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Background: Major depressive disorder (MDD) is a global health challenge that impacts
the quality of patients’ lives severely. The disorder can manifest in many forms with
different combinations of symptoms, which makes its clinical diagnosis difficult. Robust
biomarkers are greatly needed to improve diagnosis and to understand the etiology of
the disease. The main purpose of this study was to create a predictive model for MDD
diagnosis based on peripheral blood transcriptomes.

Materials and Methods: We collected nine RNA expression datasets for MDD patients
and healthy samples from the Gene Expression Omnibus database. After a series of
quality control and heterogeneity tests, 302 samples from six studies were deemed
suitable for the study. R package “MetaOmics” was applied for systematic meta-analysis
of genome-wide expression data. Receiver operating characteristic (ROC) curve analysis
was used to evaluate the diagnostic effectiveness of individual genes. To obtain a better
diagnostic model, we also adopted the support vector machine (SVM), random forest
(RF), k-nearest neighbors (kNN), and naive Bayesian (NB) tools for modeling, with the
RF method being used for feature selection.

Results: Our analysis revealed six differentially expressed genes (AKR1C3, ARG1,
KLRB1, MAFG, TPST1, and WWC3) with a false discovery rate (FDR) < 0.05 between
MDD patients and control subjects. We then evaluated the diagnostic ability of these
genes individually. With single gene prediction, we achieved a corresponding area
under the curve (AUC) value of 0.63 ± 0.04, 0.67 ± 0.07, 0.70 ± 0.11, 0.64 ± 0.08,
0.68 ± 0.07, and 0.62 ± 0.09, respectively, for these genes. Next, we constructed
the classifiers of SVM, RF, kNN, and NB with an AUC of 0.84 ± 0.09, 0.81 ± 0.10,
0.73 ± 0.11, and 0.83 ± 0.09, respectively, in validation datasets, suggesting that the
SVM classifier might be superior for constructing an MDD diagnostic model. The final
SVM classifier including 70 feature genes was capable of distinguishing MDD samples
from healthy controls and yielded an AUC of 0.78 in an independent dataset.

Conclusion: This study provides new insights into potential biomarkers through meta-
analysis of GEO data. Constructing different machine learning models based on these
biomarkers could be a valuable approach for diagnosing MDD in clinical practice.
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INTRODUCTION

From 1990 to 2016, major depressive disorder (MDD) was one
of the five leading causes of years lived with disability (GBD
2016 Disease and Injury Incidence and Prevalence Collaborators,
2017). Patients with MDD have a higher risk of diabetes, stroke,
cardiovascular disease, obesity, cancer, cognitive impairment,
and Alzheimer’s disease (Otte et al., 2016). Moreover, MDD is one
of the most common disorders associated with suicidal behavior.
It has been estimated that the risk of suicide in MDD patients is
increased substantially (greater than 10 times) compared with the
general population (Chesney et al., 2014).

Early diagnosis and appropriate treatment would undoubtedly
reduce the incidence and mortality rate of MDD patients.
However, like many other affective disorders, the complex
etiology of MDD and the inevitable need for clinical judgment
based on an individual’s medical history may cause a
lack of reliability in diagnosis. More objective diagnostic
methods thus are required. Previous studies have explored
molecular biomarkers of MDD based on genomic, epigenetic,
transcriptomic, and proteomic sources (Gururajan et al.,
2016). Several types of molecules have been revealed with
these approaches, which include mitochondrial DNA (Cai
et al., 2015), small non-coding RNAs (Bocchio-Chiavetto
et al., 2013), neurotransmitters (Belzeaux et al., 2010),
neurotrophic and growth factors (Iga et al., 2007; Cattaneo
et al., 2013), HPA axis-related molecules (Austin et al., 2003),
and mediators of neuroinflammation (Cattaneo et al., 2013;
Iacob et al., 2013). For example, several studies (Cattaneo
et al., 2013; Iacob et al., 2013, 2014) reported increased
expression of peripheral mRNAs for the pro-inflammatory
cytokines interleukin (IL)-1α, IL-1β, IL-6, IL-8, IL-10,
interferon (IFN)-γ, migration inhibitory factor (MIF), and
tumor necrosis factor (TNF)-α in MDD patients compared
with healthy control subjects. In addition, neuroimaging
approaches, such as magnetic resonance imaging (MRI),
electroencephalography (EEG), diffusion tensor imaging
(DTI), near-infrared spectroscopy (NIRS), and molecular
imaging (i.e., PET and SPECT) (Kang and Cho, 2020)
have been used to discover biomarkers for diagnosis and
treatment of MDD.

This study focused on the peripheral transcriptomic
biomarkers, which have been described as “sentinels of disease”
(Liew et al., 2006). Because of the complicated and heterogeneous
pathogenesis of MDD, there existed some limitations in the study
of relevant transcriptomic biomarkers. For example, studies
on brain-derived neurotrophic factor (BDNF) had inconsistent
results. The studies of Karege et al. (2005) and Piccinni et al.
(2008) reported a reduction in BDNF in depressed patients
compared with healthy persons, but in the study of Serra-Millàs
et al. (2011), MDD patients showed higher plasma BDNF
concentrations. However, in another study, researchers found no
significant difference in plasma BDNF concentrations between
MDD patients and control subjects (Bocchio-Chiavetto et al.,
2010). Based on these facts, it appears that identification of
reliable biomarkers for predicting diagnosis and treatment of
MDD remains a challenge.

Therefore, in this study, meta-analysis was first performed
to identify consistent biomarkers from different large-sample
datasets. Although there are various meta-analyses of microarray
data, they generally focus on one or a few genes; few have
been developed for systematic integration of multiple microarray
datasets (Sun et al., 2017; Li et al., 2018). The current commonly
used meta-analysis method was proposed by Choi et al. (2003)
and facilitates the detection of small but consistent expression
changes and increases sensitivity and reliability. With this
method, Chen et al. (2019) acquired gene expression data from
eight commonly used in vitro macrophage models to perform a
meta-analysis and identified consistently differentially expressed
genes (DEGs) that have been implicated in inflammatory and
metabolic processes. Forero et al. (2017) found MDD-related
DEGs for blood, amygdala, cerebellum, anterior cingulate cortex,
and prefrontal cortex regions based on GWES using meta-
analysis. However, whether these DEGs would be useful as
biomarkers has not been evaluated yet.

MDD is influenced by both genetics and environment where
the transcriptome feature patterns or feature function patterns
may represent disease subtypes, outcome prognosis, drug benefit
prediction, or specific biological process. The machine learning
(Anttila et al., 2018) approach has an advantage in recognizing
subtle patterns in large and noisy datasets, which is particularly
useful in the study of complex transcriptome data. For example,
Xu et al. (2012) employed the SVM-RFE approach to select genes
for prediction of breast cancer prognosis and discovered a 50-
gene signature that yielded significantly higher accuracy than
the widely used 70-gene signature (van ‘t Veer et al., 2002).
By adopting fuzzy forests of transcriptome data, Ciobanu et al.
(2020) found that the downregulated TFRC (transferrin receptor)
can predict recurrent MDD with an accuracy of 63%.

The aim of this study was to identify potential transcriptional
biosignatures that might be used for the diagnosis of MDD. Here,
we applied meta-analysis to discover DEGs differing between
MDD patients and healthy controls. Six significant DEGs with
FDRs < 0.05 were investigated for their diagnostic capability. To
obtain better diagnostic efficacy, we compared four ML models.
Finally, an SVM prediction model consisting of 70 feature genes
was constructed and validated by a reserved independent gene
expression dataset.

MATERIALS AND METHODS

Systematic Search of Microarray
Expression Profiling Datasets
MDD-related keywords were searched in the Medical Subject
Headings (MeSH) library1. Then we conducted a systematic
search in the GEO repository2 using the following search
sentence: ((((((((MDD) OR major depressive disorders) OR
depressive disorders) OR depressive syndromes) OR depression))
AND (((blood) OR peripheral blood) OR PB)) AND Homo
sapiens [Organism]) AND Expression profiling by array [Filter].

1https://www.ncbi.nlm.nih.gov/mesh
2https://www.ncbi.nlm.nih.gov/gds/
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A report was included in the analysis if the following criteria
were satisfied: (1) used a case-control design; (2) patients
did not have any diseases other than MDD; and (3) the
patients were medication free. We finally obtained a total of 9
datasets (Figure 1).

Initial Data Processing
Nine microarray datasets were retrieved from the GEO database:
GSE98793, GSE19738, GSE38206, GSE52790, GSE39653,
GSE76826, GSE58430, GSE32280, and GSE46743, with

a sample size of 128, 67, 18, 22, 45, 22, 12, 16, and 160,
respectively (Table 1).

For the GSE98793, GSE52790, and GSE32280 datasets,
based on the Affymetrix platform (Thermo Fisher Scientific,
Inc., Waltham, MA, United States), the raw CEL data were
downloaded; and the Robust Multi-Array Average (RMA)
method and the “Oligo” package from BioConductor3 were used
to normalize the data and annotate the probe information. For

3http://www.bioconductor.org/

FIGURE 1 | Workflow of data processing. GEO, Gene Expression Omnibus; QC, quality control.

TABLE 1 | Basic information of collected microarray datasets.

Study GEO accession
number

Country Array platform Samples
MDD/Control

Number of genes
after QC

Leday et al. (2018) GSE98793 United Kingdom Affymetrix Human Genome U133 Plus 2.0 Array 64/64 20188

Spijker et al. (2010) GSE19738 Netherlands Agilent-012391 Whole Human Genome Oligo Microarray
G4112A

33/34 13334

Belzeaux et al. (2012) GSE38206 France Agilent-028004 SurePrint G3 Human GE 8x60K Microarray 9/9 33074

Liu et al. (2014) GSE52790 China Affymetrix Human hGlue_3_0_v1 Array 10/12 16951

Savitz et al. (2013) GSE39653 United States Illumina HumanHT-12 V4.0 expression beadchip 21/24 29328

Miyata et al. (2016) GSE76826 Japan Agilent-039494 SurePrint G3 Human GE v2 8x60K
Microarray 039381

10/12 27382

Arloth et al. (2015) GSE46743 Germany Illumina HumanHT-12 V3.0 expression beadchip 69/91 8615

Wang et al. (2015) GSE58430 China Agilent-028004 SurePrint G3 Human GE 8x60K Microarray 6/6 20188

Yi et al. (2012) GSE32280 China Affymetrix Human Genome U133 Plus 2.0 Array 8/8 22879
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the GSE19738, GSE38206, GSE58430, and GSE76826 data, based
on the Agilent platform (Agilent Technologies, Inc., Santa Clara,
CA, United States), the quantile method was used to normalize
the data. Annotation of the probe information was based on
Agilent platform information. For the GSE39653 and GSE46743
datasets based on the Illumina platform (Illumina Inc., San Diego,
CA, United States), the quantile method was used to normalize
the data, and annotation of the probe information was based on
Illumina platform information.

Normalized signal intensity data were imported into BRB-
Array Tools (v. 4.5)4 for initial processing. We excluded those
genes with more than 50% of the data missing. The most variable
probe measured by inter-quartile range (IQR) was used to handle
redundant probe sets that correspond to the same gene.

Microarray Gene Expression
Meta-Analysis
Meta-analysis of microarray data was carried out in “MetaOmics”
based on R language (Ma et al., 2019), which includes three
packages: MetaQC, MetaDE, and MetaPath. MetaQC (Kang et al.,
2012) was used for the quality control of datasets before meta-
analysis, and the MetaDE (Wang et al., 2012) package was used
to identifying differentially expressed genes.

We used the following six quantitative quality control
indexes to assess heterogeneity across different studies: internal
homogeneity of co-expression structure among studies (IQC),
external consistency of co-expression pattern with pathway
database (EQC), accuracy of biomarker detection (AQCg),
accuracy of enriched pathway detection (AQCp), consistency
of differentially expressed genes (CQCg), and consistency of
enriched pathway ranking (CQCp). Each QC index was defined
as the minus log-transformed p-value from formal hypothesis
testing in each QC criterion (Wang et al., 2012). Finally,
standardized mean rank (SMR) was generated to assist decision
making. In this study, datasets with SMR values > 5 were
excluded from analysis (Esmaeili et al., 2020).

MetaDE was used for identifying differentially expressed
genes, and the meta-analysis method used in the current
study was developed by Choi et al. (2003). The change of
gene expression was represented as “effect size,” a standardized
index measuring the magnitude of a treatment or covariate
effect. The effect sizes of different studies were combined to
obtain an estimate of the overall mean. Herein, we applied the
random effects model, and FDR correction was used to control
for multiple testing. Finally, genes were considered significant
at FDR < 0.05.

Protein–Protein Interaction (PPI) Network
Construction and Module Analysis
A total of 217,249 pairs of FIs were downloaded from Reactome
(v. 20145; Croft et al., 2011). These pairwise relations were
derived from datasets of protein–protein interactions in BioGrid
(Chatr-Aryamontri et al., 2015), the Database of Interacting

4http://linus.nci.nih.gov/BRB-ArrayTools.html
5http://www.reactome.org

Proteins (Salwinski et al., 2004), the Human Protein Reference
Database (Keshava Prasad et al., 2009), I2D (Brown and Jurisica,
2007), IntACT (Orchard et al., 2014), and MINT (Licata et al.,
2012), as well as from gene co-expression data derived from
multiple high-throughput techniques, including yeast two-hybrid
assays, mass spectrometry pull-down experiments, and DNA
microarrays (Wu et al., 2010). The above interaction information
was imported into Cytoscape software (v. 3.2.16) to construct
the FI network (Shannon et al., 2003). A spectral partition-
based network clustering (Newman, 2006) was used to search for
modules based on the FI network. A KEGG pathway enrichment
analysis was used to analyze functions for each individual
network module. We selected a size cutoff of 2 to filter out small
network modules. An FDR value of < 0.05 was considered to
represent significantly enriched processes or signaling pathways.
Co-expression patterns of the genes in the same module were
analyzed by using the Pearson correlation test.

Establishment of the ML Classifier
Supplementary Figure 3 shows an overview of the proposed
ML method involving feature extraction, selection, classification,
and validation. R package “caret” (v. 6.0-847) was applied in the
following steps.

The six datasets included in this study were divided into
two parts: GSE98793 (Leday et al., 2018), GSE19738 (Spijker
et al., 2010), GSE39653 (Savitz et al., 2013), GSE52790 (Liu et al.,
2014), and GSE76826 (Miyata et al., 2016) were used as discovery
datasets and GSE38206 (Belzeaux et al., 2012) as an independent
validation dataset. We performed meta-analysis on discovery sets
to identify DGEs between MDD patients and healthy controls.
DEGs with p < 0.01 were considered potential biomarkers for
further feature selection. Then, the dataset GSE98793 with the
largest sample size was used as the training dataset in both feature
screening and ML modeling. The other four datasets in discovery
sets were used for internal validation.

We applied an RF algorithm to reduce the number of feature
genes, with the following steps: (1) ranked genes in descending
order based on their importance; (2) eliminated feature genes one
by one according to the importance of each feature with the goal
of producing a new feature set; and (3) repeated the above process
with the new feature set. We used 10-fold cross-validation for
verification and calculated the average accuracy value to assess the
classification capability. Finally, the feature set with the highest
average accuracy was selected for model construction.

The following ML algorithms, SVM (Cortes and Vapnik,
1995), RF (Tin Kam, 1998), kNN (Altman, 1992), and NB
(Friedman et al., 1997), were used to build prediction models for
gene expression data.

The aim of SVM algorithm is to identify a decision hyperplane
that make the distance between the hyperplane and the instances
that are closest to boundary is maximized. By introducing the
concept of “soft margin” and using “kernel trick,” SVM performs
well with linear indivisibility data (Boser et al., 1996). SVM with

6http://www.cytoscape.org
7http://cran.r-project.org/web/packages/caret
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the radial basis function (RBF) kernel was used in this study and
parameters “C” and “sigma” were returned.

Random Forest is an ensembles-learning algorithm forming
with a series of decision trees. Each tree is developed from a
subset from the training data. The class of the new instance is
determined by using the majority vote of individual trees in the
forest (Tin Kam, 1998). In this study, R package “randomForest”
was used in the modeling and we tuned the parameter “mtry.”

In kNN, classification is based on the distance between the
instances and an object is classified according to the status of its
k nearest neighbors. R package “kknn” was used in the modeling,
where we set distance = 2 (Euclidean Distance), and tuned the
parameter “kmax.”

Naive Bayes is a statistical classification algorithm based on the
Bayes theorem. The core idea of Naive Bayes is, if the probability
of instance x belonging to A is greater than the probability
of belonging to B under some attribute conditions, it is said
that instance x belongs to A. R package “klaR” was used in the
modeling and output parameter “usekernel.”

Default values were used for other parameters in each model.
To evaluate the overall performance of each model, leave-one-
out cross-validation was performed. Details about the tested
parameters and their corresponding test values for each model
are provided in Supplementary Table 6.

We used the average AUC to assess the classification capability
of each model. Finally, a model with the highest average AUC in
validation sets was chosen.

To facilitate clinical application, we attempted to construct
a model with fewer genes without affecting the accuracy of
classification efficiency. We compared the classification ability
of the model based on the average AUC value of discovery set.
The criterion for determining the final model was that the model
achieved the optimal average AUC value in the discovery sets.

The feature genes in the final determined SVM classifier were
used to perform the supervised clustering of samples and extents
of expression. The clustering results were visualized using a
heatmap (Gu et al., 2016).

RESULTS

Data Sets Collection and Pre-processing
The information in the datasets is shown in Table 1. Dataset
GSE46743 (Miyata et al., 2016) has a number of genes < 10,000
after QC was excluded. Eight eligible datasets were finally used
for the following analysis, which consisted of a total of 161 MDD
and 169 control samples.

Microarray Gene Expression
Meta-Analysis
The quality of the eight datasets was assessed utilizing “MetaQC.”
Among the eight microarray datasets, six were included in the
further meta-analysis for DEGs (Supplementary Figure 1 and
Supplementary Table 1), and the other two studies (Yi et al.,
2012; Wang et al., 2015) were excluded because of their lower
quantitative quality control scores (SMR < 5). We then combined
the other six datasets and obtained a total of 9,263 common

genes that were used as input for the meta-analysis, which
revealed 137 DEGs with p < 0.01. Of them, 66 were upregulated
and 71 downregulated in MDD (Figure 2). A detailed list of
these DEGs is given in Supplementary Table 2. Figure 2 shows
the six most significant DEGs with FDRs < 0.05; they are
tyrosylprotein sulfotransferase 1 (TPST1), arginase 1 (ARG1),
killer cell lectin-like receptor B1 (KLRB1), WWC family member
3 (WWC3), aldo-keto reductase family 1 member C3 (AKR1C3),
and MAF bZIP transcription factor G (MAFG). The forest plots
of the six genes’ expression in different datasets are shown
in Figure 3. These six genes were associated with immune
process, inflammatory response, and hormonal metabolic process
(Supplementary Table 3). In short, these results implied that
these six biomarkers might play important roles in MDD.

Protein–Protein Interaction Network and
Module Pathway Enrichment
By mapping 137 MDD-related DEGs to the FI data, we
constructed an MDD-related FI network comprising 137 nodes,
of which 103 were isolated and 34 were classified into seven
clusters (Supplementary Figure 2A). A topographical analysis
of the FI network revealed five modules ranging in size from
three to eight genes (Supplementary Figure 2B). We next
explored the potential co-expression of the DEGs in each
module. There was a moderate to high positive correlation
among the expression of most genes in Modules 0, 3, and
4 (Supplementary Figure 2C). In Module 1, there was a
moderate to high positive correlation among MLKL, CEP63,
and CSNK1E, a moderate negative correlation among DNAJC7,
MLKL, and CSNK1E (Supplementary Figure 2C). Most genes
in Module 2 showed a low correlation between each other.

FIGURE 2 | Volcano plot of MDD-related DEGs. Node colors define change
direction in DEGs: red for upregulated genes, green for downregulated genes,
and gray for not significant genes. Node size combines the effect size and
FDR value: a larger node indicates that mean effect size of gene is large and
FDR value is small.
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FIGURE 3 | Expression of most significant DEGs between MDD and control group (a random-effects model) in different studies. Lines indicate 95% confidence
intervals (CI), and the midpoint of each line is denoted by a square indicating the standardized mean difference (SMD) for each study. Diamond indicates overall SMD
and 95% confidence interval.

To understand how the 26 genes of the five modules were
related to the molecular mechanisms of MDD, we performed
a functional enrichment analysis of these modules based on
pathway annotation (Supplementary Table 4). The enriched
pathways of Modules 0 and 2 were related to some elements and
events in transcription and translation, such as the ribosome,
spliceosome, RNA degradation, or mRNA surveillance pathway.
Similarly, genes in Module 3 were involved in transcriptional
mis-regulation in cancers. Module 1 was related mainly to
signaling pathways associated with the immune response, for
example, antigen processing and presentation and the IL-17
signaling pathway. Neurodegenerative disease-related pathways
in KEGG were enriched in Module 4, which included genes
involved in Alzheimer, Huntington, and Parkinson diseases.
In addition, metabolic pathways were enriched in Module 4.
Together, this identified MDD-related FI network of dysregulated
pathways could serve as a pool of novel functional module genes
for future investigation in the diagnosis of MDD.

Evaluation of Diagnostic Ability of Single
Genes
Next, we constructed single gene models to distinguish MDD
patients from healthy control subjects. We chose the six most
significant DEGs and calculated the diagnostic ability of these
genes with ROC curve analysis. Table 2 shows the predicted
results of single gene model in different datasets, represented
by AUC values. The gene with the most significant expression
difference, TPST1, had an average AUC value of 0.68 and a
predictive ability of 0.82 in the dataset of Miyata et al. (2016), but
only 0.62 in the dataset of Belzeaux et al. (2012). The gene with
the better predictive potency was KLRB1, with an average AUC
value of 0.70 and an SD of 0.11. The performance of WWC3 was
the worst, with an average AUC of 0.63 and an SD of 0.04. These

results indicated that the model developed with individual genes
was not effective for diagnosis of MDD in clinics.

ML Classifier
The above analyses indicated that the average AUCs of
most single gene models were less than 0.70, suggesting that
more efficient diagnostic models were necessary. We used the
transcriptome data from the discovery sets for meta-analysis and
obtained 114 DEGs (Supplementary Table 5) with p < 0.01 as

TABLE 2 | AUC of single gene models for MDD diagnosis.

Study TPST1 ARG1 KLBR1 WWC3 AKR1C3 MAFG

Leday et al.
(2018)

0.67 0.66 0.70 0.65 0.60 0.71

Spijker et al.
(2010)

0.63 0.62 0.59 0.71 0.66 0.50

Savitz et al.
(2013)

0.65 0.57 0.55 0.51 0.65 0.61

Liu et al. (2014) 0.68 0.72 0.85 0.51 0.67 0.68

Miyata et al.
(2016)

0.82 0.68 0.72 0.72 0.63 0.62

Belzeaux et al.
(2012)

0.62 0.78 0.78 0.62 0.56 0.69

Mean ± SD 0.68 ±

0.07
0.67 ±

0.07
0.70 ±

0.11
0.62 ±

0.09
0.63 ±

0.04
0.64 ±

0.08

TABLE 3 | Comparison of different models in the validation sets.

Average value SVM kNN NB RF

AUC 0.84 ± 0.09 0.73 ± 0.11 0.83 ± 0.09 0.81 ± 0.10

Accuracy 0.79 ± 0.11 0.69 ± 0.10 0.74 ± 0.13 0.76 ± 0.12

Sensitivity 0.80 ± 0.14 0.54 ± 0.16 0.81 ± 0.15 0.83 ± 0.14

Specificity 0.77 ± 0.10 0.82 ± 0.07 0.69 ± 0.14 0.70 ± 0.14
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input for feature screening. First, the feature set containing 108
genes was selected as it had the highest accuracy in the training
dataset (Supplementary Figure 4A). Based on this feature set,
four ML classification methods were used for modeling and the
parameters of each model were shown in Supplementary Table 6.
All models yielded an average AUC > 0.7 in validation datasets
(Table 3), with SVM producing the highest average AUC (0.84).
We thus chose SVM as the final diagnostic model.

To facilitate clinical application, we attempted to construct a
model with fewer genes. Feature genes ranked with an average
AUC of discovery datasets were picked at 10 intervals from the
top 10 to number 108. As shown in Supplementary Figure 4B,
the accuracy of the SVM classifier was improved with an
increasing number of genes, and the average accuracy reached
the top at 0.84 once 70 genes were selected. The SVM classifier
was still able to distinguish MDD samples from the healthy
controls in test datasets with an average AUC of 0.82, accuracy
of 0.75, sensitivity of 0.78, and specificity of 0.74 (Table 4).
In the independent dataset, the classifier achieved an AUC
of 0.78 (Table 4), which was greatly better than the model
with randomly selected 70 genes (Supplementary Table 9).
Besides, we calculated positive predictive value (0.74 ± 0.06)
and Matthews correlation coefficient (0.52 ± 0.14) in training
and test data sets which also reflect a great performance
of our model (Supplementary Table 8). The top six most
significant genes mentioned above were all included in this SVM
model (Supplementary Figure 5 and Supplementary Table 7).
Compared with a single gene, the SVM model had better
predictive performance (Figure 4).

DISCUSSION

Although there have been numerous reports analyzing DEGs
in MDD patients and healthy individuals, an exploration of
diagnosis and etiology of MDD remains a challenge. To identify
effective diagnostic biomarkers of MDD, in this study, we
first conducted a meta-analysis of six studies, which revealed
137 DEGs with a p < 0.01. Then we identified functional
module genes showing that these DEGs were involved in
the processes of transcription and translation, inflammation,
immune-related pathways, and neurodegenerative diseases. Six
DEGs with FDR < 0.05 were investigated by ROC curve analysis
for their potential to distinguish MDD patients from healthy
controls. To improve predictive power, we applied four ML

methods with RF being used for feature selection. Finally, we
constructed an SVM model containing 70 feature genes and
showed that it was superior to the single gene prediction model.

In the first part of the present study, we used meta-analysis to
identify reliable DEGs as biomarkers. Six differentially expressed
genes with FDRs < 0.05 were identified in MDD and healthy
control subjects and used to calculate classification efficiency.
Among them, the functions of KLRB1, ARG1, and TPST1
were associated with immune and inflammatory responses
(Supplementary Table 2). It is known that inflammation and
immunity play an important role in the etiology of depression
(Liu et al., 2019). For example, individuals with autoimmune
diseases and severe infections are more likely to have depression
(Malhi and Mann, 2018). Peripheral cytokine concentrations
have been linked to brain function, wellbeing, and cognition
(Bollen et al., 2017). Therefore, we speculate that KLRB1, ARG1,
and TPST1 influence the occurrence and progression of MDD by
participating in the immune or inflammation pathways. AKR1C3
has the activity of aldo-keto reductase (nicotinamide adenine
nucleotide phosphate; NADP), which plays an important role in
interconversion of androgens, estrogens, and progestins to their
cognate inactive metabolites (Supplementary Table 2). Over
the past several years, both clinical and preclinical studies have
established a strong link between sex hormones and depression
(Thériault and Perreault, 2019). For example, in women, the
prevalence of depression correlates with changes in hormonal
fluctuations, such as puberty, prior to menstruation, during the
postpartum period, and after the onset of menopause (Thériault
and Perreault, 2019). Even if these differentially expressed genes
are biologically related to the MDD process, ROC analysis
showed that the diagnostic AUC value of a single gene was
generally < 0.7, and, importantly, there existed great differences
in the effectiveness of a diagnostic model developed on the basis
of individual genes among different datasets or studies. These
results strongly indicated that including only the top DEGs in a
diagnostic model might lack a reliable distinguishing effect in all
datasets, which has been one of the reasons transcriptome DEGs
are currently difficult to use as MDD biomarkers.

Further in this study, four ML classifiers of screened feature
genes were constructed. Among them, SVM produced better
classification results. We then reduced the model size to 70
feature genes and found that the SVM model of these genes
displayed acceptable performance in distinguishing MDD from
control samples of discovery sets. The verification on an
independent dataset exhibited an AUC of 0.78 and an accuracy

TABLE 4 | Evaluation of classification effect of the SVM model.

Testing sample Study AUC Accuracy Sensitivity Specificity

Training Leday et al., 2018 0.89 0.77 0.78 0.77

Internal test Spijker et al., 2010 0.73 0.67 0.73 0.62

Savitz et al., 2013 0.91 0.80 0.90 0.71

Liu et al., 2014 0.83 0.86 0.90 0.83

Miyata et al., 2016 0.86 0.77 0.70 0.83

Independent test Belzeaux et al., 2012 0.78 0.67 0.67 0.67

Mean ± SD in test datasets 0.82 ± 0.07 0.75 ± 0.08 0.78 ± 0.11 0.74 ± 0.10
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FIGURE 4 | Comparison of prediction performance between SVM and single-gene models. Red lines represent ROC curves of SVM model in different studies, and
lines with other colors represent ROC curves of various single gene models.

of 0.67. The results showed that the predictive power of the
model was superior to that of a single gene as an indicator of
classification. The application of ML in some large-scale omics
data is a popular undertaking, such as in cancer genomics
(Zhou et al., 2018) and radiomics (Huang et al., 2018; Ding
et al., 2019). In the depression-related studies, ML algorithms
also have been used to find radiomics (Rubin-Falcone et al.,
2018) and video- (Schultebraucks et al., 2020) and audio-
based markers (Schultebraucks et al., 2020) for diagnosis or
medication prediction. However, unlike cancers, in some studies
of peripheral transcriptome biomarkers of MDD, it was difficult
to find a relatively credible database such as TCGA (The Cancer
Genome Atlas) as an independent validation. For example,
one study constructed an elastic net model using immune-
inflammatory signature to classify MDD and BD; it achieved high
accuracy (AUC = 97%), but the result lacked the independent
validation to acquire a true diagnostic effect of these biomarkers.

In contrast to other studies on MDD biomarkers, the blood
transcriptomic data used for modeling here were from multiple
studies, and the validation data were completely independent
from the training data. Besides, we identified feature biomarkers
by using meta-analysis followed by RF. Therefore, our strategy
could help in identifying consistent and reliable biomarkers from
different studies and was more conducive to the evaluation of the
generalization ability of the model.

This study has several limitations. First, although existing
data of MDD and healthy control subjects were used, it is
unknown at this stage how much data are required to establish
a reliable predictive model, which can be answered through

empirical investigation. Second, the biomarkers used in this study
were based on statistical significance, although the biological
conception of these genes could also be considered. For example,
our subsequent research can build a diagnostic model to refer to
genes in the module of the PPI network. Third, because as many
data as possible were used for modeling to improve the accuracy,
independent validation data are needed in the future.

MDD occurs in a heterogeneous patient population, which
makes accurate diagnosis a challenge. To address this challenge,
we conducted meta-analysis of six datasets and found significant
DEGs. The TPST1, ARG1, KLRB1, WWC3, AKR1C3, MAF,
and MAFG genes were highlighted as potential feature genes
influencing MDD. In addition, we constructed four ML models
and chose SVM as a diagnostic model for MDD. We finally
obtained an SVM diagnostic model containing 70 feature genes
with an average AUC of 0.83, whose diagnostic effectiveness was
superior to that of a single gene. Together, this study provided
some markers that may be prospective precise diagnosis targets
for MDD. Besides, this study provides new insight into how
meta-analysis and ML can be used to find relatively objective
transcriptional markers for complex mental diseases.
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Supplementary Figure 1 | Quality control results of merged datasets from eight
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Supplementary Figure 2 | Biological functional of protein–protein interaction
network constructed using MDD-related DEGs. (A) Functional interaction (FI)
network. Node sizes represent p-values of FI network, large for low value and
small for high. Node colors define mean effect size in MDD-related DEGs, ranging
from red for high expression to blue for low expression. (B) Five generated
network modules incorporate 26 genes, which are shown in different colors in
network modules. (C) Correlation heat map of genes in different modules.

Supplementary Figure 3 | Workflow of machine learning. TP, true positive; TN,
true negative; FP, false positive; FN, false negative.

Supplementary Figure 4 | (A) The accuracy of gene selection procedure using
RF. (B) Average AUC when modeling with different numbers of features. (C) ROC
in model parameter calculation procedure using SVM.

Supplementary Figure 5 | Clustering heatmap of feature genes and samples in
training dataset. Color gradient from purple to red represents changes in
expression from low to high. Bars represent samples (orange refers to MDD
samples, blue to control samples).
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