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Introduction

Magnesium (Mg?") is indispensable for
many physiological processes in the cell
impacting organ function (de Baaij et al.
2015). Intracellular concentrations of free
Mg’* are maintained within a narrow range
(0.5-1.2 mm) through tightly regulated
Mg*" influx and efflux mechanisms (Ebel &
Gunther, 1980). Inhibition of Mg** efflux by
substitution of extracellular Na™ by choline
in mammalian cells indicates that Mg’"
extrusion is Nat dependent (Guther er al.
1984). Thus, it is postulated that Mg>*
efflux occurs via a Na™/Mg?t exchanger,
this notion being corroborated in a large
number of studies in different cell models
(Romani, 2007).

Under the premise that differential gene
expression is involved in the maintenance
of cellular Mg’* homeostasis, microarray
analyses in epithelial cells exposed to
low extracellular Mg?* concentrations have
been classically used to designate proteins
involved in Mg?* transport (Quamme,
2010). One of the protein families identified
with this approach is the CNNM family.
CNNM proteins have been proposed to
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facilitate epithelial Mg?* extrusion since
at least two members of this family,
CNNM2 and CNNM4, localize in the baso-
lateral membrane of epithelial cells where
apical-to-basolateral Mg*" transport occurs
(Stuiver et al. 2011; Yamazaki et al. 2013).
However, in this review of the literature,
we will demonstrate that the evidence
supporting this hypothesis is controversial
and several findings suggest that CNNMs
cannot function as Nat/Mg?* exchangers.

Topology

The CNNM family (CNNM1-4) shares a
high homology with the bacterial CorC
protein, which is related to the maintenance
of Mg?" and Co?" homeostasis (Hmiel
et al. 1989). However, CorC requires
CorA to function as a cation trans-
porter and does not transport Mg®" itself
(Gibson et al. 1991). Within the CNNM
family, membrane topology studies have
demonstrated that CNNM2 is composed of
dimers of three transmembrane domains
(Fig. 1) (de Baaij et al 2012). This
number of transmembrane domains is
significantly lower than that in typical Mg**
channels/transporters such as TRPM6/M7
(tetramers of 6 transmembrane domains),
or SLC41A1/A3 (dimers of 11 trans-
membrane domains) (Voets et al. 2004;
Bates-Withers et al. 2011; Kolisek et al.
2012; de Baaij et al. 2016). Additionally, a
putative pore facilitating cation transport is
unlikely to be present in CNNM2 since the
re-entrant loop in its tertiary structure does
not completely span the cell membrane and
therefore does not facilitate the formation of
a typical pore (Fig. 1) (de Baaij et al. 2012).

A common feature of CNNM proteins is
the presence of intracellular cystathionine
B-synthase (CBS) domains (de Baaij
et al. 2012). The CBS domains are the
main site of regulation, as has recently
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been demonstrated by a number studies
showing the interaction with phosphatases
of the regenerating liver (PRL) proteins
(Hardy et al. 2015; Gulerez et al. 2016;
Kostantin etal. 2016). CBS domains regulate
protein function upon binding Mg-ATP
(Corral-Rodriguez et al. 2014; Hirata et al.
2014). Most intracellular Mg** is bound
to ATP. Intracellular Mg-ATP changes in
concentration can be sensed by CNNM
proteins and may regulate their function(s).
Although the exact role between ATP
production and Mg*" concentrations is
unknown, an interesting hypothesis is that
CNNM proteins function as indirect sensors
of intracellular Mg*" concentrations.

Function

Since its identification in 2003, the function
of CNNM proteins has been subject to
debate (Wang et al. 2003). Because of
their homology to cyclin proteins, CNNMs
were initially hypothesized to have a
role in cell cycle progression. However, a
cyclin function was never demonstrated.
For years, CNNM2 has been the main
focus of functional CNNM experiments, as
the protein was identified in renal distal
convoluted tubule (DCT) cells (Goytain
& Quamme, 2005; Stuiver et al. 2011;
de Baaij et al. 2012). In the DCT, Mg**
is actively reabsorbed and urinary Mg**
excretion is determined. In human studies,
TRPM6 has been established as the Mg>*
uptake mechanism in this nephron segment
(Schlingmann et al. 2002). However, recent
studies in mice show that TRPM7 may
be equally important in determining renal
Mg*" excretion (Chubanov et al. 2016). The
protein mediating Mg?" extrusion still has
to be identified.

As a result, several groups have examined
the potential Mg*™ transport properties
of CNNM2 using electrophysiology in a
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multitude of cell models. In 2005, Quamme
and his team showed CNNM2-mediated
Mg?* currents in Xenopus laevis oocytes
with a K, for Mg*™ of 0.56 £ 0.05,
establishing CNNM2 as a Mg’" trans-
porter (Goytain & Quamme, 2005). In the
DCT, luminal Mg?" concentrations range
between 0.2 and 0.7 mm Mg?t (Dai et al.
2001), supporting CNNM2-mediated Mg**
uptake. However, in mammalian cells, these
findings could not be reproduced by two
independent research groups (Stuiver et al.
2011; Sponder et al. 2016), although a minor
Mg*"-dependent Na™ current was detected
in HEK293 cells overexpressing CNNM2
(Stuiver et al. 2011; Yamazaki et al. 2013).
From 2013 onwards, CNNM4 function has
also been examined, as it was shown to be
expressed in the colon and to be involved
in cancer progression (Yamazaki et al. 2013;
Funato et al. 2014). In electrophysiological
examinations of CNNM4-expressing cells,
no Mg*" currents were detected (Yamazaki
et al. 2013). Because electrophysiology does
not permit the detection of electroneutral
Mg*" transport, this led several authors
to suggest that CNNM proteins might be
Na'-dependent Mg*"™ exchangers at a 2:1
(Na™:Mg*") ratio.

To tackle this hypothesis, alternative
experiments were staged. Several groups
have aimed to measure CNNM activity
using fluorescent Mg”™ probes, resulting in
a large pile of conflicting data. First, using
the Mg*"-sensitive fluorescent Magnesium
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Green indicator, the group of Miki showed
that overexpression of CNNM4 or CNNM2
decreased cellular Mg*™ concentrations
(Yamazaki et al. 2013; Funato et al. 2014).
Their data suggest that the Mg?*" efflux is
Na* dependent, supporting the exchange
theory. Second, Tremblay and colleagues
demonstrated CNNM3-dependent Mg**
uptake using Mag-Fura-2 (Hardy et al. 2015;
Kostantin et al. 2016). As their experiments
are performed in a physiological 140 mm
Na'-containing buffer, this contradicts
Na® dependency. Third, Kolisek’s group
could not detect CNNM2-mediated Mg**
influx nor efflux, questioning the ability
of CNNMs to transport Mg?" (Sponder
et al. 2016). Several important limitations
of these experiments have to be considered.
All  experiments were performed in
non-physiological Mg*™ concentrations,
including loading steps using 10 mMm up to
40 mM Mg**. Moreover, the Mg”™ probes
are notoriously difficult to work with as they
have dissociation constants above physio-
logical Mg?* concentrations, as well as
sensitivity to Ca*™ (Szmacinski & Lakowicz,
1996). Additionally, Magnesium Green is a
non-ratiometric probe, which means that
the experiments are extremely sensitive to
osmolality changes.

To overcome these hurdles, we have
recently developed a stable isotope assay
using »Mg’* and mass spectrometry.
This set-up measures cellular Mg*"
uptake using the physiological condition
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of 1 mM Mg**. Our »Mg*" uptake
experiments, performed in HEK293 cells
overexpressing CNNM2, demonstrate that
CNNM?2 increases cellular Mg®" uptake
rather than Mg’t efflux (Arjona et al
2014). This conclusion is illustrated by the
fact that inhibition of Mg”" efflux through
Quinidin, an inhibitor of Nat/Mg**
exchange, did not affect CNNM2-mediated
BMg** cellular accumulation. Interestingly,
this uptake is independent of Na', as
replacing Na™ with NMDG had no effect,
nor did ouabain, an inhibitor of the
Nat/K*-ATPase (Arjona et al 2014).
However, the CNNM2-dependent Mg2+
uptake was completely abolished by using
2-aminoethoxydiphenyl borate (2-APB),
which is a known inhibitor of TRPM7
(Chokshi et al. 2012; Arjona et al. 2014).

Altogether, the functional experiments in a
wide range of models and techniques show
that CNNM2 is not a Na™/Mg**-exchanger,
as the Mg>" transport is independent of
Na®™ and can be bi-directional (influx
and efflux). Moreover, the discrepancy
between the different models shows that
CNNM?2 function is largely dependent on
other proteins present in the cell. This is
suggestive of a regulating function rather
than a transport function. Given that the
CNNM2-dependent »Mg*™ uptake could
be blocked by 2-APB, TRPM7, a channel
involved in MgZJr homeostasis, is an inter-
esting candidate for regulation by CNNM2
(Paravicini et al. 2012).

Basolateral

domains

TRPM6/
TRPM7

Figure 1. Membrane topology and subcellular localization of CNNM2
The left panel indicates the membrane topology of CNNM2 showing three full membrane-spanning domains and
a large intracellular C-terminus containing two CBS modules that bind Mg-ATP. Reported mutations have been
indicated by purple dots. The right panel shows the basolateral localization of CNNM2 in the distal convoluted

tubule kidney cell.
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In an in wvivo context, dysfunctional
CNNM2 has been linked to defects in
renal Mg?" reabsorption in mice and
zebrafish (Arjona et al. 2014; Funato et al.
2017). In addition, CNNM4 knockout in
mice results in impaired intestinal Mg**
absorption (Yamazaki et al. 2013). Thus,
though CNNM proteins are not Mg’"
transporters, they regulate the body Mg**
balance.

Conclusion and perspective

Hence, the following evidence supports
that CNNM proteins are not Na™/Mg*"
exchangers: (i) CNNM proteins do not
comply with the consensual topological
attributes of a typical Mg?* transporter, i.e.
abundant transmembrane domains and a
cation pore formed by membrane-spanning
domains; (ii) conflicting functional data of
CNNM-mediated Mg*" extrusion between
different cellular models indicate that the
Mg’ extrusion function of CNNM proteins
depends on the Mg*" channels/transporters
specifically expressed by each cellular
model; and (iii) CNNM2-mediated Mg**
extrusion in epithelial cells is not dependent
on Na® in a series of experiments.
Altogether, this shows that CNNM proteins
are not Na™/Mg*"t exchangers. Future
research should focus on the identification
of the protein partners of CNNMs to
elucidate the CNNM-dependent regulation
of Mg?* transport.

Call for comments

Readers are invited to give their views on this
and the accompanying CrossTalk articles in this
issue by submitting a brief (250 word) comment.
Comments may be submitted up to 6 weeks after
publication of the article, at which point the
discussion will close and the CrossTalk authors
will be invited to submit a ‘LastWord’ Please
email your comment, including a title and a
declaration of interest, to jphysiol@physoc.org.
Comments will be moderated and accepted
comments will be published online only as
‘supporting information’ to the original debate
articles once discussion has closed.
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