasets. Supertree estimation is itself NP-

hard, and no current supertree method has sufficient accuracy and scalability to provide good ac-

curacy on the large datasets that supertree methods were designed for, containing thousands of

species and many subset trees.

Results: We present FastRFS, a new method based on a dynamic programming method we have

developed to find an exact solution to the Robinson-Foulds Supertree problem within a constrained

search space. FastRFS has excellent accuracy in terms of criterion scores and topological accuracy

of the resultant trees, substantially improving on competing methods on a large collection of biolo-

gical and simulated data. In addition, FastRFS is extremely fast, finishing in minutes on even very

large datasets, and in under an hour on a biological dataset with 2228 species.

Availability and Implementation: FastRFS is available on github at https://github.com/pranjalv123/

FastRFS

Contact: warnow@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Supertree estimation is the problem of computing a tree on a set S of

taxa from a set of estimated trees (called ‘source trees’) on subsets of

S. Traditionally, the purpose of supertree estimation was to combine

published species trees estimated by different research groups

around the world, using different datasets and different methods.

Supertree methods have been used to construct many species trees,

and the development of supertree methods is an area of very active

research (see Bininda-Emonds, 2004 for some of the early literature,

and Akanni et al., 2014; Martins et al., 2016; Nguyen et al., 2012;

Swenson et al., 2012 for some more recent methods).

More recently, supertree estimation has been used within

divide-and-conquer frameworks, in which a large and potentially

heterogeneous dataset is divided into overlapping smaller subsets,

trees are estimated on each subset, and then combined into a tree

on the full dataset using a supertree method. These divide-and-

conquer methods thus enable the application of statistical phyl-

ogeny estimation methods to scale to larger datasets (Bayzid et al.,

2014; Huson et al., 1999; Nelesen et al., 2012; Warnow et al.,

2001). Each of these methods has been able to improve the accur-

acy and/or speed of its base method. Thus, supertree computation

provides an essential tool for both moderate- and large-scale
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phylogeny estimation, and is relevant to both gene tree estimation

and species tree estimation.

One of the popular approaches to supertree estimation is the

NP-hard Robinson-Foulds Supertree problem (Bansal et al., 2010),

which seeks a binary tree that has the minimum total Robinson-

Foulds (Robinson and Foulds, 1981) distance to the input source

trees. The best known local search heuristic for the Robinson-Foulds

Supertree is MulRF (Chaudhary et al., 2014), but PluMiST

(Kupczok, 2011) is a new method that shows promise; to our know-

ledge, there are no other methods that are competitive with these

two.

One of the exciting properties of the Robinson-Foulds Supertree

problem is that it is closely related to the Maximum Likelihood

Supertree problem, which seeks a supertree that is the most likely to

have produced the observed source trees under a simple exponential

model of phylogenetic error (Steel and Rodrigo, 2008). Although

the two problems are not identical (as established in Bryant and

Steel, 2009), it seems likely that good solutions to the Robinson-

Foulds Supertree problem will be good solutions to the Maximum

Likelihood Supertree problem. However, the only technique for the

Maximum Likelihood Supertree problem that we are aware of,

L.U.-st (Akanni et al., 2014), is very computationally intensive,

making it infeasible for use on biological datasets (Akanni et al.,

2015b).

In this paper, we report on a new method, FastRFS (Fast

Robinson-Foulds Supertrees) for finding optimal Robinson-Foulds

Supertrees in a constrained search space. Unlike the previous meth-

ods for Robinson-Foulds Supertrees, which depended on heuristic

searches through tree space, the method we have designed uses dy-

namic programming (DP) to find an exact solution to the Robinson-

Foulds Supertree problem within a constrained search space.

This algorithmic strategy of using dynamic programming to find

a species tree optimizing some criterion within a constrained search

space was first used in Hallett and Lagergren (2000); since that

time, the approach has been used in other phylogenetic estimation

methods (Bayzid et al., 2013; Bryant and Steel, 2001; Mirarab and

Warnow, 2015; Mirarab et al., 2014; Than and Nakhleh, 2009; Yu

et al., 2011). Most of these methods constrain the search space for

their optimization problem by computing a set X of allowed biparti-

tions (i.e. splits of the leafset into two parts, each defined by deleting

edges in the species tree that will be constructed) from the input, and

require that the output tree draw its bipartitions from X. These

methods run in time that is polynomial in the number of species,

source trees, and jXj. Many of these methods specify X to be the set

of bipartitions in the input source trees, but expanding the set can

improve accuracy (Mirarab and Warnow, 2015).

The supertree method we present, FastRFS, is a combination of

the polynomial time dynamic programming algorithm for the con-

strained Robinson-Foulds Supertree problem we have developed

and the technique we use to define the set X from the input source

trees. The basic FastRFS method uses ASTRAL-2 to define the set X

of allowed bipartitions from the input set of source trees. We also

explore an enhanced version where we add additional bipartitions

(beyond those computed by ASTRAL-2) to the set X defined by

ASTRAL-2. We define the additional bipartitions by computing fast

supertrees on the input set, and then add their bipartitions to X; this

approach ensures that we find RFS criterion scores that are at least

as good as the trees we use to define the set X of allowed biparti-

tions, and also at least as good as the trees obtained by the basic

FastRFS method. By only adding bipartitions from supertrees that

we can compute quickly, the enhanced FastRFS method is able to

complete quickly, and provides improved criterion scores.

We evaluate these two versions of FastRFS in comparison to

leading methods for supertree estimation on a collection of biolo-

gical and simulated datasets with 100–2228 species that were used

in prior publications to evaluate supertree methods (Nguyen et al.,

2012; Swenson et al., 2010, 2012). We compare FastRFS to

PluMiST, the current best performing method (in terms of criterion

scores) for the Robinson-Foulds Supertree problem, and also to

MulRF, the most well-known software for this optimization prob-

lem. We also compare FastRFS to Matrix Representation with

Likelihood (MRL) (Nguyen et al., 2012), ASTRID (Vachaspati and

Warnow, 2015) and ASTRAL-2 (Mirarab and Warnow, 2015).

MRL is the maximum likelihood counterpart to the well-known

Matrix Representation with Parsimony (MRP) method, and has pro-

duced topologically more accurate supertrees than leading MRP

heuristics (Nguyen et al., 2012). ASTRID and ASTRAL-2 are meth-

ods for species tree estimation that take gene tree heterogeneity aris-

ing from incomplete lineage sorting into account, and have had

good accuracy on large phylogenomic datasets. We evaluate these

methods with respect to RFS criterion scores (which can be eval-

uated on both simulated and biological datasets), topological accur-

acy in estimating the true supertree (which can only be evaluated on

simulated datasets) and wall clock running time.

2 Materials and methods

Every model tree and estimated supertree in this study is a fully

resolved tree, and no two leaves have the same label; the source trees

are unrooted trees with leaves drawn from (possibly proper) subsets

of the full set of taxa, and may contain polytomies (nodes of degree

greater than three). We let TjQ denote the tree obtained by restrict-

ing the tree T to the subset Q of its leafset, and then suppressing

nodes of degree two. We let LðTÞ denote the leafset of a tree T. The

deletion of an edge e from a tree T induces a bipartition of LðTÞ into

two sets A and B, denoted by ½A;B�. Every unrooted tree T is defined

by its set Bip(T) of bipartitions. The Robinson-Foulds (RF) distance

between trees T and T 0 that are on the same leafset is the number of

bipartitions that are in one tree but not the other (i.e.

RFðT;T 0Þ ¼ jBipðTÞ�BipðT 0Þj). Note that when T and T 0 have the

same leafset, then RFðT;T 0Þ ¼ 0 if and only if T ¼ T 0.

We extend the definition of RF distance to trees t and T with

nested leafsets (i.e. LðtÞ � LðTÞ) to be the RF distance between

TjLðtÞ and t, and denote this distance by RF(T, t). Given a set T of

trees and tree T satisfying LðtÞ � LðTÞ for all t 2 T , we define

RFðT; T Þ ¼
P

t2T RFðT; tÞ: A binary tree T with leafset S ¼ [t2T Lðt
Þ that minimizes RFðT;T Þ is the Robinson-Foulds Supertree for T ,

and is denoted TRFS.

Finding a Robinson-Foulds Supertree is NP-hard; however, the

Constrained Robinson-Foulds Supertree Problem constrains the

search space using a set X of allowed bipartitions, and can be solved

in polynomial time, as we will show.

Constrained Robinson-Foulds Supertree Problem:

• Input: Set T of trees and set X of bipartitions of the taxon set S,

where S ¼ [t2T LðtÞ.
• Output: Unrooted binary tree TRFSðcÞ that minimizes RFðT; T Þ,

subject to the constraint that every bipartition in TRFSðcÞ is drawn

from X.

2.1 The dynamic programming algorithm to solve

constrained Robinson-Foulds supertrees
While the Robinson-Foulds Supertree problem is stated in terms of

minimizing the total Robinson-Foulds distance to the source trees,
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we will rephrase it as maximizing the bipartition support from the

source trees. This formulation will make it easy for us to present and

explain the dynamic programming approach we have developed.

Let t be a source tree with leafset S0 and let T be a tree with leaf-

set Y, so that S0 � Y � S. Let ½A0;B0� be a bipartition in t. We will

say that ½A0;B0� supports T if there is a bipartition ½A;B� in T such

that A0 ¼ S0 \ A and B0 ¼ S0 \ B. We will also say that the biparti-

tion support of t for T is the number of bipartitions in t that support

T, and that the bipartition support from T for T is the bipartition

support for T from all the trees in T .

OBSERVATION 1. For any set T of source trees, a binary tree T with

leafset S ¼ [t2T LðtÞ that has the maximum bipartition support from

T is an optimal solution to the Robinson-Foulds Supertree problem.

Recall that the input includes a set X of allowed bipartitions. A

clade in a rooted tree is a set of leaves that constitute all the leaves

below some selected node in the rooted tree. We define a set C of

allowed clades, by setting C ¼ fA : 9½A;B� 2 Xg (i.e. C contains

every half of every bipartition in X).

Let t be an unrooted tree with leafset S0, let T be a rooted binary

tree with leafset Y where S0 � Y, and let ½A0;B0� be a bipartition in t.

We will say that ½A0;B0� supports T if TjS0 contains A0 or B0 (or both)

as clades. We define the bipartition support of source tree t 2 T for

the rooted tree T to be the number of bipartitions in t that support

T, and the bipartition support of T for T to be the total of the bipar-

tition support from all the source trees in T for T. Furthermore,

given node v in T, we let Tv denote the subtree of T rooted at v; note

that every node in Tv is also a node in T.

OBSERVATION 2. For all sets T of source trees and all rooted trees

T with leafset S ¼ [t2T LðtÞ, the bipartition support of T for T is

the same as the bipartition support of T for the unrooted version

of T.

By Observation 2, we can solve the Constrained Robinson-

Foulds Supertree problem by finding a rooted tree with leafset S that

has the maximum bipartition support, and then unrooting this tree.

For the rest of this discussion, T will denote a rooted binary tree

with leafset Y � S, with all its clades drawn from C. We will show

that we can write the bipartition support for T from a source tree t

as the sum of the bipartition support for the clades in T, which will

allow us to construct a dynamic programming algorithm.

Consider an internal node v in T, and let v1 and v2 be its two

children. Let the clade below v be A, the clade below v1 be A1, and

the clade below v2 be A2. Deleting v from T splits Y into three parts:

A1, A2 and A3 ¼ YnA. We will describe this by saying v defines the

ordered tripartition ðA1;A2;A3Þ, with the understanding that ðA1;

A2;A3Þ and ðA2;A1;A3Þ are equivalent, and both correspond to

node v. Note that if Y 6¼ S, then the tripartition defined by v will not

cover all the elements of S. Also, we will require that A1 and A2 be

allowed clades (i.e. in C), but we make no such constraint on A3.

Suppose that source tree t with leafset S0 has a bipartition ½U0;V0�
that supports T; thus, TjS0 must have U0 or V 0 (or both) as clades.

We wish to associate this bipartition to exactly one node in T, so

that we can compute the bipartition support without having to cor-

rect for over-counting, and so that the dynamic programming algo-

rithm is simple.

Case 1: TjS0 contains only one of these two clades. Suppose

TjS0 contains U0 but not V 0 as a clade. If TjS0 does not contain

any leaves from V 0, we do not assign ½U0;V 0� to any node in T.

If T 0jS0 does contain at least one leaf from V 0, we follow the

path from the MRCA of U0 towards the root until we reach the

first node w that has at least one element of V 0 in the subtree

below it, and we assign ½U0;V 0� to w.

Case 2: TjS0 contains both U0 and V0 as clades. We assign ½U0;
V 0� to the MRCA of U0 [ V 0.

The following lemma follows directly from the description of the as-

signment process:

LEMMA 1. For any bipartition p ¼ ½U0;V 0� and any tree T, p is as-

signed to node w in T if and only if w defines a tripartition

ðA1;A2;A3Þ where U0 � A1;V
0 \ A1 ¼1; and V 0 \ A2 6¼1. If p

supports T, then there is a unique node in T satisfying this con-

straint. However, if no such node exists, p does not support T, and

so is not assigned to any node in T.

LEMMA 2. Let T be a rooted tree on set Y, and let v be a node in T

other than the root. Let ½U0;V 0� be a bipartition in a source tree t

that supports both T and Tv, and suppose that ½U0;V 0� is assigned to

node w in T and node w0 in Tv. Then w ¼ w0.

PROOF. By Lemma 1, ½U0;V 0� is assigned to the unique node w0 in Tv

that defines a tripartition ðA1;A2;A3Þ where U0 � A1;V
0 \ A1 ¼1;

and V 0 \ A2 6¼1. Since Tv is a rooted subtree of T, the node w0

exists in T, and defines the tripartition ðA1;A2;A
0
3Þ that differs from

the tripartition above only in the third coordinate. By Lemma 1, it

follows that w ¼ w0. h

Note that the assignment of bipartitions to nodes in trees de-

pends only on the first two components of the tripartition for the

node. We make the following definition:

DEFINITION 1. Let A1, A2 be a disjoint pair of allowed clades. We de-

fine supportðA1;A2Þ to be the number of bipartitions in the source

trees that map to a tripartition ðA1;A2;ZÞ for some Z.

THEOREM 1. The bipartition support from T for a rooted binary tree

T is

X

ðA1 ;A2 ;A3Þ2TripðTÞ
supportðA1;A2Þ;

where Trip(T) denotes the set of tripartitions defined by the nodes of T.

PROOF. The prior discussion establishes that for a given source tree

t 2 T and bipartition pe 2 BipðTÞ that supports T, there is exactly

one tripartition in Trip(T) that pe is mapped to. Furthermore, if pe

does not support T, then it is not mapped to any tripartition in

Trip(T). The theorem follows. h

THEOREM 2. Let T be a set of source trees with S the set of taxa that

appear as a leaf in at least one tree in T , and let C be the set of

allowed clades. Set BPSðfsgÞ ¼ 0 for all s 2 S, and let BPS(A) for A

2 C with jAj � 2 be the maximum bipartition support over all

rooted binary trees T on clade A where T draws its clades from C.
Then, for A 2 C; jAj � 2,

BPSðAÞ ¼ maxfBPSðA1Þ þ BPSðA2Þ þ supportðA1;A2Þ :

A ¼ A1 [ A2;A1 \ A2 ¼1;Ai 2 Cg
(1)

PROOF. Let A 2 C be arbitrary, with jAj � 2. Let BPS�ðAÞ denote the

maximum achievable bipartition support of any rooted tree on A

that draws its clades from C, and let BPS(A) be the value as com-

puted by Equation 1. We will prove by induction on the size of A

that BPS�ðAÞ ¼ BPSðAÞ.

The base case is A ¼ fa; a0g. There is only one rooted tree on A, and

it has bipartition support supportðfag; fa0gÞ, which is equal to
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BPS(A). Hence BPS�ðAÞ ¼ BPSðAÞ for jAj � 2. Now let jAj > 2 be

arbitrary, and let T be a binary rooted tree with leafset A having the

largest bipartition support from the trees in T , and drawing its

clades from C. The inductive hypothesis is that BPSðA0Þ ¼ BPS�ðA0Þ
for all proper subsets A0 of A where A0 2 C.

Let v1 and v2 be the two children of the root of T, A1 and A2 be

the leafsets of the subtrees of T rooted at v1 and v2, and T1 and T2

be the subtrees of T rooted at v1 and v2, respectively. By the induct-

ive hypothesis, BPSðA1Þ ¼ BPS�ðA1Þ and BPSðA2Þ ¼ BPS�ðA2Þ.
Because T optimizes the bipartition support of all rooted binary

trees on A given the constraint set, T1 and T2 have the highest

bipartition support of all rooted binary trees on A1 and A2, re-

spectively, given the constraint set. By Theorem 1, the bipartition

support of Ti is the sum of support(X, Y) for all tripartitions

defined by the nodes of Ti, for i¼1, 2, and the bipartition support

of T is the sum of support(X, Y) for all tripartitions defined by

the nodes of T. Hence, the bipartition support of T is BPSðA1Þþ
BPSðA2Þþ supportðA1;A2Þ. Thus, BPS�ðAÞ¼BPSðA1ÞþBPSðA2Þþ
supportðA1;A2Þ, and so BPS�ðAÞ � BPSðAÞ.

To complete the proof, we need only show that

BPSðAÞ � BPS�ðAÞ. So suppose BPSðAÞ > BPS�ðAÞ. Then there is a

bipartition ½A01;A02� of A such that BPSðA01Þ þ BPSðA02Þþ
supportðA01;A02Þ > BPSðA1Þ þ BPSðA2Þ þ supportðA1;A2Þ. Let T 01
and T 02 be the rooted trees on A01 and A02 having quartet support

BPS�ðA01Þ and BPS�ðA02Þ, respectively, with clades drawn from C,
and let T 0 be the binary rooted tree on A with subtrees T 01 and T 02.

Then T 0 draws its clades from C and has bipartition support that is

strictly greater than that of T. This contradicts the assumption that

T had the largest bipartition support among all rooted binary trees

drawing its clades from C. Hence, BPSðAÞ � BPS�ðAÞ. We have

shown that BPSðAÞ � BPS�ðAÞ and BPS�ðAÞ � BPSðAÞ, and so

BPSðAÞ ¼ BPS�ðAÞ. Since A was arbitrary, the theorem follows. h

2.2 The dynamic programming algorithm
The input is a pair ðT ;XÞ where T is a set of source trees and X is a

set of allowed bipartitions.

• Preprocessing: Compute the set C of allowed clades, and order

them by cardinality from smallest to largest. Compute the set S

of taxa. Set BPSðfsgÞ ¼ 0 for all s 2 S. Compute supportðA1;A2Þ
for every pair of disjoint allowed clades A1, A2.

• For each A 2 C with jAj � 2, in order of size (from smallest to

largest), set

BPSðAÞ ¼ maxfBPSðA1Þ þ BPSðA2Þ þ supportðA1;A2Þg;

where A1 and A2 are disjoint allowed clades and A ¼ A1 [ A2.

• Return BPS(S).
• Compute a rooted binary tree achieving this score using back-

tracking, and then unroot it to produce a Robinson-Foulds

Supertree.

THEOREM 3. The dynamic programming algorithm finds an optimal

solution to the constrained Robinson-Foulds Supertree problem,

and does so in OðjXj2nkÞ time, where there are n taxa and k source

trees.

PROOF. Let ðT ;XÞ (where T is the set of source trees and X is a set

of bipartitions on the species set S) be an input to the constrained

Robinson-Foulds supertree problem, and let C be the set of halves of

these bipartitions. By Theorem 2, the dynamic programming algo-

rithm correctly computes the best achievable bipartition support for

any rooted supertree drawing its clades from set C. Backtracking

produces a rooted T achieving that optimal score, and unrooting T

produces T 0, which has the same optimal score. By construction, T

draws its clades from C, and so T 0 draws its bipartitions from X.

Hence, the output from the algorithm, T 0, is a supertree that draws

its bipartitions from X and that achieves the best possible bipartition

support score of all supertrees drawing their bipartitions from X;

this establishes correctness.

For the running time analysis, we begin with the preprocessing

step. Note that jCj ¼ 2jXj and that there are O(nk) bipartitions in

the source trees. For each of the OðjXjÞ allowed clades A and each

half Y1 of the O(nk) source tree bipartitions, we determine if

Y1 � A; this takes O(n) time per comparison, for a total cost of Oðj
Xjn2kÞ time. Once this is done, we can compute supportðA1;A2Þ for

every pair A1, A2 of disjoint allowed clades, using OðjXj2nkÞ add-

itional time. Since jXj � n� 3, jXjn2k � jXj2nk; hence, the prepro-

cessing is done in OðjXj2nkÞ time. The second phase, where we

compute BPS(A) for the allowed clades A, is easily seen to take Oðj
XjÞ time per clade, provided that the preprocessing is done first, and

the calculations are done in the proper order. Hence, the total time

is OðjXj2nkÞ time. h

2.3 The basic FastRFS method
The input to the FastRFS method is a set T of unrooted source trees,

but they do not need to be binary trees (i.e. polytomies are allowed).

In the basic FastRFS method, we use ASTRAL-2 to compute the set

X of allowed bipartitions. The technique in ASTRAL-2 for comput-

ing the set X of allowed bipartitions produces a set that contains at

least one compatible subset of n – 3 bipartitions, where n ¼ jSj; as a

result, FastRFS is guaranteed to return a fully resolved tree on every

input. See Mir arabbaygi (Mirarab) (2015) for details on how

ASTRAL-2 computes the set X.

2.4 FastRFS-enhanced and ASTRAL-enhanced
The enhanced version of FastRFS, which we write as FastRFS-

enhanced, operates by computing a set Z of supertrees that can be

computed quickly on T , and then adds the bipartitions from trees in

Z to the set X that is computed by ASTRAL-2. This approach en-

sures that the RFS criterion score found by FastRFS-enhanced will

be at least as good as any tree in Z.

In our study, we used one or both of ASTRID and MRL for our

set Z. ASTRID computes a matrix of average pairwise ‘internode

distances’ (the number of edges in the path between two species in a

tree), and then computes a tree on the distance matrix. When the

distance matrix has no missing data, ASTRID uses FastME (Desper

and Gascuel, 2002), a fast and accurate method to compute the

supertree; however, when the distance matrix has missing entries, it

uses BioNJ* (Criscuolo and Gascuel, 2008), a method that is slower

and not quite as accurate (see Vachaspati and Warnow, 2015 for a

comparison of ASTRID using BioNJ* and ASTRID using FastME).

In our experiments, we include the MRL tree in Z, and we also in-

clude the ASTRID tree for those inputs where the internode distance

matrix has no missing entries. We similarly define ASTRAL-

enhanced using the same set of extra trees as for FastRFS-enhanced.

2.5 Datasets
We used a collection of published simulated and biological datasets

that have been used in other studies (Swenson et al., 2010) to evalu-

ate supertree methods, all of which are available online at http://

www.cs.utexas.edu/users/phylo/datasets/supertrees.html.
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The simulated data, referred to as ‘SMIDgen’ in Swenson et al.

(2010), are generated using a taxon sampling strategy that mimics

biological practice. These datasets have 100, 500, or 1000 taxa,

with up to 25 source trees per replicate. Each supertree input has

several ‘clade-based’ source trees and a ‘scaffold tree’, which are

estimated using maximum likelihood heuristics on a concatenation

of gene sequence alignments. Some genes are ‘universal’ and so are

present in every species; others evolve within the species tree under a

birth-death model in which birth happens once but death (i.e. gene

disappearance) can happen several times; therefore, unless the gene

is born at the root of the species tree, it will be present only within a

clade within the tree. Sequences then evolve down the gene trees

under the GTRGAMMA model of site evolution. The scaffold tree

is based only on the universal genes, and has a random subset of the

species set; the clade-based trees are obtained by selecting a clade in

the tree and then a set of genes that covers that clade well. As shown

in Swenson et al. (2010), the density of the scaffold tree (i.e. the per-

centage of the full set of taxa that are in the scaffold dataset) has a

large impact on the topological accuracy of the resultant estimated

supertree. These simulated data enable us to evaluate topological ac-

curacy as well as criterion score.

We include the biological datasets that were also studied in

Swenson et al. (2010): CPL (comprehensive papilinoid legumes)

(McMahon and Sanderson, 2006), Marsupials (Cardillo et al.,

2004), Placental Mammals (Beck et al., 2006), Seabirds (Kennedy

et al., 2002) and THPL (temperate herbaceous papilionmoid leg-

umes) (Wojciechowski et al., 2000). These range in size from 116

species (Placental Mammals) to 2228 (CPL), and with as few as 7

source trees (Seabirds) to as many as 726 (Placental Mammals).

2.6 Methods
In addition to the two FastRFS variants (basic and enhanced), we

computed supertrees using MRL, ASTRID, ASTRAL-2, MulRF and

PluMiST. For MRL, we compute the MRP matrix using ‘mrpmatrix’

available at github.com/smirarab/mrpmatrix, and we use RAxML

(Stamatakis, 2014) version 8.2.4 under the BINGAMMA model

with seed 12345 on the MRP matrix. We ran MulRF version 1.2

(Chaudhary et al., 2014) and PluMiST version 1.1 (Kupczok, 2011).

We ran PluMiST in default mode, and we ran MulRF ten times, and

report results for the tree with the best criterion score. We ran

ASTRAL-2 version 4.7.12 (Mirarab and Warnow, 2015) (hence-

forth referred to as ASTRAL) and ASTRID version 1.1 (Vachaspati

and Warnow, 2015), both in default mode. Each of these methods

produces fully resolved unrooted trees.

ASTRAL produces a supertree that minimizes the total quartet

distance to the input source trees (equivalently, it produces a super-

tree that maximizes the total quartet tree support) subject to a con-

strained set X of bipartitions that it computes from the input source

trees.

We tested an enhanced version of ASTRAL (analogous to

FastRFS-enhanced), in which we added the bipartitions from MRL

and ASTRID to the set X; this enables a direct comparison of

FastRFS-enhanced and ASTRAL-enhanced. Although FastRFS-

enhanced is guaranteed to find RFS criterion scores that are at least

as good as ASTRAL-enhanced, the comparison with respect to tree

topology accuracy makes it possible to evaluate the two optimiza-

tion criteria (minimize quartet distance or minimize Robinson-

Foulds distance) and their impact on topological accuracy. Finally,

we tested the impact of adding the bipartitions from just one tree

(MRL or ASTRID) to the set X on FastRFS, to determine the relative

impact of each additional tree.

2.7 Measurements
We can use the simulated data to explore performance with respect

to criterion scores as well as tree estimation error. However, since

there is no known true supertree for the biological datasets, we use

the biological datasets to explore performance only with respect to

criterion scores.

For tree estimation error (explored only on the simulated data-

sets), we report the normalized bipartition distance (also called the

Robinson-Foulds error rate) between the estimated and true trees.

The Robinson-Foulds (RF) error rate is RFðT;T 0Þ
2n�6 , where RFðT;T 0Þ is

the RF distance between the true tree T and the estimated tree T 0,

and n is the number of leaves in T). Hence, the RF error rate is be-

tween 0 and 1, and is equal to 0 if and only if the two trees are

identical.

We also report the Robinson-Foulds Supertree criterion score

(i.e. the total Robinson-Foulds distance between the estimated

supertree and the input source trees) for all datasets; this value is

bounded from above by ð2n� 6Þk, where n is the total number of

species and k is the total number of source trees.

Although the criterion scores and tree error metrics both refer to

the Robinson-Foulds distance, the criterion score is based on the RF

distance to the input source trees, and the tree error metric refers to

the RF distance to the model tree, which is unknown. Hence these

are two different ways of evaluating methods.

Most of the methods are sequential codes; however, FastRFS is

parallelized to run on 8 cores and we run MulRF 10 times in parallel

and take the best tree. We report wall clock running times for all

codes; except when the differences are large, comparisons between

running times are not reliable. Running times for FastRFS-enhanced

include the time to compute the MRL tree and the ASTRID distance

matrix, and, if the distance matrix has no missing data, the time to

run FastME on the distance matrix (i.e. to fully compute the

ASTRID tree).

2.8 Experiments
We performed experiments to evaluate the different supertree meth-

ods with respect to Robinson-Foulds criterion score, topological ac-

curacy of the supertree and running time.

3 Results and discussion

3.1 Impact of the constraint set on criterion scores
Our initial experiment evaluated the impact on the criterion scores

found by FastRFS of adding bipartitions from the MRL tree and/or

the ASTRID tree to the constraint set. In general, FastRFS with the

MRL tree alone added was nearly as good as FastRFS-enhanced (i.e.

with both ASTRID and MRL trees added), and FastRFS with MRL

found substantially better criterion scores than FastRFS with just the

ASTRID tree added. Nevertheless, since adding the ASTRID tree did

help occasionally, and since ASTRID is so quick to run when the dis-

tance matrix is complete, we continued using it for FastRFS-

enhanced. See supplementary materials for these results.

3.2 Criterion scores for the simulated datasets
By design, FastRFS-enhanced will always find criterion scores that

are at least as good as those found by ASTRAL-enhanced, FastRFS-

basic, ASTRAL and MRL. Hence, the only methods that could pos-

sibly find better scores than FastRFS-enhanced are PluMiST, MulRF

and ASTRID. We show the Robinson-Foulds Supertree criterion

scores in Table 1; note that lower is better. PluMiST failed to com-

plete on three datasets (one replicate in the 100-taxon and two
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replicates in the 500-taxon datasets, each with 20%-scaffolds); we

report results only on the remaining datasets. Both PluMiST and

MulRF had very large running times on the 500-taxon datasets;

therefore, we did not attempt to run them on the 1000-taxon data-

sets. All other methods succeeded in completing on all datasets we

examined.

FastRFS-enhanced found the best (lowest) Robinson-Foulds

Supertree (RFS) criterion scores of all methods for all datasets;

FastRFS-basic also found these best scores for three of the four 100-

taxon model conditions, but otherwise found higher scores.

PluMiST found better RFS criterion scores than MulRF in 7 of the 8

model conditions, and matched in 1 condition. ASTRID had the

worst performance of all methods, with much larger criterion scores

on all the sparse scaffold model conditions. These are the same con-

ditions in which the internode distance matrix has missing entries,

suggesting that the reduced accuracy is largely due to the missing

data in the distance matrix.

Certain additional trends are worth noting. First, although

PluMiST did well on the 100-taxon datasets, it was not so competi-

tive with FastRFS-enhanced or even FastRFS-basic on the 500-taxon

datasets, suggesting that the number of taxa may impact the ability

of PluMiST to find trees with good criterion scores. ASTRAL-

enhanced matched or improved on the RFS criterion scores com-

pared to ASTRAL; this is interesting because it does not follow from

the algorithm design (the two methods seek the tree that minimizes

the quartet distance, not the RFS criterion). MRL, although never

coming in first, often had very good results, coming just behind

FastRFS-basic for overall performance.

3.3 Criterion scores on biological datasets
We were unable to run PluMiST and MulRF on the CPL dataset, the

largest in our collection, due to its size: at 2228 species, the running

time needed for these two methods is excessive. Criterion scores on

the biological datasets follow very similar patterns as observed on

the simulated datasets (Fig. 1). Overall, FastRFS-enhanced had the

best criterion scores: the best on four datasets, and close to best on

the last dataset (Marsupials). PluMiST tied for best with FastRFS-

enhanced on two of the four datasets on which it can run, had the

second best score on seabirds, and third best on THPL. Hence,

PluMiST is in second place. Interestingly, the dataset on which

PluMiST was not able to find one of the top two scores was the se-

cond largest dataset, with more than 500 species. Thus, just as we

saw on the simulated datasets, the number of species seems to im-

pact the relative performance of PluMiST in comparison to other

methods.

The next two best methods are MRL and FastRFS-basic, which

had close performance, but MRL was slightly better. ASTRAL and

MulRF are next, again with mixed performance (MulRF was better

on two datasets and ASTRAL was better on the other two). Finally,

ASTRID had the worst performance of all methods - coming in dead

last on four of the five datasets. It is worth noting that all but two of

the datasets produced distance matrices with missing entries, and

ASTRID did better than ASTRAL on one of the two datasets (mar-

supial) that produced a complete distance matrix.

3.4 Topological accuracy
Since the true supertree is not known for the biological datasets, we

evaluate topological accuracy only on the simulated datasets red

(Table 2). All methods improved in accuracy with the increase in the

scaffold density, so that error rates were generally highest for 20%-

scaffolds and lowest for 100%-scaffolds. The differences between

methods on the 100%-scaffolds were generally small, but there were

large differences under the other conditions. ASTRID had very poor

accuracy except for those with 100%-scaffolds, and MulRF and

PluMiST also had poor accuracy with the lower density scaffolds.

Fig. 1. RFS criterion scores on biological data of supertree methods; lower is better. MulRF and PluMiST could not be run on the CPL dataset due to its large size;

hence no values are shown for those methods on that dataset. Overall, FastRFS-enhanced produces the best RFS criterion scores on these datasets

Table 1. Average Robinson-Foulds Supertree criterion scores on the simulated datasets; lower is better

Method 100 100 100 100 500 500 500 500 1000 1000 1000 1000

Scaffold % 20 50 75 100 20 50 75 100 20 50 75 100

# Replicates 9 10 10 10 8 10 10 10 10 10 10 10

ASTRAL 32 31 38 45 170 190 225 274 365 414 502 591

ASTRAL-enhanced 32 30 38 45 163 182 221 274 337 393 491 591

ASTRID 40 41 50 41 360 914 905 223 1066 2447 2370 470

MRL 30 30 36 42 158 179 202 223 309 362 412 474

MulRF 32 34 38 40 282 315 279 229 – – – –

PluMiST 31 29 34 40 210 245 246 214 – – – –

FastRFS-basic 29 29 34 40 152 173 191 209 325 366 394 434

FastRFS-enhanced 29 28 34 40 148 166 186 206 292 347 384 426

No results shown for the 1000-taxon datasets for MulRF and PluMiST, due to time constraints; otherwise, results are shown for those datasets for which all

methods completed. The best result shown for a given model condition is boldfaced.
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The remaining methods (MRL, the two ASTRAL versions and

the two FastRFS versions) were fairly close in accuracy. However,

MRL was never more accurate than FastRFS-enhanced, and was

only the top performing method for one model condition (where it

tied with FastRFS-enhanced). ASTRAL-enhanced was more accur-

ate than ASTRAL on 8 conditions, tied on 1 condition, and less ac-

curate on 3 conditions. FastRFS-enhanced was more accurate than

FastRFS-basic on 9 model conditions, tied on 1 condition, and

worse on 2 conditions. FastRFS-enhanced was more accurate than

ASTRAL-enhanced on 8 of the 12 model conditions, tied on 1 con-

dition and worse on 3 conditions.

FastRFS-enhanced was the top performing method on 5 of the

12 model conditions; the next best performing method was

ASTRAL-enhanced, which was the top performing method in 3 of

the 12 model conditions. Thus, overall FastRFS-enhanced provided

the best accuracy of the tested supertree methods. These results, and

especially the pairwise comparisons, suggest that optimizing the

Robinson-Foulds Supertree criterion (minimize RF distance) is better

than optimizing the ASTRAL criterion (minimize quartet distance)

for supertree estimation, and that adding bipartitions from MRL

(and from ASTRID if its internode distance matrix is complete) also

tends to improve accuracy.

3.5 Running time
Figure 2 shows running times on the biological datasets. MulRF and

PluMiST took the most time, each typically requiring hours where

FastRFS-basic, MRL and ASTRAL completed in well under a mi-

nute (and sometimes in just a few seconds). MRL and FastRFS-

enhanced were the next most computationally intensive, but were

sometimes fast, and finally ASTRAL, ASTRID and FastRFS-basic

were the fastest, often completing in just seconds. As an example,

the running times on the largest dataset on which all the methods

completed (THPL, with 558 taxa) showed substantial differences

between methods: PluMiST used 86 400 s (i.e. 24 h), MulRF used

29 160 (i.e. 8.1 h), FastRFS-enhanced used 615 s (just over 10 min),

MRL used 575 s (i.e. just under 10 min), and ASTRID, ASTRAL

and FastRFS-basic used under 20 s.

The size of X impacts the running time for FastRFS, and ranged

from 1155 to 20 233 for FastRFS-basic and from 2485 to 48 313

for FastRFS-enhanced. The most computationally intensive dataset

for FastRFS-enhanced is the CPL dataset, which maximizes both the

number of taxa and jXj; however, FastRFS-enhanced completed on

this dataset in 3282 s (i.e. under an hour). The majority of the time

for FastRFS-enhanced is spent computing the MRL tree; the other

parts of the analysis (i.e. computing the ASTRID matrix and poten-

tially the ASTRID tree, computing the constraint set from ASTRAL,

and running the DP algorithm) takes very little time (typically less

than a minute).

ASTRID’s running time was highly variable, but the running

time is high only for large datasets with missing entries in the dis-

tance matrix. The reason is that when the matrix has missing entries,

ASTRID must use BIONJ* (which takes Hðn3Þ time) instead of

FastME (which takes Hðn2Þ time). For example, ASTRID used

about 6 h on the CPL dataset (the only biological dataset with these

missing entries), but completed in just seconds on all the other

datasets.

4 Conclusions

Supertree estimation is a basic bioinformatics challenge that is neces-

sary for the construction of large phylogenies as well as for enabling

statistical phylogeny estimation methods to be applied to large

Fig. 2. Sequential running times (in seconds) on biological data of supertree methods. MulRF and PluMiST could not be run on the CPL dataset, due to its large

size; hence no values are shown for those methods on that dataset

Table 2. Supertree topology estimation error on simulated datasets, measured using the Robinson-Foulds error rate, expressed as a

percentage

Method 100 100 100 100 500 500 500 500 1000 1000 1000 1000

Scaffold % 20 50 75 100 20 50 75 100 20 50 75 100

# Replicates 9 10 10 10 8 10 10 10 10 10 10 10

ASTRAL 11:7 14.0 11.6 10.0 15.3 14.8 12.7 11.2 16.9 15.7 13.6 11.6

ASTRAL-enhanced 11.8 13:1 11.5 10.0 14.8 14.1 12.6 11.2 16:3 15:1 13.5 11.6

ASTRID 15.8 18.7 17.1 9.6 26.0 50.1 45.4 10:5 35.6 58.1 52.0 11:2

MRL 13.6 13.6 11.2 10.8 15.4 14.3 12.1 11.2 17.4 15:1 13.5 12.2

MulRF 22.1 26.0 15.3 9.3 46.9 40.3 27.4 12.6 – – – –

PluMiST 25.9 16.6 11.5 9.3 35.4 29.5 22.4 10.9 – – – –

FastRFS-basic 13.5 14.3 10:5 9:1 14.5 14.3 12.4 11.1 17.3 15.6 13.5 12.0

FastRFS-enhanced 13.5 13.4 10.6 9.3 14:3 13:9 12:0 10.8 16.7 15:1 13:4 11.8

The best result for each model condition is boldfaced. No results are shown for PluMiST or MulRF on the 1000-taxon simulated datasets due to running time

limitations for these methods. Results are averaged over the completed replicates.
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datasets. While many methods have been developed to compute

supertrees, very few have been able to provide good accuracy on

datasets with many hundreds or thousands of species.

The FastRFS methods presented here (i.e. the basic and enhanced

versions) are fast and effective techniques to find solutions to the

NP-hard Robinson-Foulds Supertree (RFS) problem. FastRFS-

enhanced in particular nearly always finds better solutions than

PluMiST and MulRF, the leading methods for RFS, and does so in

much less time. FastRFS relies upon a dynamic programming algo-

rithm to find an exact solution to its optimization problem within a

constrained search space, a strategy introduced in Hallett and

Lagergren (2000) and that is quite different from the heuristic search

techniques used by most phylogeny estimation methods. Thus, while

FastRFS, PluMiST and MulRF all seek to optimize the same criter-

ion, FastRFS is guaranteed to find an optimal solution within its

constraint space but cannot return any tree that is not within the

constraint space, while PluMist and MulRF are not guaranteed to

find an optimal solution within any search subspace but have access

to the entire treespace. Thus, our study suggests that exactly solving

an optimization problem within a constrained search space may be a

better approach than being able to search a larger space, as long as

the constrained space is selected carefully. However, our study also

shows that expanding the constraint set beyond the input set of

source trees can be highly beneficial in terms of finding good solu-

tions to NP-hard optimization problems.

FastRFS-enhanced also tends to find more accurate tree topolo-

gies than the other supertree methods we explored. The improve-

ment in topological accuracy suggests that the Robinson-Foulds

Supertree problem is a good approach to supertree estimation. The

explanation for this is likely to be the close relationship between the

Robinson-Foulds Supertree problem and the Maximum Likelihood

Supertree problem (Bryant and Steel, 2009), which models source

tree discord based on the topological distance to the true supertree

(Steel and Rodrigo, 2008). Thus, although a Robinson-Foulds

Supertree is not guaranteed to be identical to a Maximum

Likelihood Supertree, good solutions to one problem are likely to be

good solutions to the other (Bryant and Steel, 2009). Hence,

FastRFS may be a good heuristic for the Maximum Likelihood

Supertree problem, and this may explain its good accuracy.

There are many directions for future work. For example, since

FastRFS by design can only search within the space defined by its con-

straint set, finding better constraint sets may provide additional im-

provements. Alternatively, FastRFS-enhanced may provide a good

starting tree for PluMiST and MulRF, which are able to search an un-

constrained search space. In addition, FastRFS-enhanced may be a good

initial tree for Bayesian supertree methods (Akanni et al., 2015a,b;

Martins et al., 2016) or heuristic searches for Maximum Likelihood

Supertrees (Akanni et al., 2014). Also, like most supertree methods,

FastRFS currently only works with inputs where each source tree has at

most one copy of each leaf; methods like MulRF are designed to handle

inputs of source trees that represent gene trees, and so can have multiple

copies of each species (arising from duplication-loss scenarios). We will

modify FastRFS to be able to work with such source tree inputs.
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