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Translocation through a narrow 
pore under a pulling force
Mohammadreza Niknam Hamidabad & Rouhollah Haji Abdolvahab*

We employ a three-dimensional molecular dynamics to simulate a driven polymer translocation through 
a nanopore by applying an external force, for four pore diameters and two external forces. To see the 
polymer and pore interaction effects on translocation time, we studied nine interaction energies. 
Moreover, to better understand the simulation results, we investigate polymer center of mass, shape 
factor and the monomer spatial distribution through the translocation process. Our results reveal that 
increasing the polymer-pore interaction energy is accompanied by an increase in the translocation 
time and decrease in the process rate. Furthermore, for pores with greater diameter, the translocation 
becomes faster. The shape analysis of the polymer indicates that the polymer shape is highly sensitive 
to the interaction energy. In great interactions, the monomers come close to the pore from both sides. 
As a result, the translocation becomes fast at first and slows down at last. Overall, it can be concluded 
that the external force does not play a major role in the shape and distribution of translocated 
monomers. However, the interaction energy between monomer and nanopore has a major effect 
especially on the distribution of translocated monomers on the trans side.

Biopolymer translocation through nanopores is a critical and ubiquitous process in both biology and biotech-
nology. In this regard, extensive and comprehensive studies have been conducted over the past few decades. 
Undoubtedly, the study of the translocation of a polymer through nanopores can be considered as one of the 
most active fields of research in the whole soft matter physics1–8. The importance of this process, i.e., polymer 
translocation (PT), is not limited to understanding its physical and biological dimensions such that essential 
technological applications, including DNA sequencing9–13, controlled drug delivery14,15, gene therapy14,16–18, and 
biological sensors are available9,19.

Moreover, the passage of biopolymers such as DNA and RNA through nuclear pore complexes20–23, virus RNA 
injection into the host cell24,25 and passing proteins through the cell organelle membrane channels3 are some other 
biologic processes which have doubled the importance of this issue.

The polymer translocation is a phenomenon which engages with how polymers move from one side of the 
pore to another side. In the process, the bio-polymer must overcome the entropic barrier1,26–28. Hence, applying 
an external force on the polymer for overcoming the entropic barrier is one of the most common PT methods 
used both in the laboratory and computational simulations5,6,29–34. To deal with this issue, in vivo PT driven by 
assisted proteins called chaperone is proposed4,35–39.

In the following simulation, we used the driven polymer translocation through a nanopore, by applying an 
external force. Generally, in the driven polymer translocation, several parameters (e.g., length and radius of 
the nanopore, the applied external force, and the friction coefficient of both Cis and Trans environments) have 
been investigated by previous articles2,40–43. However, the interaction energy (i.e., potential depth) between the 
monomer-nanopore and its effect on the translocation time, has rarely been investigated.

In this paper, we used a coarse-grained molecular dynamics method to simulate the translocation of a 
driven-polymer through the nanopore under an external force. The simulation includes nine different interac-
tions between polymer and nanopore, four nanopore diameters, and two different external forces.

Theory and Simulation Details
System.  Polymer.  In the following 3D simulation, the polymer chain is modeled as a bead-spring chain of 
Lennard-Jones (LJ) particles44–46. The excluded volume interaction between all the monomers is modeled by a 
short-range repulsive LJ potential:
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where σ is the diameter of each monomer and  is the potential depth.
For connectivity between adjacent monomers, Finite Extension Nonlinear Elastic (FENE) potential was used:
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where r is the distance between two adjacent monomers, k and R0 are the spring constant and the maximal 
stretching length for adjacent monomers respectively.

For other interactions, such as monomer-wall and monomer-nanopore, also the LJ potential is used. However, 
by changing the rcut from σ2

1
6  to 2.5σ, the LJ interaction changes from purely repulsive (monomer-monomer and 

monomer-wall) interactions to repulsive and attractive (monomer-nanopore) interaction.
For interaction between polymer and nanopore, the following LJ potential was used:
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Finally, the polymer is composed of 50 identical monomers.

Membrane.  In present work, the membrane is composed of a 6σ long cylindrical nanopore and two walls on 
each side of the nanopore entrances. Besides, all of them are modeled as continuous shapes which means the 
distance of monomer to any part of the membrane is the distance of the monomer to the surface of that part. 
Furthermore, four different nanopore diameters of 3σ, 4σ, 5σ, and 6σ were used.

System methodology.  We investigated the dynamics of polymer translocation by the Langevin dynamics (LD) 
method. In this method, the following equation can be written for each monomer:
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forces applied on the i’s monomer, respectively. The frictional forces are connected to the monomer’s speed by the 
following equation:
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where ξ is the frictional coefficient. One also can write for the conservative forces:
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where the last term is the external force, exerted only on the monomers that are inside the nanopore and is 
defined as:

→
= ˆF fx (7)external

in which, x̂ is a unit vector in the direction along the pore axis and towards the Trans side. Here the external force 
(pulling force) is exerted only on the monomers within the pore.

Settings.  The initial configuration of the system is such that the first monomer is at the end of a nanopore. 
Then, the remaining monomers have placed close to their equilibrium position relative to each other, and in the 
front of the nanopore. After placing the monomers, we allow them to achieve their equilibrium as a whole poly-
mer. In the equilibration process, we fix a few monomers in the nanopore and allow the rest of the monomers, i.e., 
the polymer tail, to move freely until reaching the equilibrium. The equilibration process lasts from about 20% 
for the slowest up to about 40% for the fastest translocation, of each PT time through the nanopore. Afterward, 
the process of translocation begins (please see the translocation movie in the supplementary materials). Here, we 
translocated the polymer for at least 1,500 times to reach a rather good time distribution (Fig. 1)47.

To find the equilibrium point, we calculate the radius of gyration of the polymer through the time. The equili-
bration process continues until the changes in the radius of gyration becomes as small as 2σ.

Using σ, 0 and monomer mass m, the energy, length, and mass scales are fixed. So, the time unit of the simu-
lation can be set36:
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The external forces were applied on the monomers inside the pore. We pick the forces from two different 
regions of strong and medium as the external force in the pore. The relation determining this region for the aver-
age force is29:

σ σ
≤ ≤ν

k T
N
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where ν is the Flory exponent, and N stands for the total number of monomers. The magnitude of the strong and 
medium forces employed in the simulation are  σ2 /0  and  σ1 /0 , respectively where 0 is defined below (Please 
note that the kBT/σ = 1.2, see below).

Simulation parameters.  The parameters in the simulation are the cutoff radius for LJ interactions of the 
nanopore and the polymer, which is 2.5σ while for monomer-monomer and monomer-wall, it is σ2

1
6 . Considering 

the persistence length as 7.5 angstroms48, the kuhn length σ = 1.5 nm. Taking the DNA as our polymer, the mass 
of a bead m amu936  and if we use the energy as the previus works = .k T 1 2B 0. We use = 0   for all the LJ 
interactions, except the interaction between the polymer and the nanopore which is a multiple of 0. For the tem-
perature, T = 295 K the energy . × −

 3 39 100
21  and the thus our time units σ= .t m ps( / ) 32 1LJ

2
0

1
2 . 

Moreover, the friction coefficient is ξ = 0.7m/tLJ. For the FENE potential, the spring constant is  σ=k 30 /0
2 and 

R0 = 1.5σ36,49. Thus, the force unit is σ/0 . It means that e.g., the σ= ∼ =F F2 2 /0 .

Figure 1.  Polymer during a translocation process through the nanopore (a) at the beginning of the 
translocation, (b,c) in the middle of the translocation and (d) at the end of the translocation.

https://doi.org/10.1038/s41598-019-53935-3


4Scientific Reports |         (2019) 9:17885  | https://doi.org/10.1038/s41598-019-53935-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Results and Analysis
Translocation time of the polymer versus polymer and pore interaction energy is plotted in Fig. 2a,b. The interac-
tion energy changes from  = .0 1 to  = 8. The external force varies from f = 1 in Fig. 2a to f = 2 in Fig. 2b. As can 
be seen from both figures, increasing the pore diameter will decrease the translocation time. Moreover, increasing 
the interaction energy will generally increase the translocation time. For smaller interaction energies ( = .0 1, 1), 

Figure 3.  Cumulative waiting times versus s (Note that 50 is the number of monomers, N).

Figure 2.  Translocation time versus energy of four different pore diameters under an external force (a) f = 1 
and (b) f = 2.
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due to thermal fluctuations, the increment in translocation time is not expected. As expected, increasing the 
external force will increase the translocation velocity.

A prominent parameter for describing the dynamics of PT is waiting time. This parameter shows how long 
it takes for individual monomers to go through the nanopore. To calculate it, we write the times in which the 
monomer s is just out of the pore in a file. Then the average is calculated. The mean waiting time for the reaction 
coordinate s is defined as the difference between the averages calculated for monomers s and s + 1.

The mean waiting time of each monomer for different pore radii of 1.5σ, 2.5σ and 3.0σ is plotted against the 
monomer number (s), in Figs. 3, 4 and 5, respectively. The maximum of the translocation time is related to the 

Figure 4.  Mean waiting time of the polymer versus monomer number from a nanopore of radius r = 2.5σ. Note 
that here 50 is the number of monomers, N.

Figure 5.  Mean waiting time of the polymer versus monomer number from a nanopore of radius r = 3.0σ. Note 
that here 50 is the number of monomers, N.
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middle monomers due to the entropic barrier of the Cis and Trans monomers. Thus, the mean waiting plots are 
nearly bell-shape. The behavior of the final monomers in the interaction energy of = 80  and nanopore of radius 
r = 1.5σ is interesting. As shown in Fig. 6, the final monomers waiting times for = 80  and both external forces of 
f = 1 and f = 2 are ascending due to crowding effect of monomers on the Trans side and also large interaction 
energy (see also the Fig. 7). Besides, for the smallest diameter, a higher peak in the mean waiting time can be 
detected. However, increasing the external force does not have any effect on the general behavior of the mean 
waiting time.

Cumulative waiting time versus monomer number (s) is presented in Fig. 3. The figure compares interaction 
energies of = 1, 80 , external forces of f = 1, 2, and pore radii of r = 1.5σ, 2.5σ. Insets are the zoom of the plots at 
first monomers. As the top inset shows for r = 1.5σ the polymer with  = 80  is faster than the interaction energy 

Figure 7.  X component of the location of the center of mass (COM) of the polymer versus s. Note that here 50 
is the number of monomers, N.

Figure 6.  Mean waiting time of the polymer versus monomer number from a nanopore of radius r = 1.5σ. Note 
that here 50 is the number of monomers, N.
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of  = 10  at 6 first monomers for both forces of f = 1, 2. In the wider pore, where r = 2.5σ the intersection of plots 
becomes on s = 13 (see the low inset of Fig. 3). It means that the high interaction pulls the polymer through the 
pore and makes it faster, at first, but slows its translocation through the pore in the middle stages. This effect 
becomes more important as the pore radius becomes larger. This monomer number is expected to rise by increas-
ing the radius of the pore until the point where it is still smaller than the gyration radius of the polymer and also 
the interaction of the nanopore with the polymer is large enough.

To justify such behaviors in the polymer translocation, we need to look at other parameters such as the center 
of mass (COM) of the polymer during the passage, the overall shape of the polymer (shape factor), and the spatial 
distribution of monomers through the translocation process.

Figure 8.  α versus s (Note that 50 is the number of monomers, N).

Figure 9.  Shape factor δ versus s (Note that here 50 is the number of monomers, N).
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Figure 7 shows the X component of the polymer COM versus s. The coordinate of the center of the nanopore 
is (40, 38, 40). It is of note that the polymer is initially in equilibrium. To discuss the translocation in more details, 
we focus on XCOM, which is the pore direction in Fig. 7. As can be observed, in the first stage of the translocation, 
the polymers with high interaction energy of  = 80  have greater XCOM compared to the polymers with low inter-
action energy of  = 10 , suggesting that they reach the equilibrium nearest to the pore as the interaction supports. 
They are also nearest to the pore in the last stage of the translocation with the same reason. To see the polymer’s 
behavior in more details, we study the polymer shape using the average aspect ratio α and the shape factor δ28,50. 
Here, α denotes the distribution of the translocated monomers along the pore axis (x) and the plane perpendicu-
lar to the pore axis (yz plane), α = Δx/(2r). Besides, Δx is the maximum of the polymer distance from the pore in 

Figure 10.  α versus monomer number s (Note that here 50 is the number of monomers, N).

Figure 11.  α versus monomer number s (Note that here 50 is the number of monomers, N).

https://doi.org/10.1038/s41598-019-53935-3


9Scientific Reports |         (2019) 9:17885  | https://doi.org/10.1038/s41598-019-53935-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

the trans side in the x-direction and r is the maximum distance of the polymer from the pore axis (x) in the trans 
side, = +r y zmax

2
max
2  46.

As can be seen from Fig. 8, the distribution of monomers in the wider pore of r = 2.5σ has a smaller value of α 
than the pore with radius r = 1.5σ, indicating that monomers have distributed widely in the yz-plane. Moreover, 
it shows that, following the previous discussion, the widest distribution of the monomers is in the case of high 
interaction energy of  = 80  and r = 2.5σ.

The shape factor δ versus s is shown in Fig. 9. This parameter is computed for all the monomers (in both Cis 
and Trans side) to compare the gyration and the hydrodynamic radius28. The upper limit of the shape factor δ is 
for a rod and equals δmax = 4.0 and the lower limit of it is for a compact sphere and equals δ = 0.7728.

Figure 12.  Shape factor δ versus monomer number s (Note that here 50 is the number of monomers, N).

Figure 13.  Shape factor δ versus monomer number s (Note that here 50 is the number of monomers, N).
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The results show that increasing the interaction energy will decrease the shape factor variation. Moreover, 
increasing the external force will increase δ, and the polymer becomes more rod shape. In addition, at the final 
stage of the translocation, the shape factor δ will increase by increasing the interaction energy. It means that the 
polymer with lower interaction energies is more compact concerning those with a higher .

Conclusions
We use 3D molecular dynamics to simulate the polymer translocation through a narrow pore driven by an exter-
nal force. Simulation results show that increasing the polymer-pore interaction energy slows down the transloca-
tion (2a, 2b). Moreover, increasing the pore diameter makes the translocation faster, which is in accordance with 
previous results51,52.

The detailed analysis of the polymer shape shows that the polymer tends to reach the pore in high energies at 
both first and last parts of the translocation process concerning the polymers with lower interaction energies. This 
causes the translocation of the polymer with higher interaction energy becomes faster at first and slower at last. 
Moreover, our detailed shape analysis reveals that the polymers with lower energy and in wider pores are less rod 
shape through the translocation. Also, while the polymer shape is not sensible to the external force (at least in the 
forces of f = 1 and f = 2), its shape is very sensitive to the interaction energy between the polymer and nanopore.

Waiting time analysis shows that monomers in the middle of the polymer take more time than others. Also, 
the monomers in the middle of the polymer have a higher peak for the smallest pore radius, which shows the 
slowest part of the translocation. In high interaction energy of  = 80  and the small pore radius of r = 1.5σ, the 
last monomer’s waiting times versus monomer number (s) are ascending. Due to the high interaction and accu-
mulation of the monomers at the trans side, the polymer is not inclined to leave the pore.

In summary, changing the pore diameter and polymer-pore interaction will cause the translocation time, pol-
ymer shape through the translocation, accumulation of the monomer at first and last stages of the translocation 
and waiting time of each monomer to vary widely.

Appendices
Meal waiting time.  The mean waiting time of each monomer for different pore radii of 2.5σ and 3.0σ is 
plotted against the monomer number, s, in Figs. 4 and 5, respectively. The maximum of the translocation time is 
related to the middle monomers due to the entropic barrier of the cis and trans monomers. As a result, the mean 
waiting times are bell-shape. Increasing the external force doesn’t have any effect on the general behavior of the 
mean waiting time.

Average aspect ratio; α.  As the Figs. 10 and 11 show the distribution of monomers in wider pore of 
r = 2.5σ has smaller value of α than the pore with radius r = 1.5σ which means monomers have distributed widely 
in the yz-plane.

The shape factor δ.  The shape factor δ versus monomer number has been shown in Figs. 12 and 13. This 
parameter is computed for all the monomers (cis and trans side) and compares the gyration and the hydrody-
namic radius28. The upper limit of the shape factor δ is for a rod and equals δmax = 4.0 and the lower limit of it is 
for a compact sphere and equals δ = 0.7728.
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