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Abstract

Hemorrhagic fever with renal syndrome (HFRS) is a naturally-occurring, fecally transmitted

disease caused by a Hantavirus (HV). It is extremely damaging to human health and results

in many deaths annually, especially in Hubei Province, China. One of the primary character-

istics of HFRS is the spatiotemporal heterogeneity of its occurrence, with notable seasonal

differences. In view of this heterogeneity, the present study suggests that there is a need to

focus on trend simulation and the spatiotemporal prediction of HFRS outbreaks. To facilitate

this, we constructed a new Seasonal Difference Space-Time Autoregressive Integrated

Moving Average (SD-STARIMA) model. The SD-STARIMA model is based on the spatial

and temporal characteristics of the Space-Time Autoregressive Integrated Moving Average

(STARMA) model first developed by Cliff and Ord in 1974, which has proven useful in

modelling the temporal aspects of spatially located data. This model can simulate the trends

in HFRS epidemics, taking into consideration both spatial and temporal variations. The SD-

STARIMA model is also able to make seasonal difference calculations to eliminate tempo-

rally non-stationary problems that are present in the HFRS data. Experiments have demon-

strated that the proposed SD-STARIMA model offers notably better prediction accuracy,

especially for spatiotemporal series data with seasonal distribution characteristics.

Introduction

Hemorrhagic Fever with Renal Syndrome (HFRS) is a serious infectious disease that is mainly

caused by a Hantavirus (HTNV) and the Seoul virus (SEOV) [1–4]. The clinical symptoms for

HFRS are fever, hemorrhaging and renal dysfunction and it can result in long-term kidney

damage, hypotension and even death. HFRS has s distribution across a number of countries.
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China is the most seriously affected, accounting for more than 90% of the world’s cases of

HFRS [5–9]. Within China, however, one province in particular, Hubei, has become the most

seriously affected area of all in recent years. Since the first case of HFRS was reported in Hubei

in 1957, HFRS epidemics have expanded and reached a high point in 1983 with 23,943 cases.

From 1980 to 2009, the number of HFRS cases in Hubei Province totaled 104,467. The spread

of HFRS has had a significant impact on social stability and human health [10–12].

Spatial and temporal statistical methods have been used to discover the spatial and temporal

distribution and clustering characteristics of HFRS across a number of different locations [13],

including Buenos Aires in Argentina [14], Germany [15] and Brussels in Belgium [16]. In

China, a Kulldorff spatial scan statistic has been used to try and identify the clustering of

HFRS, drawing upon data spanning the period 1980 to 2009 [17]. A Gaussian GWR model has

also been used to try and identify the factors influencing HFRS transmission (such as meteoro-

logical factors, rodent density, surface mean elevation, water area and human population den-

sity) drawing upon data from Hubei that was collected between 2011 and 2015 [18]. Moran’s I
index was adopted for a global spatial autocorrelation analysis that sought to identify the over-

all spatiotemporal pattern of HFRS outbreaks in Hubei between 2005 and 2014, and Spear-

man’s rank correlation analysis was used at the same time to explore the possible factors

influencing the epidemics, such as the weather and the area’s geography [19]. Cross-correla-

tion analysis has also been used to assess a possible association with meteorological variables

and a time-series Poisson regression model was adopted to examine the independent contribu-

tion of meteorological variables to HFRS transmission in both Elunchun and Molidawahaner

counties in Northeastern China between 1997 and 2007 [20]. Alongside of this, a generalized

additive model with penalized smoothing splines has been used to examine the effect of meteo-

rological factors on the occurrence of HFRS in Jiaonan between 2006 and 2011 [21].

Identifying the spatial and temporal distribution of HFRS can help with analyzing and eval-

uating the trends in HFRS outbreaks, thus leading to the adoption of more effective measures

for the prevention and control of the disease. HFRS, however, has a frustrating degree of spa-

tiotemporal heterogeneity and seasonal variation [19]. So, in order to conduct a better analysis

of HFRS distribution and to acquire a more accurate means of prediction, the construction of

a space-time model seems to be called for. Space-time modeling refers to the process of finding

an analytical method to model and predict the value of an unrecorded space-time position

based on given spatiotemporal data [22]. Space-time modeling is a spatial expansion of time

series modelling and the factors influencing the attribute values of unobserved space-time

positions bring together the spatial and temporal factors associated with single time series

modeling, single spatial modeling and spatiotemporal modeling.

The most representative single time series model is Autoregressive Integrated Moving

Averages (ARIMA). This analyzes the time series of historical data and obtains the model with

the optimal fit for predicting events that will occur in the short term [23] [24]. An ARIMA

model shows time series data that is related to both sequentially lagged variables and their

errors. ARIMA models have been used several times for the prediction of HFRS outbreaks

[25,23,26–28], which indicates that this model is a good fit here as well for the forecasting of

outbreaks.

For the single spatial modeling, there are space autoregressive models and space moving

average models. Based on a spatial weight matrix, these models study the quantization measure

of neighboring spatial units [29].

Drawing upon time and space series modeling, the geographer A.D. Cliff and the statisti-

cian J.K. Ord, originally proposed in 1974 a space-time series modeling framework [22] that is

essentially a spatial expansion of the time series model. It combines Spatial Autocorrelation

(SAR), a Spatial Moving Average (SMA) and Spatial Regression (SR). A large number of
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studies had shown that, whilst the ARIMA model provided better fitting results for data with a

relatively stable temporal distribution and no strong spatial autocorrelation, its effectiveness

for prediction relating to spatiotemporally heterogenous sample data was much weaker [30–

32]. Cliff and Ord’s Spatiotemporal Autoregressive Integrated Moving Average (STARIMA)

extended beyond the ARIMA model [33]. The STARIMA model provides a space-time auto-

correlation function (ST-ACF) and a space-time partial correlation function (ST-PACF) to

address the problem of measuring spatiotemporal correlations. It also introduced a spatiotem-

poral lag operator that makes it capable of simultaneously extrapolating and predicting multi-

ple spatial units [34]. The STARIMA model was subsequently proved to offer high estimation

performance when applied to a case study of the regional deposits of commercial banks operat-

ing in Turkey using non-linear estimators [35]. The STARIMA model has also been applied to

rainfall and waterlogging process simulation and to short-term forecasting. Here, it offers

improved prediction accuracy and reliability when compared to traditional hydro model simu-

lation and prediction [36]. Outside of this, STARIMA models have been applied to traffic pre-

diction, environment variable prediction and in social and economic analyses [37–41].

Research has indicated that HFRS has a characteristic seasonal or cyclic time series-based

occurrence [42,11]. In our previous work, a Seasonal Difference—Geographically and Tempo-

rally Weighted Regression (SD-GTWR) model was developed as an extension of the GTWR

model that sought to use seasonal difference to get stabilized data [43]. Seasonal difference was

used to deal with a non-stationary time series with seasonal distribution characteristics. Fol-

lowing on from this research, we constructed a Seasonal Difference—Space-Time Auto

Regressive Integrated Moving Average (SD-STARIMA) model that is based on STARIMA.

Time serials analysis and autocorrelation analysis were conducted to ensure the feasibility of

using a seasonal difference approach. The STARIMA model is a prerequisite for advanced sea-

sonal difference modeling and analysis. In our previous research, we found that from 1980 to

2000 [17] and from 2005 to 2014 [19] the HFRS cases in Hubei Province displayed a bimodal

seasonal distribution pattern rather than a linear distribution. Seasonal difference calculations

for HFRS incidence in Hubei using SD-STARIMA offer the prospect of improving the accu-

racy of previous space-time series models. The main contribution of this paper is the develop-

ment of a new SD-STARIMA model that is able to bring seasonal difference calculations to

bear in a way that will eliminate the non-stationary temporality problem found in HFRS data.

Estimation results from the SD-STARIMA model show it to be more accurate than other mod-

els such as ARIMA and STARIMA. This confirms its potential to contribute to the prevention

and control of HFRS.

Study data and analysis

Study data

The area focused on in this study is Hubei Province in central-southern China. The data covers

the period from 2005 to 2014. In the past 30 years, the data during this decade is the most rep-

resentative and 2014 is the most recent year for which detailed data is available. Basic geo-

graphic data about Hubei Province was collected from the Chinese National Administrator of

Surveying, Mapping and Geo-Information. HFRS case data was provided by the Hubei Prov-

ince Center for Disease Control and Prevention and the Chinese Center for Disease Control

and Prevention. The HFRS case data contains the monthly case values for each county. Meteo-

rological data was obtained from the National Center for Environmental Prediction and the

Hubei Meteorological Bureau. Human population density data was extracted from the Hubei

Statistical Yearbook, which includes the annual population for each county.
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Seasonal characteristic analysis

The monthly distribution pattern of HFRS in Hubei Province from 2005 to 2014 is shown in

Fig 1. It can be seen that HFRS epidemics appear to have a bimodal distribution for each year

(12 months), occurring around March and September. As a result, the time frame for the

range of seasonal differences for each year has been narrowed down to 6 months for this study

[44].

Fig 1. Monthly HFRS incidence from 2005 to 2014. (A) Average monthly HRFS incidence from 2005 to 2009. (B)Average monthly HRFS incidence from

2010 to 2014.

https://doi.org/10.1371/journal.pone.0207518.g001

SD-STARMA model and spatio-temporal trend prediction analysis for HFRS

PLOS ONE | https://doi.org/10.1371/journal.pone.0207518 November 26, 2018 4 / 20

https://doi.org/10.1371/journal.pone.0207518.g001
https://doi.org/10.1371/journal.pone.0207518


Stationarity analysis of the HFRS incidence data

To arrive at a more effective time series analysis, it is necessary to identify the spatial and tem-

poral series of the HFRS case data. Figs 2 and 3 show that the HFRS outbreak incidence in

Hubei is clustered and does not meet the requirements of a normal distribution. In order to

look for significant correlations in the HFRS outbreak distribution across the time series, an

autocorrelation of the HFRS incidence time series data was undertaken using an autocorrela-

tion graph. The autocorrelation graph and partial autocorrelation graph are plotted according

to the autocorrelation and partial autocorrelation coefficients. In Fig 4(A), the abscissa is the

number of lags and the ordinate is the ACF (autocorrelation function) value. The two lines in

this figure represent the autocorrelation coefficient confidence interval of 95%. If there is no

autocorrelation, the distribution pattern should be randomly distributed within the 95% confi-

dence interval, without any fixed pattern and with the ACF values gradually tending to zero as

the lag k increases. However, it can be seen from Fig 4(A) that the autocorrelation coefficient

rk does not do this. At the same time, it can be seen from Fig 4(B) that the partial correlation

function value is larger at the 1st, 4th,5th,7th,8th and 12th order lag states. This indicates that

Fig 2. Scatter distribution of the HFRS incidence in Hubei Province from 2005 to 2014. Each plot shows the incidence of HFRS for a unique

date.

https://doi.org/10.1371/journal.pone.0207518.g002
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Fig 3. Normal distribution of the HFRS incidence data in Hubei Province from 2005 to 2014. Each column is an estimate of the probability

distribution of the HFRS incidence.

https://doi.org/10.1371/journal.pone.0207518.g003

Fig 4. Correlation function values for the HFRS incidence data in Hubei Province from 2005 to 2014. (a) Autocorrelation (b) Partial autocorrelation.

The ACF (autocorrelation function) values for HFRS incidence in each lag.

https://doi.org/10.1371/journal.pone.0207518.g004
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there is periodicity in the time series. That being so, the time and space series for the HFRS

case data in Hubei does not have a smooth time series.

Thus, according to the seasonal characteristics and stationarity analysis of the HFRS out-

breaks presented above, the series for HFRS incidence distribution in Hubei Province is tem-

porally unstable. As previously mentioned, a large number of studies have shown that ARIMA

models are better able to fit data with a relatively stable time distribution and no strong spatial

autocorrelation, but they are not so effective when there is spatiotemporal heterogeneity in the

sample data [30–32]. This was the original reason for the development of Cliff and Ord’s, Spa-

tiotemporal Autoregressive Integrated Moving Average (STARIMA) model [33]. However,

the accuracy of this model is still limited for non-stationary series. In that case, there is a need

for a new spatiotemporal series model that is capable of analyzing the seasonal characteristics

and stationary distribution of the HFRS outbreaks in Hubei to improve the precision of the

predictions.

Construction of a seasonal difference Spatio-temporal

autoregressive integrated moving average (SD-STARIMA) Model

By building upon both the ARIMA model and the STARIMA model, the SD-STARIMA

model not only inherits the functions of STARIMA, but also has its own particular advantages.

In this paper, the ARIMA analysis was conducted using SPSS 22 and the STARIMA analysis

was conducted using R package. Construction and analysis of the SD-STARIMA model was

conducted using MATLAB.

Principles of the ARIMA model

ARIMA models are able to take into account changing trends, periodic changes, and random

disturbances in a time series, so they are very useful for modeling a time series’ time depen-

dence structure. In epidemiology, ARIMA models have been successfully applied to predict

the incidence of a number of infectious diseases, such as influenza [45] and malaria [46], to

mention but a few [47,48]. ARIMA (p,d,q) modeling of time series originated with the work of

Box-Jenkins [24]. The model-building process was designed to take advantage of associations

in the sequentially-lagged relationships that usually exist in periodically collected data [49].

The following were the parameters selected when fitting the ARIMA model: p, the order of

autoregression; d, the integration parameter; and q, the order of the moving average. Autocor-

relation function (ACF) and Partial autocorrelation function (PACF) graphs were used to

identify the order of the moving average (MA) and the autoregressive (AR) terms included in

the ARIMA model.

Fig 5 and Table 1 indicate the spatial autocorrelation results for Moran’s Index I. From this

it can be concluded that the distribution of HFRS incidence in Hubei has spatial autocorrela-

tion characteristics, so the trends for HFRS cannot be simulated using just time.

Construction of the STARIMA model

The Space-time Autoregressive Integrated Moving Average model, STARIMA for short, is an

extension of the ARIMA model. The STARIMA model class expresses: zi(t); observations of

the random variables at site i, i = 1,2,. . ., N; and time t as a weighted linear combination of past

observations and errors, which may be lagged across both space and time. The basic mecha-

nism for this representation is a hierarchical ordering of the neighbors of each site and a

sequence of N×N weighting matrices, W(t). Matrix W(t) has elements wij
(t) that are nonzero if

and only if sites i and j are lth order neighbors and w(o) is defined to be a N×N identity matrix.

Specifically, if you let z(t) be the N×1 vector of observations at time t, the STARIMA model

SD-STARMA model and spatio-temporal trend prediction analysis for HFRS
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class can be expressed as follows [50]:

zðtÞ ¼ �
Xp

k¼1

Xlk

l¼0

�klW
ðlÞzðt � kÞ þ εðtÞ þ

Xq

k¼1

Xmk

l¼0

yklW
ðlÞεðt � kÞ ð1Þ

where p is the autoregressive order; q is the moving average order;λk is the spatial order of the

kth autoregressive term; mk is the spatial order of the kth moving average term;Fkl is the autore-

gressive parameter at temporal lag kand spatial lag l; θkl is the moving average parameter at

temporal lag k and spatial lag l; W(t) is the N×N matrix of weights for spatial order l; and Ɛ(t) is

Fig 5. Distribution pattern of HFRS according to Moran’s Index from 2005–2014. Each point represents the Moran’s I value for a specific year. All of the

points are joined to indicate the trend of Moran’s I for the HFRS incidence in Hubei Province.

https://doi.org/10.1371/journal.pone.0207518.g005

Table 1. Spatial autocorrelation results for the HFRS average annual incidence rate for each year in Hubei Province.

year Moran’s Index Expected Index Variance z-score p-value

2005 0.0523 -0.0133 0.0055 0.8844 0.3765

2006 0.1630 -0.0133 0.0050 2.4834 0.0130

2007 0.1242 0.1242 0.1242 2.2474 0.0246

2008 0.1413 -0.0133 0.0026 3.0412 0.0024

2009 0.1722 -0.0133 0.0045 2.7571 0.0058

2010 0.2374 -0.0133 0.0037 4.1336 0.0001

2011 0.0550 -0.0133 0.0030 1.2442 0.2134

2012 0.1526 -0.0133 0.0038 2.6845 0.0073

2013 0.1642 -0.0133 0.0027 3.4013 0.0007

2014 0.2604 -0.0133 0.0038 4.4143 0.0001

https://doi.org/10.1371/journal.pone.0207518.t001
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the random normally distributed error vector at time t [51].

E½εðtÞ� ¼ 0

E½εðtÞεðt þ sÞc� ¼
G s ¼ 0

0 s 6¼ 0
ð2Þ

(

E½εðtÞεðt þ sÞ0� ¼ 0 for s > 0:

This specific model is referred to as the STARIMA (pl1 ;l2 ;...;lp;
qm1 ;m2;...mq

) model. Two special

subclasses of the STARIMA model are of note. When q = 0, only autoregressive terms remain,

in which case the model is called a space-time autoregressive or STAR model. Models that con-

tain no autoregressive terms (p = 0) are referred to as STMA models.

Construction of the SD-STARIMA model

By building upon the ARIMA model, the STARIMA model is able to evaluate the space func-

tions pertaining to ARIMA. In essence, STARIMA is an extended linear regression model, so

it can only describe linear autocorrelation results. That being so, STARIMA models are not

well-suited to the prediction of the incidence of diseases with a seasonal epidemic pattern.

Our above analysis of the time series results for HFRS incidence in Hubei suggests that

HFRS incidence does not have a stationary temporal distribution. ARIMA or ARIMA-based

models need a stationary distribution of time series data as a prerequisite. In view of this, a sea-

sonal difference method was used to eliminate the disruptive tendencies and get a stationary

time series. The seasonal difference method amounts to being a way of getting a new time

series by calculating the difference between various circles labeled L:

Dzt ¼ zt � zt� 1 ¼ zt � Lzt ¼ ð1 � LÞzt

D
2zt ¼ Dzt � Dzt� 1 ¼ ð1 � LÞzt � ð1 � LÞzt� 1 ¼ ð1 � LÞ2zt ð3Þ

D
dzt ¼ ð1 � LÞdzt

A new series model can be obtained after the d-order difference calculation has finished.

This can be formally defined as:

wt ¼ D
dzt ¼ ð1 � LÞdzt ð4Þ

As previously mentioned, HFRS has specific spatially-distributed epidemics, with the sea-

sonal epidemic pattern in Hubei being characteristically bimodal. The time frame for the sea-

sonal difference calculation was set to 6 months. So, for the purposes of data stabilization by

differential, the interval for each order of difference in the time series should be set to 6

months. The stationary series data used to establish the STARIMA model has three steps: iden-

tification; estimation; and diagnostic checking [52]. The novel SD-STARMA model proposed

in this paper can be formally expressed as follows (9):

wðtÞ ¼ �
Xp

k¼1

Xlk

l¼0

�klW
ðlÞwðt � kÞ þ εðtÞ þ

Xq

k¼1

Xmk

l¼0

�klW
ðlÞεðt � kÞ ð5Þ

/
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Results and discussion

Selection of the order of difference

The Augmented Dickey-Fuller test for unit root in level is conducted, the results are demon-

strated in Table 2. It can be conducted in Table 2 that p value for ADF test is 0.07 which indi-

cate that HFRS cases series is non-stationary distributed which p<0.07.

The results of the time series for the HFRS outbreaks data in Hubei Province from 2005 to

2014 using a first-order difference are shown in Fig 6

Fig 7 presents the stationarity analysis results relating to HFRS incidence after using a first-

order difference. The time series fluctuates around the value 0, indicating an overall uniform distri-

bution. The ACF and PACF appear to be tailing off. It can be inferred from Fig 7. that, after taking

the first-order difference into account, the time series shown in Fig 6. is a stationary time series.

Therefore, for this paper we have chosen to use the first order difference to preprocess the data.

Construction of the SD-STARIMA model and comparison with the

ARIMA and STARIMA models

In this section we construct ARIMA, STARIMA and SD-STARIMA models using first-order

difference for the time series relating to the HFRS incidence data.

ARIMA model. On the basis of first-order difference, the ARIMA(p,q) model can be

defined as:

zðtÞ ¼ �1zðt � 1Þ þ . . .þ �pzðt � pÞ þ εðtÞ þ y1εðt � 1Þ � . . . yqεðt � qÞ ð6Þ

On the basis of the ACF and PACF across different time lag values, p = 4 and q = 2 were

selected as the values for this model. The autoregressive coefficient, moving average coefficient

and test parameters are shown in Table 3.

STARIMA model. For the STARIMA model, a spatial weight matrix had to be established

first of all. First-order spatial neighborhood matrices and second-order spatial domain matri-

ces of 73�73 were obtained according to the spatial neighborhood relationship of 73 counties

in Hubei Province (there are actually 76 counties, but 73 were used as samples and the other 3

for validation). The core diagonal elements of the first-order adjacency matrix are 0. There are

no adjacent spatial units if the non- diagonal elements are 0. 1 indicates that there are adjacent

spatial units. The first- and second-order spatial neighborhood matrix can be obtained on the

basis of the specific adjacency unit according to the row and column identifying the elements

and the line standardization.

The space-time autocorrelation coefficients and space-time partial autocorrelation coeffi-

cients are then calculated for the HFRS outbreaks data incidence series (before seasonal differ-

ence). The calculated results are shown in Tables 4 and 5.

The ACF values are truncated after time lag 4 and for all of the spatial lags. The PACF values

are truncated after time lag 3 and for all of the spatial lags. In that case, a STARIMA (4,3)

model can be constructed using the results in Table 6.

Table 2. Augmented Dickey-Fuller test statistic.

t-Statistic Prob.�

Augmented Dickey-Fuller test statistic -2.721378 0.0734

Test critical values: 1% level -3.485586

5% level -2.885654

10% level -2.579708

� Lag Length: 11 (Automatic—based on SIC, maxlag = 12)

https://doi.org/10.1371/journal.pone.0207518.t002
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SD-STARIMA model. Tables 7 and 8 present the calculated values for the space-time

autocorrelation coefficient and space-time partial autocorrelation coefficient after applying the

first-order difference series to the HFRS outbreaks data.

Looking at the results in Tables 7 and 8, it can be seen that both the AFC and PACF are tail-

ing off. This confirms that this is a STARIMA model. A candidate time autocorrelation average

moving model as in STARIMA (1,1) can now be got using the transformation status of the

AFC and PACF. The STARIMA (1,1) model can be expressed formally as:

zðtÞ ¼ φ
10
zðt � 1Þ þ φ

11
W1zðt � 1Þ þ φ

12
W2zðt � 1Þ þ εðtÞ � y10εðt � 1Þ � y11W

1εðt � 1Þ

� y12W
2εðt � 1Þ ð7Þ

A maximum likelihood estimate is made for the STARIMA (1,1) model to obtain its param-

eter estimation values and hypothesis test values. The results are shown in Table 9.

Fig 6. Time series results using first-order difference for the HFRS incidence data. The polyline is constructed using the collected HFRS

incidence points after seasonal difference adjustment.

https://doi.org/10.1371/journal.pone.0207518.g006
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HFRS incidence prediction

Highly representative areas or areas with a high incidence of the disease were used to validate

the model. Luotian, Zhongxiang and Yicheng counties were used to undertake a comparison.

The observed values and predicted values for these three counties are presented in Fig 8. It can

be seen that the two values are very close, indicating that the prediction results are reliable.

Fig 7. Stationarity analysis using first-order difference for the HFRS incidence data. The ACF and PACF values for HFRS incidence

after seasonal difference adjustment for each lag.

https://doi.org/10.1371/journal.pone.0207518.g007

Table 3. ARIMA model parameters.

Estimate t Sig.

Constant -.028 -1.598 .003

AR Lag 1 1.796 16.278 .000

Lag 2 -1.037 -4.945 .000

Lag 3 .232 1.114 .008

Lag 4 -.084 -.773 .002

MA Lag 1 1.706 23.993 .000

Lag 2 -.940 -12.853 .000

https://doi.org/10.1371/journal.pone.0207518.t003
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We also evaluated the prediction results and general performance of the ARIMA, STAR-

IMA and SD-STARIMA models to assess their relative effectiveness. Table 10 shows the corre-

lation coefficient (R), Mean Absolute Percentage Error (MAPE), Root Mean Square Error

(RMSE), Average Absolute Error (MAE) and Classic Akaike Information Criterion(AIC) for

each of the models. It can be seen from the table that the SD-STARIMA model is more reliable

and that the error between its predicted values and actual observed values is smaller. Overall,

then, we can conclude as follows:

1. The data relating to HFRS incidence in Hubei Province has a fluctuating distribution curve

and is quite different from other statistically sampled data in terms of its space and time dis-

tribution features, which are characterized by an obvious seasonal distribution. An

SD-STARIMA model was therefore introduced that is able to adjust for seasonal difference

and thus fit the data incorporating seasonal distribution trends more effectively.

2. The data for HFRS incidence in Hubei Province has both spatial and temporal characteris-

tics. The SD-STARIMA model has both spatial and temporal features that are thus able to

explain and simulate the HFRS tendencies in Hubei, with a spatial-temporal weight matrix

Table 4. Autocorrelation function values of HFRS incidence before seasonal difference.

spatial lags(h)

time lags(k)

0 1 2

1 0.015 -0.051 -0.060

2 0.118 -0.020 0.041

3 0.156 0.036 0.014

4 0.13 0.051 0.062

5 0.014 -0.122 -0.123

6 0.115 0.072 0.105

7 0.087 -0.048 -0.069

8 0.144 0.039 0.022

9 0.131 0.059 0.054

10 0.015 -0.084 -0.077

11 0.046 0.003 0.006

12 0.073 0.071 0.081

https://doi.org/10.1371/journal.pone.0207518.t004

Table 5. Partial Autocorrelation function values of HFRS incidence before seasonal difference.

spatial lags (h)

time lags (k)

0 1 2

1 0.115 -0.501 -0.660

2 0.106 -0.363 -0.521

3 0.135 -0.245 -0.458

4 0.094 -0.089 -0.257

5 -0.036 -0.185 -0.264

6 0.079 -0.132 -0.184

7 0.046 -0.182 -0.211

8 0.115 -0.138 -0.290

9 0.086 0.013 -0.171

10 -0.061 -0.042 -0.117

11 -0.008 -0.068 -0.162

12 0.021 0.009 -0.043

https://doi.org/10.1371/journal.pone.0207518.t005
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being used to quantify the influence from the neighboring counties. We found that the

SD-STARMA model has a higher degree of fit as a result of its implementation of time-

space autocorrelation than would be the case with time autocorrelation alone.

3. Although the overall trend for HFRS incidence is consistent across every county in Hubei

Province, the time series for the different counties is still different because of various

impacting factors such as the local environment and human demography. The SD-STAR-

IMA model is able to combine not only historical influences, but also the spatial and tempo-

ral impact from neighboring counties to evaluate the tendencies for HFRS incidence for

any one specific county.

Having arrived at our results, we also compared them, to previous studies relating to HFRS

analysis and prediction. Zhang at al., for instance, used a basic Poisson regression method to

examine the potential impact of climate variability on the transmission of HFRS [20]. They

incorporated climatic variables across a range of lags into a basic Poisson regression model

that effectively eliminated the lagged effect of the climatic variables on the number of HFRS

cases. However, spatial influences and spatial lag for the HFRS data were not considered,

potentially overlooking a significant set of influencing factors.

Li et al. have used a GWR (geographically weighted regression) model to identify the impact

of environmental factors and social-economic factors on the spatiotemporal heterogeneity of

Table 6. STARMA (4,3) model.

Estimate t Sig.

Constant .170 6.851 .000

AR Lag 1 -1.243 -7.854 .000

Lag 2 -.252 -1.348 .008

Lag 3 .421 2.580 .001

Lag 4 .107 .748 .006

MA Lag 1 -2.197 -17.866 .000

Lag 2 -1.989 -9.528 .000

Lag 3 -.727 -6.060 .000

https://doi.org/10.1371/journal.pone.0207518.t006

Table 7. ACF values of HFRS incidence after seasonal difference adjustment.

spatial lags (h)

time lags (k)

0 1 2

1 0.359 0.286 0.248

2 0.287 0.006 0.069

3 0.297 0.099 0.033

4 0.234 0.028 0.026

5 0.045 0.017 0.015

6 0.033 0.031 0.050

7 0.029 0.022 0.020

8 -0.029 -0.012 -0.002

9 -0.002 -0.028 -0.009

10 -0.003 -0.005 -0.030

11 0.017 -0.026 -0.034

12 -0.004 -0.019 -0.042

https://doi.org/10.1371/journal.pone.0207518.t007
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HFRS in China [42]. In this model, spatial characteristics are taken into account when under-

taking the GWR-based analysis. However, this model suffers from the opposite flaw to the one

above: temporal correlation is also a key influencing factor for HFRS cases in Hubei Province.

Thus, by overlooking the temporal factors, this may similarly undermine the accuracy of the

estimated results.

Conclusion

Time series-based approaches have commonly been used in the past to predict the trends in

HFRS epidemics, with ARIMA models standing as prime example. As a result of their capacity

to capture both spatial and temporal variation, simulation results based on STARIMA models

have been found to be more accurate than the results provided by non-spatial models like

ARIMA. However, because there are also seasonal characteristics relating to the HFRS epidem-

ics in Hubei Province, we developed a new model named SD-STARIMA that is able to incor-

porate adjustments for seasonal differences into space-time series analysis of HFRS outbreaks.

We compared the estimates produced by ARIMA, STARIMA and SD-STARIMA for HFRS

incidence data for Hubei Province and found that the SD-STARIMA model more closely pre-

dicted observed trends.

In conclusion, our examination of various possible models in this paper demonstrated the

importance of analyzing seasonal differences in relation to HFRS epidemics because of the dis-

ease’s seasonal characteristics. On top of this, we found that first-order differences most closely

reflect the stability data and bimodal distribution characteristics of the disease. We then con-

structed a first-order difference based SD-STARIMA model that is able to make accurate pre-

dictions using both space-time autocorrelation coefficients and space-time partial

autocorrelation coefficients.

Table 8. PACF values of HFRS incidence after seasonal difference adjustment.

spatial lags (h)

time lags (k)

0 1 2

1 0.359 0.359 0.248

2 0.132 0.052 0.021

3 0.045 0.045 0.041

4 0.040 0.030 0.016

5 0.010 0.020 -0.038

6 -0.007 -0.017 -0.035

7 0.010 0.070 0.003

8 -0.040 -0.040 -0.044

9 -0.013 -0.033 -0.016

10 -0.010 -0.030 -0.044

11 0.027 0.017 0.033

12 -0.005 -0.015 -0.009

https://doi.org/10.1371/journal.pone.0207518.t008

Table 9. Parameter estimation and test results for the SD-STARMA model.

φ10 φ11 φ12 θ10 θ11 θ12
Parameters 1.351 0.025 -0.125 0.852 0.113 -0.112

T-test 35.845 15.123 8.559 3.325 1.046 -0.015

P value 0.000 0.001 0.000 0.015 0.235 0.441

https://doi.org/10.1371/journal.pone.0207518.t009
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To validate the proposed approach, we used data relating to three counties that have a

higher incidence of HFRS in Hubei Province (Luotian, Zhongxiang and Yicheng). According

to the results, the SD-STARIMA model is more accurate than the ARIMA and STARIMA

models and is generally much better for counties that are consistent with overall distribution

trends. In that case, the SD-STARIMA model proposed in this paper has been proven to be

more reliable for predicting HFRS epidemics in Hubei Province and has the potential to be

more widely used for the prediction of epidemics.
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46. Gaudart J, Touré O, Dessay N, Dicko AL, Ranque S, Forest L et al. Modelling malaria incidence with

environmental dependency in a locality of Sudanese savannah area, Mali. 2009; 8(1):61. https://doi.

org/’10.1186/1475-2875-8-61

47. Caputo B, Manica M, D’Alessandro A, Botta G, Filipponi F, Protano C et al. Assessment of the Effective-

ness of a Seasonal-Long Insecticide-Based Control Strategy against Aedes albopictus Nuisance in an

Urban Area. PLoS Negl Trop Dis. 2016; 10(3):e4463. https://doi.org/10.1371/journal.pntd.0004463

PMID: 26937958

48. Luz PM, Mendes BV, Codeco CT, Struchiner CJ, Galvani AP. Time series analysis of dengue incidence

in Rio de Janeiro, Brazil. AM J TROP MED HYG. 2008; 79(6):933–9 PMID: 19052308

49. Li Q, Guo N, Han Z, Zhang Y, Qi S, Xu Y et al. Application of an Autoregressive Integrated Moving Aver-

age Model for Predicting the Incidence of Hemorrhagic Fever with Renal Syndrome. AM J TROP MED

HYG. 2012; 87(2):364–70. https://doi.org/10.4269/ajtmh.2012.11-0472 PMID: 22855772

50. Pfeifer P E DSJ. Identification and interpretation of first order space-time ARMA models. TECHNO-

METRICS. 1980; 22(3):397–408

51. Lin S L HHQZ. The application of space-time ARIMA model on traffic flow forecasting. Machine Learn-

ing and Cybernetics, 2009 International Conference on. IEEE,2009. p. 6–3408.

52. Pfeifer PEDS Seasonal Space-Time ARIMA Modeling. Geographical analysis. 1981; 13(2):117–33

SD-STARMA model and spatio-temporal trend prediction analysis for HFRS

PLOS ONE | https://doi.org/10.1371/journal.pone.0207518 November 26, 2018 20 / 20

https://doi.org/'10.1186/1475-2875-8-61
https://doi.org/'10.1186/1475-2875-8-61
https://doi.org/10.1371/journal.pntd.0004463
http://www.ncbi.nlm.nih.gov/pubmed/26937958
http://www.ncbi.nlm.nih.gov/pubmed/19052308
https://doi.org/10.4269/ajtmh.2012.11-0472
http://www.ncbi.nlm.nih.gov/pubmed/22855772
https://doi.org/10.1371/journal.pone.0207518

