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Age-seroprevalence curves for the multi-strain
structure of influenza A virus
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The relationship between age and seroprevalence can be used to estimate the annual attack
rate of an infectious disease. For pathogens with multiple serologically distinct strains, there
is a need to describe composite exposure to an antigenically variable group of pathogens. In
this study, we assay 24,402 general-population serum samples, collected in Vietnam
between 2009 to 2015, for antibodies to eleven human influenza A strains. We report that a
principal components decomposition of antibody titer data gives the first principal compo-
nent as an appropriate surrogate for seroprevalence; this results in annual attack rate
estimates of 25.6% (95% Cl: 24.1% - 27.1%) for subtype H3 and 16.0% (95% CI: 14.7% -
17.3%) for subtype H1. The remaining principal components separate the strains by
serological similarity and associate birth cohorts with their particular influenza histories. Our
work shows that dimensionality reduction can be used on human antibody profiles to
construct an age-seroprevalence relationship for antigenically variable pathogens.
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ARTICLE

he age-seroprevalence relationship is a basic epidemiolo-

gical tool for understanding annual incidence and age-

specific susceptibility of an infectious disease. There are
two basic serological approaches for assessing the relationship
between age and seroprevalence. Using long-term field studies,
one can measure age-specific annual attack rates of a pathogen
and infer what the resulting stable age-seroprevalence relation-
ship should be based on the population’s demographic para-
meters. Alternatively, using a single population cross-section, an
age-seroprevalence curve can be inferred directly from the indi-
viduals’ serological status, classified on a binary, discrete, or
continuous scale. With both of these approaches, it is necessary to
assume that exposure to the pathogen is constant in either time or
agel2,

Multi-strain pathogens, however, present a challenge for the
inference of age-seroprevalence relationships as infection with
one strain typically triggers antibodies that cross-react against
other strains. Strain-specific antibodies, like those binding to the
host cell receptor binding domain of the influenza A virus par-
ticle, wane over time3->, potentially leading to underestimates of
exposure when the estimates are based on assays that measure
recent strain-specific antibodies. As a result, none of the single-
strain age-seroprevalence curves presents an accurate history of
pathogen circulation in a given population. For human influenza
A virus, the existence of cross-reactions among different influenza
strains or variants is well understood, as within-subtype cross-
reactions among different strains are carefully characterized
whenever a new strain emerges. An individual infected with an
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Fig. 1 Serum collection sites at provincial hospitals in southern Vietnam
that participated in this study. Number of samples collected in each
province is shown.

influenza strain in the year 2000 will have an antibody response
that partially binds to or partially neutralizes (depending on the
serological assay) influenza viruses circulating in 1995 or 2005.
The strength of the cross-reaction wanes with increasing tem-
poral distance between the strains, and it is known that antibodies
to strains isolated closer together in time will cross-react more
strongly (with some exceptions during longer periods of lineage
co-circulation) than antibodies to strains isolated further apart in
time®=. A second important feature of influenza epidemiology
and evolution that makes it challenging to understand
age-seroprevalence relationships is that individuals of different
ages will have been exposed to a different set of influenza strains.
Older individuals will have been exposed to more strains than
younger individuals, and some of these strains will have gone
extinct before some of the younger individuals were born. Again,
using a single influenza strain to generate an age-seroprevalence
curve is not a solution to this problem, as only certain age bands
of individuals will have been exposed to any particular strain.
Indeed, age-seroprevalence relationships reported for influenza
virus typically yield insight into the age-specific and time-specific
patterns of infection of different strains and subtypes, but they do
not have a monotonically increasing, saturating shape and cannot
be used to estimate annual influenza seroincidence!0-14,

The rationale for constructing a general (i.e., not strain-spe-
cific) age-seroprevalence curve for influenza A virus is to infer
long-run average attack rates, rather than the season-specific
attack rates typically measured in cohort studies!3-1¢ and placebo
arms in vaccine trials!’-22. Serological studies performing infer-
ence on attack rates may also be limited by measurement errors?3,
an inability to distinguish vaccinees from recently infected indi-
viduals, and an inability to distinguish individuals infected within
the past year from those infected more than a year ago. Currently,
the best methods for computing long-term attack rates of sea-
sonal influenza are from large multi-strain serological analyses
with inference on antibody responses, boosting, and waning?*2>,
or exceptional data sets that present >10 years of surveillance26-27,

Finally, in this study, we focus on influenza age-seroprevalence
relationship in the tropics, as seasonal influenza attack rates are
generally not known for tropical countries. One reason for the lack
of measurement is an inability to identify a tropical influenza
season28-37 if one exists. Our study location is central and southern
Vietnam. As annual influenza vaccine coverage in Vietnam is below
0.8% for our study period®®, the age-seroprevalence relationships
presented here are the naturally accumulated age-antibody profiles
in a population continually exposed to influenza virus with nearly
no influenza vaccination.

Results

Principal component structure of antibody profiles. A principal
component decomposition was conducted on 11 influenza anti-
body titers measured in 24,402 general population serum samples
collected from 10 provinces in central and southern Vietnam
(Fig. 1). This resulted in the first principal component (PC1)
explaining 60.4% of the variance in the titer data and the second
principal component (PC2) explaining an additional 16.5% of the
variance. Figure 2A shows the 11 unit vectors e; corresponding to
the 11 antigens in the assay projected onto PC1-PC2 space (all
loadings shown in Supplementary Fig. 6). When the unit vectors
e; in the original recentered 11-dimensional titer space are
mapped to the basis vectors v; of the transformed PC space, the
first coordinate (first principal component) of the v; is always
positive, with a maximum 1.2-fold difference in magnitude
among the 11 antigens, a consequence of a larger variance and
range in H3 titers than in HI titers. This also indicates that the
first principal component is a positive-weighted sum of titers to
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Fig. 2 Principal component loadings and age/birth year relationships. Principal component (PC) loadings for the first four principal components (A-C)
show the PC coefficients of all 11 influenza antigens. Only two consecutive components are shown in each panel. D-F show the relationship between three
first components and age (for PC1) or birth year (for PC2 and PC3). Small gray dots represent individuals, each with 11 titer measurements. The larger blue
dots show the component mean for each 1-year age band or birth-year band. The red line is a spline regression curve of all 24,402 data points (LOESS
curve, spanning factor = 0.5), and 80% prediction intervals (shown in green) were calculated using locally inferred error terms. The vertical lines show the
time of introduction of new subtypes into the population. Note that titer scores were recentered around their means for this principal component
decomposition and visualization, which is why the principal components (PC1, PC2, etc.) can be both positive and negative.

all antigens, suggesting that it can be used as a general measure of
exposure and immunogenicity across all strains. We interpret PC1 as
an indicator of composite antibody titer or seroprevalence in this
analysis and note that as a continuous indicator it is more aptly
viewed as a relative probability of exposure (or recent exposure)
rather than a binary indicator of having been exposed or not.
Although any positive-weighted sum of titer values can be assigned
the meaning of “composite titer” or “total titer response” in a multi-
strain epidemiological analysis, the derivation of PC1 in a principal
component analysis (PCA) accounts for the fact that some antigens
generate higher antibody titers than others, either because this is a
property of the assay or because the viruses were truly more
immunogenic in natural infections. The second coordinates (second
principal component) of the basis vectors v; are positive exactly
when e; corresponds to an HIN1 subtype and negative otherwise,
indicating that the second principal component can be used to
distinguish relative exposure to subtypes HIN1 and H3N2.

A serological age progression of the Vietnamese general
population is shown in Fig. 3 on the first two principal component
axes. The graphs are broken up into 1-year age bands through age
12 years and broader age categories thereafter, shown as density
plots with darker colors indicating a higher density of individuals
in a particular region of PC1-PC2 space. The PC1 axis corresponds
to general exposure to influenza virus; note that PC1 values can be
negative because all titer values are recentered around zero (ie.,
they can be negative) during principal component decomposition.
The PC2 axis shows relative exposure to HIN1 strains (positive

values) or H3N2 strains (negative values). The left-most points in
the principal component space correspond to naive individuals (no
H3 or HI infection history) and the right-most points correspond
to individuals that have maximum titers for all strains. The most
striking feature of Fig. 3 is the consistent change observed in
individuals in the early age classes, which shows influenza antibody
acquisition in PC1-PC2 space for individuals aged 6 months to 12
years, even though this last age group may have lived through the
circulation of three different H1 strains and five different
H3 strains. In the early years of infection, individuals with H1
exposure only or H3 exposure only can be identified on the left
edges of the diamond shape that makes up PC1-PC2 space (shown
as a scatterplot in Supplementary Fig. 11).

The first principal component allows for a generalized way to
describe current average antibody level to influenza A virus,
without having to specify a particular strain or subtype (Fig. 2D).
The largest change in PCI1 can be seen in the first 10 years of life
as children acquire their first influenza infection and generate a
serological response. The value of PC1 appears to decline after age
10 (possibly an effect of original antigenic sin (OAS)37-40) and
again for older individuals (>50 years), which may be a
consequence of weaker immune/antibody responses in older
individuals*!42. Differentiation in PC2 reveals some of the
history of influenza pandemics in the twentieth century (Fig. 2E).
Individuals born before 1957 (n =4054) have the strongest titer
responses to subtype H1 influenza, as do individuals born in 2009
or later (n = 1580), after the 2009 HIN1 pandemic virus emerged.
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Fig. 3 Density plots of individuals in principal component space, broken down by age group (shown in upper right of each panel). Density is computed
on a 256 x 256 grid spanning the minimum and maximum values of principal components one (PC1) and two (PC2). Color is scaled in each panel from zero
("Min,” white) to the maximum number of individuals that appear in a pixel in that panel (“Max,” black). Individuals move from the far left to the center and
right of the PC1-PC2 space during the first 10 years of life, as a result of exposure to subtype H3N2 and H1NT influenza viruses. The lower-left and upper-
left boundaries of the diamond shape in PC1-PC2 space correspond to individuals who have only been exposed to one HIN1 strain (upper left) or those who
have only been exposed to one H3N2 strain (lower left). Number of individuals (across all ages) shown here is n=24,402.

Individuals born in the 1970s, 1980s, and 1990s generally have
antibody titers that are more specific to H3N2 viruses (Fig. 2E), as
these individuals were children when H3N2 subtypes were more
prevalent. The higher H3N2 responses in this group probably
reflect both (i) the generally higher antibody titers associated with
H3N2 infections and (ii) OAS resulting from H3N2 infection in
early childhood. Individuals born in the 1950s and 1960s are the
most interesting with respect to order of subtype exposure as
some would have experienced their early influenza exposures
during the 1957-1967 gap when only H2N2 subtype viruses were
circulating globally. None of the principal components distin-
guish this birth cohort particularly well; with no expected signal
of OAS, these individuals’ serological profiles likely represent a
combined history of H1, H2, and H3 influenza infections.

The third principal component (PC3) breaks the H3N2 and
HINT1 subtypes into further subgroups (Fig. 2B, C), which is also
reflected in the age-related breakdown showing a strong
contribution of H3 in the signal for those born between 1965
and 2009 (Fig. 2F), and the reverse during earlier and later time
periods. For H3N2, the main qualitative feature of this structure is
that responses to the 1968 H3N2 virus are unique—an expected
outcome as these would only be seen strongly in individuals
infected from 1968 to the early 1970s and should be independent
from the occurrence of infection during the years 2003-2011.
Subtype H3N2 viruses from 2007 to 2011 cluster together
antigenically, and H3N2 viruses from 2003 and 2005 cluster
together in a separate group. The third principal component also
divides HIN1 viruses into two groups: one group that is
antigenically similar to the 1918 Spanish influenza virus (H1-
1918, H1-2009, and H1-1977) and a second group that represents
the inter-pandemic circulation of HIN1 viruses in the 1990s and
2000s (Fig. 2B). The H1-1977 virus is the obvious outlier in the
first group, and the fourth principal component distinguishes it
from the 1918 and 2009 HINI strains (Fig. 2C).

In general, the principal components neatly sort individuals into
birth cohorts (Supplementary Fig. 8), something that is not achieved
by looking at antibody titers in isolation (Supplementary Fig. 7).
Figure 4 shows histograms of maximum antibody titer by birth year
(Fig. 4A), largest magnitude positive principal component by birth
year (Fig. 4B), and largest magnitude negative principal component
by birth year (Fig. 4C). PC1 is excluded from these analyses as it
only corresponds to exposure without discriminating among
antigens. If maximum magnitude is in PC2, this shows that an
individual’s antibody profile is dominated either by HIN1 exposures
(if the component is positive and has largest absolute value, as in
Fig. 4B) or H3N2 exposures (if the component is negative and has
largest absolute value, as in Fig. 4C). As expected, individuals born
after 2009 are likely to have an antibody profile dominated by a large
and positive PC2, and individuals born between 1968 and 2009
are likely to have an antibody profile dominated by a large and
negative PC2. Antibody profiles of individuals born in the 1980s and
1990s are dominated by a positive PC3, which corresponds to
antibody specificity to H1-1999 and H1-2007. Individuals born after
2009 will also have a large and positive PC4 and a large and negative
PCS5; these correspond to exposure to H1-2009 and to H3-2009/H3-
2011, respectively. Dominant antigen groupings are also readily
visible in Fig. 4A, but these interpretations are susceptible to (i) the
misreading of cross-reactions, e.g., individuals born after 2009 show-
ing reactions to H1-1918, and (ii) confusing high antigen reactivity
with infection history (e.g., individuals born in the 1970s and 1980s
being dominated by an antibody response to H3-2003).

Annual attack rates. The clearest signal of infection history in
our data comes in the form of PCI correlating to the presence or
absence of past influenza infection, allowing us to treat PC1 (a
positive-weighted sum of antibody titers) as a proxy for ser-
oprevalence. In general, for a titer vector (1, 7y, ..., 7,,) of n co-
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Fig. 4 Histograms showing how individuals are sorted by titer or principal component. Histograms showing how individuals are sorted by their A
maximum antibody titer, B maximum positive principal component (excluding PC1), and € maximum negative principal component (excluding PC1). In each
panel, each of the n= 24,402 individuals appears exactly once depending on their highest titer (A) or the maximum magnitude of their principal
components (B, C). For example, most individuals born after 2009 have their maximum antibody titer to the 2011 H3N2 strain, the 2009 HIN1 pandemic
virus, or the 1918 HINT1 influenza virus. These same individuals have either principal component 2 or 4 as their largest magnitude component (among
positive components). The vertical lines show the time of introduction of new subtypes into the population: HIN1 (orange), H3N2 (red), and H2N2 (green).

circulating and non-cross-reacting pathogens, the first principal
component will be proportional to the total number of pathogen
exposures by age a in a graph of PC1 against age. For a titer vector
(11> T2» -..» T,y) of n pathogens with high cross-reactivity, PC1 will be
proportional to the probability of having been exposed to at least one
of the n pathogens. These are the two boundary situations, but for
intermediate cross-reactivity there is no easily analogous inter-
pretation, suggesting that the cross-reactivity parameter sigma o may
play an outsized role in our ability to use multi-strain serological
approaches for population-level inference of past pathogen exposure.
In our data, the average cross-reactivity among neighboring
H3 strains (strains that are 2 years apart) can be described by a
standard Pearson correlation of o= 0.88, which shows that within a
subtype neighboring strains can be viewed as highly cross-reacting.

To assess the accuracy of using PC1 as a proxy for seroprevalence,
we built an individual-based simulation of influenza infection,
antibody acquisition, antibody waning, and back boosting*3
(Supplementary Methods). Comparing simulated attack rates to
median PCA-inferred attack rates shows that the median inferred
attack rates are within 5% of their simulated values (Supplementary
Figs. 2 and 3); however, the stochastic nature of the simulation and
the large variance in simulation outcomes does not allow us to
conclude that our PCA-based estimator is unbiased. Crucially, there
is no serologically measured long-term attack rate for influenza in
Vietnam against which to validate our approach.

Separating the titer data by subtype to avoid having to account for
low or intermediate cross-reactions between subtypes, we carry out
two separate PCAs for H1 and H3 and infer the attack rates for each
subtype separately (Supplementary Fig. 9). Optimizing the likelihood
in Eq. (1), maximum-likelihood estimates for the annual attack rates
in Vietnam are ARy; =16.0% (95% confidence interval (CI):
14.7-17.3%) and ARy =25.6% (95% CL 24.1-27.1%). The
location-specific annual attack rates (Fig. 5) did not vary much
from these estimates except for the attack rate of HINI in Hue,
which was estimated at 21.6% (95% CI: 18.4-26.1%). There were no
reports of Hue experiencing a larger pandemic wave3? (or
subsequent HIN1 epidemics) than other locations in Vietnam.
However, variation in reporting patterns and asymptomatic/sub-
clinical infection may occur#4, thus we cannot exclude the possibility
that Hue experienced a higher rate of HIN1 infections than Khanh
Hoa or Ho Chi Minh City.

Discussion

An important challenge in serological analyses of antigenically
variable pathogen families is the construction of a surrogate measure
for seroprevalence that takes antibody cross-reactions and differ-
ential immunogenicity into account. The approach we propose here
is dimensionality reduction across strains. By taking the first prin-
cipal component of a data set of n individuals whose antibodies have
been measured to m different antigens, we reduce an m-dimensional
data set to a single dimension (PC1), which we use as a proxy for
seroprevalence. With sufficient and representative age sampling in
the younger age classes, the first principal component of such a data
set should be a positive-weighted sum of an individual’s antibody
titers, with the weights adjusting for the higher titers or immuno-
genicities of some antigens when compared to others. The main
challenge with this approach is validation of PC1 as a quantity that is
in fact proportional to cumulative probability of exposure. In prin-
ciple, this could be done with a cohort study run across enough
influenza seasons to allow a long-term average attack rates to be
measured. In practice, cohort studies like this are not common, and
the task would be impossible for a data set of the size we present
here. Despite this lack of direct validation with a known attack rate
in the same locations and age groups, we can show that the long-
term exposure patterns inferred using a PCA approach are (i)
consistent with known descriptions of influenza epidemiology and
influenza attack rates!524-26:45-47 and (ii) able to be validated with a
simulation approach.

The estimates presented in this paper show that the average
annual attack rate of influenza in Vietnam ranges from 13.4 to
21.6% for HIN1 and from 25.0 to 27.5% for H3N2. These ranges
are consistent in their relative magnitudes, with H3N2 having a
higher annual attack rate than HIN1!3, and in the implied age of
first infection (ages 3-6 years) observed in cross-sectional data
analyzed with traditional serology%. A second point of con-
sistency is that peak PC1 value (i.e., peak weighted antibody titer)
in the Vietnamese data occurs for individuals around age 10
years, approximately the age group predicted to have highest
antibody titers resulting from OAS%. Our analysis was not
designed to detect the effects of OAS, and the appearance of OAS
in the PCA lends further credence to PC1 as an appropriate
measure of composite titer or seroprevalence for influenza
A virus.
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Despite the concordance with field data, further progress is nee-
ded on the theoretical justification and in silico validation of using
PCl1 as a marker of seroprevalence. The key theoretical question
revolves around the interpretation of PC1 as it relates to the immune
profile of an individual. Certainly, the neighbor-to-neighbor inter-
strain cross-reactivity parameter o is influential in this interpretation
as it affects whether an antibody profile represents a small number of
past infections (high o) or a large number of past infections (low o).
The next analytical step in this principal component approach will
likely require creating a o-adjusted PCI1 so that it more accurately
differentiates between the presence and the number of past

infections. An in silico validation approach could be used to test
whether PC1 or a related construct is unbiased as an estimator of
seroprevalence, but this simulation approach would itself need to be
validated against field data. Specifically, the age distribution of
influenza cases (symptomatic) is well known but the age distribution
of infections (symptomatic and asymptomatic combined) is reported
much less frequently. In addition, in a simulation, one needs to
know how an antibody profile affects a person’s likelihood of
becoming an influenza infection, but clinical studies most commonly
measure the effect of an antibody titer on becoming an influenza
case. This measure may have to be estimated independently for
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children and adults, as it is serological measurements in children that
directly inform attack rate estimates. Individual-based simulation
development would need to focus on accurate representations of
titer profiles, protection from infection, and an accounting of all
influenza infections across age groups.

As with any surrogate for seroprevalence, PCI is limited in that it
only provides distinguishing information for the younger age groups
(here <10 years). Within these younger age groups, it is known that
infection history and exposure do vary by age?*->3, but differences in
single-year age bands are not always easy to estimate with a cross-
sectional design (Fig. S12) unless large sample sizes are available. In
our analysis, the teenage and adult age groups have similar values of
PCl, indicating that most individuals aged >10 years are likely to
have been exposed to influenza virus. In fact, the bottom six panels
of Fig. 3 show that individuals’ antibody profiles do not change
much after an individual is likely to have been exposed to both
H3N2 and HIN1 viruses; certain age groups will have high titers to
viruses they were exposed to in childhood, but these exposure
profiles are not qualitatively distinguishable from each other using
PCI alone. The utility of performing a PCA analysis on this general
population serological data set from central and southern Vietnam
lies in its location (tropical) and vaccination history (nearly none);
reconstructing the natural age-seroprevalence relationship allows us
to measure influenza A attack rates in a part of the world where
influenza persists year-round and does not cause regular or pre-
dictable epidemics?8-30:54,

Moving beyond the first principal component, the remaining
components give us an indication of serological/antigenic relat-
edness among strains (Fig. 2A-C). Although this relatedness is
straightforward to characterize with sequencing and phylogenetic
methods, a serological relatedness signal (more labor-intensive in
its construction®®) is more appropriately founded on the virus’s
phenotype rather than its genotype. As expected, these serological
relatedness signals show that the 2003 and 2005 H3N2 strains
cluster together; that the 2007, 2009, and 2011 H3N2 variants are
related; and that the 1968 H3N2 is serologically distinct from
H3N2 strains circulating after 2003. For the HIN1 subtypes, the
1999 HIN1 and 2007 HIN1 (both 1977 lineage) cluster with each
other, while there are no obvious serological relationships among
the 2009 HIN1 pandemic strain, the 1977 Russian flu, and the
1918 Spanish flu (these viruses cluster with each other in the first
three principal components and are separated by the fourth). For
the population, the primary utility of the higher principal com-
ponents is the sorting of serological responses by birth cohort,
which has already been found to influence vaccine efficacy>>~%7,
subsequent symptomatic infection®’=>%, back boosting®), and
hospitalization and mortality®®. An additional application of
higher principal components may be in the construction of
individual-level antibody profiles that could be used to assess
susceptibility to influenza virus infection, as in Yang et al.bL.

The promise of large-scale serology is that certain traditional epi-
demiological variables—attack rate, age-specific susceptibility, cross-
reactivity—will be able to be measured with higher precision. As
large-scale multi-antigen serological approaches like this one become
more common, it will become important to include field study
components that allow for validation of results obtained from cross-
sectional data alone. The present approach taken for influenza virus
should be expanded to other well-characterized multi-strain patho-
gens such as dengue®293, norovirus®4-%6, and pneumococcus®’-%8 to
share lessons on which inferential methods and study designs are
most appropriate for the precise and robust estimation of a broad
range of epidemiological quantities.

Methods

Data. Serum samples used for this analysis come from a serum bank established in
2009 in southern Vietnam and maintained for the purposes of measuring exposure

and seroincidence to a range of pathogens®%°-74, Every 2 months or every

4 months (depending on the site), 200 residual serum samples are collected from
the hematology or biochemistry departments of ten major public hospitals: the
Hospital for Tropical Diseases in Ho Chi Minh City, Hue Central Hospital in the
city of Hue, Khanh Hoa General Hospital in Nha Trang, Dak Lak Provincial
Hospital in Buon Ma Thuot city, Soc Trang General Hospital, Dong Thap General
Hospital, Kien Giang General Hospital, Binh Dinh General Hospital, Quang Ngai
General Hospital, An Giang General Hospital (Fig. 1). Approximately 7800 sam-
ples are collected each year and the samples are believed to represent the hospital-
going population or general population in their respective provinces. For further
details on sample collection, see Nhat et al.36, A total of 35,688 serum samples
collected between 2009 and 2015 were selected for this analysis. The sample col-
lection was approved by the Scientific and Ethical Committee of the Hospital for
Tropical Diseases in Ho Chi Minh City and the Oxford Tropical Research Ethics
Committee at the University of Oxford. All residual serum samples were collected
anonymously from hospital laboratories with no identifiers included that could link
the sample back to the original patient; there was no patient enrollment or consent
procedure.

Samples were tested for IgG antibodies to the HA1 region of the influenza virus
hemagglutinin protein for 11 different human influenza A viruses by a protein
microarray’27>76, 5 strains of the H1 subtype and 6 strains of the H3 subtype
(Table 1). Subtype H1 viruses included were the 1918 pandemic “Spanish Flu”
virus (A/South Carolina/1/1918), the 1977 “Russian Flu” virus that was re-
introduced into the population after a 20-year absence (A/USSR/92/1977), two
antigenic variants of the 1977 lineage both of which were vaccine strains (A/New
Caledonia/20/1999 and A/Brisbane/59/2007), and the 2009 “swine flu” pandemic
virus (A/California/6/2009). Subtype H3 viruses included were the 1968 pandemic
“Hong Kong” flu variant that re-introduced H3 circulation into human populations
(A/Aichi/2/1968) and the five most recent H3N2 variants available at the time the
study was designed: A/Wyoming/3/2003, A/Wisconsin/67/2005, A/Brisbane/10/
2007, A/Victoria/210/2009, and A/Victoria/361/2011 (non-egg-adapted), three of
which were vaccine strains.

Samples from individuals <6 months of age were excluded from the analysis to
avoid assigning maternal antibody profiles to infants. The data set uses decimal
ages based on information reported at the hospital; e.g., a 12-year-old is coded as
12.5 and a 6-week-old is coded as 0.12. After excluding individuals <6 months and
samples that did not have computable titers for all 11 antigens (Nhat et al.3°,
supplement, section 1.1), 11,286 samples were excluded for a total of
24,402 samples to be used in this analysis. Sample collection times are shown in
Supplementary Fig. 5.

Clustering. Clustering of serological profiles was performed with a PCA (Matlab,
R2019b, Mathworks, USA). PCA was performed on a 24,402 x 11 log-titer matrix
with the Matlab function pca, which derives the principal component basis vectors
through singular value decomposition. Titer values are all measured on the same
scale, thus rescaling titer values was unnecessary. The first principal component
was interpreted as a surrogate of seroprevalence (see “Results” section). To
determine whether the magnitudes of the principal components corresponded to
infection history, we sorted individuals by their largest magnitude (i.e., absolute
value) principal component, looking at positive and negative components
separately.

Likelihood inference. To estimate attack rates, we performed separate PCAs for
three different locations (Ho Chi Minh City, Hue, Khanh Hoa) and the two
influenza subtypes H3N2 and HINI1. Taking the first principal component (PC1)
as a surrogate for weighted exposure to H3N2 or HINI, we fit the PC1 value as a
function of age to estimate the annual location-specific attack rates of subtypes
H3N2 and HINI using the relationship

PCl(a) = H — Ke ™™ 1)
Table 1 HA1 antigens of 11 different human influenza strains
used for the study.
Antigen Subtype Abbreviation
A/South Carolina/1/1918 HIN1 H1-1918
A/USSR/92/1977 HIN1 H1-1977
A/New Caledonia/20/1999 HIN1 H1-1999
A/Brisbane/59/2007 HIN1 H1-2007
A/California/6,/2009 HIN1 H1-2009
A/Aichi/2/1968 H3N2 H3-1968
A/Wyoming/3/2003 H3N2 H3-2003
A/Wisconsin/67/2005 H3N2 H3-2005
A/Brisbane/10/2007 H3N2 H3-2007
A/Victoria/210/2009 H3N2 H3-2009
A/Victoria/361/201 H3N2 H3-201
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where H, K, and A are fitted parameters, with an individual’s PC1 value counting as
one data point. The H and K parameters are necessary to infer the minimum and
saturating maximum of the PC1 curve as PCI does not span the range zero to one
as seroprevalence does. Optimization was done with a Nelder-Mead routine. The
annual attack rate can be computed as follows

AR=1-—¢" 2)

and 95% Cls were obtained through likelihood profiling. All analyses were con-
ducted in Matlab. Attack rate analysis focused on three sites that had a sufficient
number of samples from children aged <5 years: Ho Chi Minh City

(n=1301 samples from children <5 years), Khanh Hoa (n = 358), and Hue
(n=383).

Validation. To validate that PC1 is an appropriate surrogate for seroprevalence, an
individual-based epidemic simulation was developed in C++ (Supplemen-

tary Methods). The simulation mimics the non-seasonal patterns of influenza A/
H3N2 cases in Vietnam over a 10-year period>%77 and uses influenza susceptibility
data, antibody response data, and antibody waning data (measured with the same
protein microarray) from a concurrently run clinical study run in Ho Chi Minh
City from 2013 to 2015787%. Simulations of 500,000 individuals are run with fixed
attack rates ranging from 5 to 30%, and 6700 samples are taken at the exact
sampling times (from 2010 to 2015) as in the serum collections for Ho Chi Minh
City. A PCA is done on each simulated data set, and attack rate inference using Eq.
(1) is done on the age and PC1 vectors.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data are posted publicly®? at https://doi.org/10.5281/zenodo.5594737.

Code availability
Code is posted publicly® at https://doi.org/10.5281/zenodo.5594737.
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