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In mammals, the cerebellum plays an important role in movement control. Cellular research
reveals that the cerebellum involves a variety of sub-cell types, including Golgi, granule,
interneuron, and unipolar brush cells. The functional characteristics of cerebellar cells
exhibit considerable differences among diverse mammalian species, reflecting a potential
development and evolution of nervous system. In this study, we aimed to recognize the
transcriptional differences between human and mouse cerebellum in four cerebellar sub-
cell types by using single-cell sequencing data and machine learning methods. A total of
321,387 single-cell sequencing data were used. The 321,387 cells included 4 cell types,
i.e., Golgi (5,048, 1.57%), granule (250,307, 77.88%), interneuron (60,526, 18.83%), and
unipolar brush (5,506, 1.72%) cells. Our results showed that by using gene expression
profiles as features, the optimal classification model could achieve very high even perfect
performance for Golgi, granule, interneuron, and unipolar brush cells, respectively,
suggesting a remarkable difference between the genomic profiles of human and
mouse. Furthermore, a group of related genes and rules contributing to the
classification was identified, which might provide helpful information for deepening the
understanding of cerebellar cell heterogeneity and evolution.
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INTRODUCTION

The cerebellum is like a big regulator and works by affecting the
functions of brain, brainstem, and spinal cord at different levels
(D’Angelo, 2018). The cerebellum can regulate body balance,
muscle tone, and coordination of voluntary movement. An
abnormal cerebellum is linked to some neurological diseases,
such as autism, schizophrenia, and depression (D’Angelo, 2010;
D’Angelo and Casali, 2012). Cellular research reveals the
electrophysiological properties of neurons and synapses in the
cerebellum and the mechanism of cerebellar synaptic plasticity
(Hansel et al., 2001; D’Angelo and De Zeeuw, 2009; D’Angelo,
2011). The heterogeneity of cerebellum cells among different
mammalian species presents a species-specific functional pattern
of cerebellum which may be linked to evolution. The
physiological function of the cerebellum is crucial and it is
essential to explore the gene expression of various cells in the
cerebellum for understanding its development, evolution, and
working mechanism.

The cerebellum is thought to consist of Golgi cells, granule
cells (GCs), interneuron cells, and unipolar brush cells (UBC).
Cerebellar Golgi cells can receive dual excitatory signals, one of
which comes from the mossy fibers of basal dendrites, and the
other comes from the parallel fibers of apical dendrites. Golgi cells
are inhibitory, and studies showed that the granular layer
organization relies on feedforward and feedback inhibition
cycles (Eccles Jc Fau - Llinás et al., 1966; Strick, 1985). The
anatomical studies of neurons showed that Golgi cells can
produce lateral inhibition, which extends beyond the synaptic
field. These findings indicate that Golgi cells may regulate the
activity of the granular layer. Notably, Golgi cells are regarded as
theta-frequency pacemakers activated by localized input bursts,
which exploit membrane mechanisms (including specific ionic
channels, excitatory, inhibitory chemical synapses, and dendritic
gap junctions). Local input pulses activate Golgi cells through
membrane mechanisms, such as specific ion channels, synapses,
and dendritic gap junctions. GCs are cell types with the highest
proportion in the cerebellum and originate from the rhomboid
labrum on the dorsal part of the hindbrain alar. GCs constitute
the dense and unique structure of the cerebellar cortex (Jaarsma
et al., 1996). GCs and Golgi cells are located in the innermost
granular cell layer of the cerebellar cortex (Dino et al., 2001;
D’Angelo, 2018). Researchers used single-cell transcriptomics
methods to reveal the diversity and conservation of granular
cells in mice (Jaarsma et al., 1996). Interneuron cells are only a
minority in the brain but have the biggest differences in
morphology and physiological characteristics (Kepecs and
Fishell, 2014). UBC is a glutamatergic neuron located in the
cerebellar cortex (Dino and Mugnaini, 2000; Oertel and Young,
2004). Although UBCs may receive the same signal input as GCs,
they have unique morphologies, such as dendritic brushes and
large ends of axon branches. In accordance with their chemical
phenotype and intrinsic characteristics, unipolar brush neurons
can be divided into different subgroups (Jaarsma et al., 1996; Dino
and Mugnaini, 2000; Dino et al., 2001; Oertel and Young, 2004;
Sekerkova et al., 2005). In the process of organismal evolution, the
evolution of important genes occupies a core position

(Fukushima and Pollock, 2020). The evolution of important
organs, such as hominoid brain, is closely related to changes
in gene expression (Kaessmann, 2010; Zhang et al., 2011; Chen
et al., 2013; Zhang and Long, 2014). Researchers reported that
some new genes participated in lineage- or species-specific
phenotypic evolution (Chen et al., 2013). In-depth research on
human-specific or polymorphic genes may provide important
references for exploring the evolution of new genes and their
effects on diseases (Cooper and Kehrer-Sawatzki, 2011).

On the basis of existing human and mouse cerebellar cortex
single-cell transcriptomic data set (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE165371), we use new
computational methods to screen for characteristically
expressed and important genes between human and mouse
cerebellar cells that may affect the development and evolution
of the central nervous system. We classified cerebellar cells into
four different subtypes including Golgi cell, GC, interneuron cell
and UBC. We have built and verified some classifiers that can
identify key genes related to species-specific expression pattern
and the potential evolutional trend in each cerebellar cell type.
We use minimum redundancy andmaximum relevance (mRMR)
(Peng et al., 2005) combined with incremental feature selection
(IFS) (Liu and Setiono, 1998), decision tree (DT) (Safavian and
Landgrebe, 1991), random forest (RF) (Breiman, 2001), and
Synthetic Minority Oversampling Technique (SMOTE)
(Chawla et al., 2002) approaches to recognize the most
important gene features and rank these genes based on their
relevance in classification (Peng et al., 2005). At the same time,
the decision rules for classifying human and mouse cerebellum
cells are determined. The candidate feature list contains many
meaningful genes, which may play a non-negligible role in the
development of the nervous system and the differentiation of
nerve cells. Some of the selected features have been confirmed in
experiments. On the one hand, this study proves the feasibility
and reliability of the analysis methods. On the other hand,
selected features provide a direction for further research on
the detailed mechanism of nervous system development and
pathogenesis and intervention targets of central nervous
system diseases.

MATERIALS AND METHODS

Our research is divided into four parts: 1. data collection, 2.
feature analysis, 3. incremental feature selection and model
building, and 4. feature interpretation. The process is shown
in Figure 1, and details are described below.

Data Collection
Single-cell profiling datasets are downloaded from the
transcriptomic atlas of human and mice (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE165371). The total
numbers of samples and features in the dataset are 321,387
and 74,593, respectively, which are composed of four different
cell sample datasets, corresponding to four sell types: Golgi cell,
GC, interneuron cell, and UBC. The breakdown of each dataset,
including number of mouse cells, number of human cells, total
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number of cells and number of gene features, is provided in
Table 1. A binary classification problem was employed to
investigate each dataset, where mouse cells were termed as
positive samples and human cells were considered as negative
samples.

Feature Analysis
Boruta Feature Filtering
The Boruta feature selection is a RF-based wrapper method used
to detect all relevant features related to the target output (Kursa
and Rudnicki, 2010; Zhang et al., 2021a) and identifies related
features by iteratively identifying the important scores of real and
shuffled features. Specifically, the Boruta feature selection copies
the training dataset and scrambles the value of the feature to
obtain a new dataset called the shuffled dataset. The RF classifier
is trained on this shuffled dataset to obtain the importance score
of each feature. The real feature with a remarkably higher
importance score than the shuffled feature is marked as

important. These important features are selected by Boruta
after multiple iterations.

The Boruta program used in this study is retrieved from
https://github.com/scikitlearn-contrib/boruta_py. It is
performed with its default parameters. Features selected by
Boruta are further investigated by another feature selection
method.

Minimum Redundancy and Maximum Relevance
ThemRMR (Peng et al., 2005; Zhang et al., 2021a; Pan et al., 2021;
Chen et al., 2022) is a feature selection method used to determine
the relationship between features and classification predictions.
The mRMR can calculate the feature relevance between features
and labels as well as the redundancy of features through filters and
obtain the optimal subset by ranking the features with high
feature relevance and low feature redundancy. A feature list,
named mRMR feature list, is generated by mRMR. Initially, this
list is empty. mRMR repeatedly selects one feature from the

FIGURE 1 | Overview of the design. Four types of mouse and human cerebellum cells constitute four datasets, where cells are represented by single-cell profiles.
The profiles are analyzed by Boruta and minimum redundancy maximum relevance feature selection methods one by one, resulting in one mRMR feature list on each
dataset. The list is used in the incremental feature selection, incorporating some classification algorithms, synthetic minority oversampling technique and ten-fold cross-
validation to extract significant single-genes and combined-gene rules.

TABLE 1 | Breakdown of 4 cell sample datasets.

Cell type Number
of mouse cells

Number
of human cells

Total
number of cells

Number
of gene features

Golgi cell 3,989 1,059 5,048 14,512
Granule cell 119,972 130,335 250,307 23,422
Interneuron cell 45,555 14,971 60,526 23,203
Unipolar brush cell 1,613 3,893 5,506 13,456
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remaining features such that it has highest relevance to labels and
lowest redundancy to already-selected features. This selected
feature is appended to the list. The procedure stops until all
features are in the list.

This study adopts the mRMR program obtained from http://
penglab.janelia.org/proj/mRMR/. Default parameters are used to
perform such program.

Incremental Feature Selection and Model
Building
Although mRMR produces a feature list, users still cannot know
which features should be selected for model building. In our
study, such procedure is fulfilled by the integration of the IFS (Liu
and Setiono, 1998) approach with RF (Breiman, 2001) and DT
(Safavian and Landgrebe, 1991) algorithms.

The IFS (Liu and Setiono, 1998) is a feature selection
approach that aims to select optimal features for the creation
of a supervised classifier. To perform IFS on a descending list of
features, we first construct a series of feature subsets, each of
which contains some top features in the list. On each feature
subset, a classifier is built and its performance is evaluated by
ten-fold cross-validation (Kohavi, 1995; Ding et al., 2022; Tang
and Chen, 2022). After testing all possible feature subsets, the
classifier with highest performance is discovered. The features
for such classifier is the optimal features, and the classifier is the
optimal classifier.

As IFS method needs one classification algorithm, we employ
two classic algorithms in this study. They are RF and DT. The RF
is a meta-classifier containing a large number of DTs, where each
DT is built based on randomly selected samples and each node in
such DT computes the output through a random subset of
features. The outputs of the DTs are aggregated to generate
the final output class. RF is quite powerful. Thus, it has wide
applications in tackling many biological and medical problems
(Bifsha et al., 2014; Zhao et al., 2018; Jia et al., 2020; Liang et al.,
2020; Liu et al., 2021; Pan et al., 2021; Li et al., 2022; Yang and
Chen, 2022). RF reduces errors by averaging the predicted
outputs of all DTs because of some variations between DTs.
This phenomenon loses some interpretability, slightly increases
bias, improves performance, and avoids overfitting.

Different from the RF algorithms, which acts as a kind of
“black-box” classifier, DT can construct classification and
regression models that are understandable by humans.
Although it is not very powerful, it can provide novel insights
to uncover underlying mechanism. This algorithm has also been
used to deal with some important problems (Liang et al., 2020;
Zhang et al., 2021a; Chen et al., 2021; Pan et al., 2021). The tree
generated by DT generally consists of a set of interpretative rules,
indicating the contributive roles of features to the final model in
the format of “IF–THEN” conditions.

In our study, RF and DT are implemented using the Scikit-
learn package in Python.

Synthetic Minority Oversampling Technique
As listed in Table 1, four datasets are imbalanced. Models
directly built on such datasets are always not efficient. Here, we

adopt SMOTE (Chawla et al., 2002) to process this problem,
which is a technique for oversampling based on the principle of
creating synthetic data by using the k-nearest neighbor
algorithm. First, a sample, denoted by x, is randomly
selected from the minor class. Second, the k-nearest
neighbors of x, which are also in the minor class, are found,
and one neighbor is randomly selected, denoted as y. Third, a
synthetic sample is created by x and y, which is defined as the
linear combination of x and y with randomly generated
combination coefficients. This sample is poured into the
minor class. Such procedures are executed several times
until minor class has equal number of samples to the major
class. In this study, SMOTE is only used in the evaluation of
classifiers in IFS method.

Feature Interpretation
In our study, several machine algorithms are applied on four
datasets of cerebellum cells. We can obtain some essential gene
features. The interpretation of gene features includes two parts,
i.e., interpretations of single- and combined-gene rules. The
single-gene interpretation focuses on the optimal gene selected
by the mRMR and IFS, whereas the interpretation of the
combined-gene rule focuses on the predictive rules given by
DT. Our interpretation is based on a comprehensive literature
review of a previous work.

Performance Evaluation
The Matthew’s correlation coefficient (MCC) (Matthews, 1975;
Chen et al., 2017; Zhao et al., 2018; Jia et al., 2020; Liang et al.,
2020; Zhang et al., 2021b) is used to evaluate the performance of
training models. MCC is the correlation coefficient between the
observed categories and predictions. MCC serves as an indicator
that can be applied to samples with large imbalance. MCC is
defined as:

MCC � TP × TN − FP × FN
�������������������������������������(TP + FP)(TP + FN)(NP + FP)(NP + FN)√ (1)

where TP, FP, TN, and FN represent the numbers of true-
positive, false-positive, true-negative, and false-negative
samples, respectively. The value range of MCC is distributed
between −1 and 1. A high MCC indicates good performance of
the classifier.

In additional, we also employ other measurements, including
sensitivity (SN) (same as recall), specificity (SP), prediction
accuracy (ACC), precision and F1-measure. They can be
computed by

SN � TP

TP + FN
(2)

SP � TN

TN + FP
(3)

precision � TP

TP + FP
(4)

F1 −measure � 2 × recall × precision

recall + precision
(5)

These measurements are provided for reference.
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RESULTS

Data Collection and Feature Analysis
In our study, 321,387 cerebellum cell samples were collected.
These single-cell samples could be divided into four categories,
i.e., Golgi cell (5,048, 1.57%), GC (250,307, 77.88%), interneuron
cell (60,526, 18.83%), and UBC (5,506, 1.72%). In the original cell
sample data, each cell sample was represented by expressions on
lots of genes, which were quite difficult for machine learning
analysis due to the dimensionality curse. Therefore, the Boruta
filtering method was first used to do the optimal compression of
features (i.e., gene expressions) for each of 4 cell datasets. After
compression, each Golgi cell, GC, interneuron cell, and UBC was
represented as a compressed vector of 1,276, 1,271, 1924, and
1,252 features, respectively. The gene ID corresponding to the
feature in the sample vector could be found in Supplementary
Table S1.

Remaining features were analyzed by the mRMR method. An
mRMR feature list was obtained for each dataset. Four feature
lists are also provided in Supplementary Table S1. These lists
were further investigated in the following procedures.

Prediction Performance
For each dataset, an mRMR feature list was obtained. Afterward,
RF and DT classification algorithms were used to construct the
classification models in the IFS method with a step size of one on
the basis of such list. Each classification model was evaluated by
ten-fold cross-validation. The predicted results were counted as
measurements listed in Performance Evaluation section. To

clearly show the performance of DT and RF on different
feature subsets, an IFS curve was plotted for each classification
algorithm, as shown in Figure 2, where x-axis represents the
number of features in the subset and y-axis stands for the main
measurement, MCC. The key information extracted from these
IFS curves is listed in Table 2.

When RF was used in the IFS method, it achieved perfect
performance with MCC = 1.00000 when proper feature subsets
were adopted. In detail, for Golgi cell, 518 top features in the
mRMR feature list were used, whereas this number was 2, 100 and
28 for other three types of cells, respectively. These features
constituted the optimal features for each dataset. Accordingly,
an optimal RF classifier was built on each dataset using
corresponding optimal features. Their detailed performance,
including SN, SP, ACC, precision and F1-measure, is
illustrated in Figure 3. Evidently, each measurement reached
its perfect value, suggesting extreme good performance of these
classifiers. They can be efficient tools to classify mouse and
human cerebellum cells.

Although the optimal RF classifiers yielded perfect
performance, they cannot provide useful clues to uncover
essential differences between mouse and human cerebellum
cells because RF is a black-box algorithm. In view of this, DT
was employed in this study, which can provide more clear
insights to study mouse and human cerebellum cells. It can be
observed from Figure 2 that the highest MCC on each dataset
yielded by DT was also very high (>0.99000). These MCC values
were obtained by using top 34, 5, 1 and 28 features in the list on
four datasets, respectively. Accordingly, these top features

FIGURE 2 | IFS curves of decision tree and random forest on datasets of four cerebellum cell types. (A) Curves on dataset for Golgi cells, (B) Curves on dataset for
Granule cells, (C) Curves on datasets for Interneuron cells, (D) Curves on dataset on Unipolar brush cells.
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comprised the optimal features for four datasets, respectively, and
an optimal DT classifier with corresponding optimal features was
built on each dataset. Other measurements of these optimal DT
classifiers are shown in Figure 3. Clearly, on each dataset, the
optimal RF classifier was always superior to or equal to the
optimal DT classifier. This result conformed to the general
fact that RF is more efficient than DT.

Effectiveness of the Optimal Classifiers
The optimal DT/RF classifiers constructed above shown good
even perfect performance. This section elaborated that these
results were not incidental. To this end, for each optimal
classifier, we did the following test. According to the number
of features in the optimal classifier, i.e., the number of optimal
features, we randomly selected same number of features from all
features. These selected features were used to represent mouse
and human cerebellum cells. A classifier with DT or RF was built

on such representation. Ten-fold cross-validation was employed
to evaluate its performance. To give a full test, above procedures
were conducted twenty times. Obtained MCC values were shown
in a box plot, as illustrated Figure 4. It can be observed that these
classifiers with randomly selected features all provide lower
performance than the corresponding optimal classifier. This
indicated that the optimal features were really important for
classifying mouse and human cerebellum cells and can be
significant single-genes to distinguish mouse and human
cerebellum cells.

Significant Feature Interaction
Important genes for distinguishing human andmouse cerebellar
cells based on the mRMR ranking are presented in Table 3.
These genes can be significant single-genes to distinguish mouse
and human cerebellum cells, which would be discussed in
Analysis of Significant Single-Genes section.

TABLE 2 | Performance of optimal classifiers on four datasets using different classification algorithms.

Cell type Classification algorithm Number of features MCC

Golgi cell Decision tree 34 0.99642
Random forest 518 1.00000

Granule cell Decision tree 5 1.00000
Random forest 2 1.00000

Interneuron cell Decision tree 1 0.99996
Random forest 100 1.00000

Unipolar brush cell Decision tree 28 0.99606
Random forest 28 1.00000

FIGURE 3 | Somemeasurements of the optimal decision tree and random forest classifiers on datasets of four cerebellum cell types. (A)Measurements on dataset
for Granule cells, (B) Measurements on datasets for Granule cells, (C) Measurements on datasets for Interneuron cells, (D) Measurements on datasets for Unipolar
brush cells.
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Furthermore,we adopted the rule learning algorithmDT to generate
combined-gene rules, interpret the classification rules of features.
According to the optimal DT classifier on each dataset, a tree was
learnt on all cell samples, which were represented by the optimal
features of this DT classifier. Such tree was represented by some rules,
which are listed inTable 4. A total of 8, 2, 2, and 11 rules were obtained
for the Golgi cell, GC, interneuron cell, and UBC, respectively. In
Analysis of Combined-Gene Rules section, we would discuss these rules.

DISCUSSION

In this project, we used machine learning methods to explore the
single-cell expression profile data of human and mouse cerebellar

cells. Important single-genes and combined-gene rules of each
cerebellar cell type for distinguishing these two mammalian
species are created and shown in Tables 3, 4. The
classification achieved a quite high accuracy that indicates a
considerable difference in expression pattern between human
and mouse cerebellar cells. To further validate the usefulness of
our models and understand the functional evolution of cerebellar
cells, we summarized existing experimental evidence for the
important genes and rules through a wide literature review.

Analysis of Significant Single-Genes
According to features used in the optimal RF classifiers, we
identified 648 (518+2+100+28) considerable features with the
mRMR method to distinguish human and mouse cerebellum
cells. Next, we further introduced research evidence related to the
most important features in each cerebellar cell type to confirm the
reliability of previous forecasts.

Golgi Cell Gene
The protein encoded by leucine-rich repeat and immunoglobulin
(Ig) domain containing 2 (LINGO2) is identified as a member of
the leucine-rich repeats (LRR) gene family. The expression of the
LINGO2 gene in the hypothalamus and cerebral cortex
hypothalamus is higher than that in other regions. The Lingo2
is in the top relevant feature with the mRMRmethod and has been
linked with essential tremor (ET) and Parkinson’s syndrome (Wu
et al., 2011). ET is themost commonmovement disorder and adult
patient accounts for the vast majoritys. Studies showed that LRR

FIGURE 4 | Box plots of MCC values yielded by classifiers with randomly selected gene features on datasets of four cerebellum cell types. (A) Box plots on dataset
for Granule cells, (B) Box plots on datasets for Granule cells, (C) Box plots on datasets for Interneuron cells, (D) Box plots on datasets for Unipolar brush cells.

TABLE 3 | Feature list of important genes based on mRMR ranking.

Cell type The rankings of feature Genes

Golgi Cell 1 Lingo2
3 ube3a
5 Nlgn1

Granule Cell 1 Ralyl
3 Fgf14

Interneuron Cell 1 Malat1
2 Ank2
3 Nrxn3

Unipolar Brush Cell 1 Pde1a
7 Rgs6
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and LINGO2 protein structural variations containing Ig domains
may be related to ET. Compared with those of the control group,
the protein levels of LINGO1 in the cerebellar cortex and
cerebellar white matter of patients with ET are significantly
increased. Changes in the LINGO2 expression in the diseased
brain appear to occur as the disease progresses, starting in the
cerebellar cortex before reaching the white matter. Compared
with those of normal individuals, the LINGO1 protein levels in
the cerebellar cortex and white matter of patients are
significantly increased. In addition, the expression of
LINGO2 of patients shows consistent changes with the
progression of ET, which starts from cerebellar cortex and
then reaches the white matter. The upregulation of LINGO
expression is likely to be a potential pathological indicator of
neurodegenerative diseases (Jasinska-Myga and Wider, 2012;
Delay et al., 2014). Studies confirmed that a tSNP variant of
LINGO2 is associated with Parkinson’s syndrome (p < 0.05)
(Chen et al., 2015). Our results show that LINGO2 is
significantly different in the cerebellum of humans and mice,
indicating that the LINGO2 expression may be associated with
the development of the nervous system. The above research
results remind us that the expression level of LINGO2 may be
related to the nervous system especially the evolutionary level of
cerebellum. In addition, the LINGO2 mutant may be an
important indicator of neurodegenerative diseases.

The protein-coding gene UBE3A encodes the E3 ubiquitin
protein ligase, which can bind to the ubiquitin of the E2-binding
enzyme in the form of a thioester and then transfer ubiquitin to
E2-binding enzyme substrate (Kumar et al., 1999; Dhananjayan et
al., 2006; Mishra et al., 2009; Shimoji et al., 2009; Gossan et al.,
2014; Ronchi et al., 2014). In addition, UBE3A can accelerate the
degradation of misfolded proteins, thereby achieving cell quality
control. TheUBE3A gene presents a biallelic expression pattern in
some tissues, but its transmission mode in the brain is maternal
inheritance. The Ube3A mutation can cause the Angelman
syndrome (Buiting et al., 2016), a neurological disease
accompanied by severe developmental delay, hypotonia,
epilepsy, aphasia, and other complications. In addition, reports
showed that the UBE3A protein binds to the E6 protein of
papillomavirus, causing p53 ubiquitination and hydrolysis.
Other studies showed that UBE3A can mediate the activity-
regulated cytoskeleton-associated protein (ARC) ubiquitination
and degradation to regulate synaptic growth (Greer et al., 2010).
In addition, mutations in Ube3A are related to autism.
Researchers found that Ube3A dysfunction can increase ARC
expression and reduce the quantity of α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptors in
synapses. Therefore, researchers inferred that AMPA
dysregulation may be related to Angelman syndrome or other
cognitive disorders (Greer et al., 2010). In our analysis results,

TABLE 4 | Classification rules generated by DT.

Index Rule Label

Golgi Cell gene

1 (Lingo2 > 2,924.455) and (Lrp1b ≤ 1,185.155) and (Upk3b ≤ 180.656) Negative
2 (Lingo2 ≤ 2,924.455) and (Pla2g3 ≤ 108.329) and (Nrxn1 ≤ 5,364.268) and (Ube3a ≤2,781.385) Positive
3 (Lingo2 ≤ 2,924.455) and (Pla2g3 > 108.329) Negative
4 (Lingo2 > 2,924.455) and (Thsd7b > 1,185.155) Positive
5 (Lingo2 ≤ 2,924.455) and (Pla2g3 ≤ 108.329) and (Nrxn1 ≤ 5,364.268) and (Ube3a >2,781.385) and (Fstl5 ≤ 539.2883) Negative
6 (Lingo2 ≤ 2,924.455) and (Pla2g3 ≤ 108.329) and (Nrxn1 > 5,364.268) Negative
7 (Lingo2 ≤ 2,924.455) and (Pla2g3 ≤ 108.329) and (Nrxn1 ≤ 5,364.268) and (Ube3a >2,781.385) and (Fstl5 > 539.288) Positive
8 (Lingo2 > 2,924.455) and (Thsd7b ≤ 1,185.155) and (Upk3b > 180.656) Positive

Granule Cell gene

1 Malat1 ≤ 3,654.637 Positive
2 Malat1 > 3,654.637 Negative

Interneuron Cell gene

1 Malat1 > 945.180 Negative
2 Malat1 ≤ 945.1805 Positive

Unipolar Brush Cell gene

1 (Ccdc85a ≤152.189) and (Rgs6 ≤ 4,444.267) and (Kcnd2 ≤ 5,474.120) and (Cdh12 ≤ 1975.607) and (Fgf14 ≤ 7,328.168) Positive
2 (Ccdc85a >152.189) and (Hsp90aa1≤1,532.738) Negative
3 (Ccdc85a≤152.189) and (Rgs6 > 4,444.267) and (Aff3≤1,376.276) Negative
4 (Ccdc85a≤152.189) and (Rgs6≤4,444.267) and (Kcnd2 > 5,474.120) and (Cblb≤284.311) Negative
5 (Ccdc85a≤152.189) and (Rgs6≤4,444.267) and (Kcnd2≤5,474.120) and (Cdh12≤1975.607) and (Fgf14 > 7,328.168) and

(Kcnd2≤2,874.838)
Positive

6 (Ccdc85a >152.190) and (Hsp90aa1 > 1,532.738) Positive
7 (Ccdc85a≤152.189) and (Rgs6 > 4,444.267) and (Aff3 > 1,376.276) Positive
8 (Ccdc85a≤152.189) and (Rgs6≤4,444.267) and (Kcnd2≤5,474.120) and (Cdh12≤1975.607) and (Fgf14 > 7,328.168) and

(Kcnd2 > 2,874.838)
Negative

9 (Ccdc85a≤152.189) and (Rgs6≤4,444.267) and (Kcnd2 > 5,474.120) and (Cblb >284.311) Positive
10 (Ccdc85a≤152.189) and (Rgs6≤4,444.267) and (Kcnd2≤5,474.120) and (Cdh12 > 1975.607) and (Pde1a >2,364.066) Positive
11 (Ccdc85a≤152.189) and (Rgs6≤4,444.267) and (Kcnd2≤5,474.120) and (Cdh12 > 1975.607) and (Pde1a≤2,364.066) Negative
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Ube3A, as one of the top features, has significant differences in
expression in human andmouse cerebellum cells. Combined with
existing studies, our study suggests that the expression level of
Ube3A may serve as a powerful indicator for predicting the
function and evolution of the nervous system.

Neuroligin 1 (NLGN1) is a protein-coding gene, and its
translation product is a member of the neuron cell surface
protein family. The NLGN1 family can be used as specific
ligands for β-neuroproteins, which may be related to the
formation and remodeling of synapses. The NLGN1 protein
interacts with neuroproteins to promote synaptic transmission
signals and recruits and accumulates other synaptic proteins.
Studies showed that NLGN1 can promote the de novo
formation of synaptic structures in vitro and may
participate in the regulation of excitatory synapses. The
protein encoded by NLGN1 has hydrolase and protein
dimerization activities and plays an important role in
protein–protein interaction at the synapse and signal
transmission process across the synapse. NLGN1 variants
may result in autism and Asperger’s syndrome. We
speculated that the differential expression pattern of
NLGN1 in Golgi cells between human and mouse
cerebellum may imply a potential functional evolution.

Granule Cell Gene
The Raly-like recognition motif (Ralyl) is identified as an
important characteristic gene by the mRMR, and its encoded
RNA binding protein affects embryonic development (Ji et
al., 2003a). A previous study pointed out that Ralyl may be
related to Alzheimer’s disease (Zhang et al., 2020).
Researchers revealed that Ralyl is a hub gene in the brain
transcriptome module of patients with Alzheimer’s disease
and is highly associated with Alzheimer’s reserve-related
phenotypes. Notably, the Ralyl expression decreases with
Alzheimer’s progression. Subjects with Alzheimer’s disease
reserves show significantly higher Ralyl expression compared
with those without Alzheimer’s disease reserves (Zhang et al.,
2020). Ralyl is related to cancer cell metastasis and poor
prognosis in patients with liver cancer. Ralyl is specific for
liver progenitor cells and regulates hepatocellular carcinoma
stem cells by upregulating the stability of TGF-β2 mRNA
through the reduced N6-methyladenosine modification
(Wang et al., 2021). In addition, the overexpression of
Ralyl can inhibit the MAPK and CDH1 signaling
pathways, thereby inhibiting the development of ovarian
cancer (Xia et al., 2021). Compared with those in
nontumor tissues and epithelial ovarian cancer cells, the
expression level of Ralyl in ovarian clear cell cancer cells is
lower. The pathological stage and prognosis of patients with
ovarian clear cell carcinoma and high Ralyl expression are
improved. Other diseases associated with Ralyl include
Bardet–Biedl syndrome 1. Ralyl can be regarded as a
prognostic marker for certain tumors and a monitoring
target for central nervous system disorders.

The protein-coding gene Fgf14 belongs to the fibroblast
growth factor (FGF) family. Members of this family can
promote cell mitosis and are closely related to other biological

processes. The mutation of this gene is related to autosomal
dominant-inherited brain ataxia (Miura et al., 2019). Fgf14
related pathways include ERK signaling and apoptosis
pathways in synovial fibroblasts. FGF14 is an intracellular
protein that controls neuronal excitability and synaptic
transmission and is suggested for use in the nervous system
and mental diseases. Studies showed that male Fgf14 knockout
mice have significantly reduced aggressiveness, sexual behavior,
and other behaviors driven by spontaneous initiatives. The fine-
tuning of neuronal function by Fgf14 is an important mechanism
for controlling such behaviors. FGF14 can control the excitability
and synaptic transmission of neurons and has certain diagnostic
indicators in neurological and mental diseases. Further molecular
studies revealed that Fgf14 can affect individual behaviors by
regulating the function of neurons (Hoxha et al., 2019). Recent
data indicate that Fgf14 can modulate multiple ion channels and
the localization of the potassium voltage-gated channel subfamily
Q member 2 (KCNQ2) protein in hippocampal neurons (Pablo
and Pitt, 2017). All these results proved the important role of
Fgf14 in regulating nervous functions. Our analysis proposed a
new sight that Fgf14 shows differential expression in GCs
between human and mouse cerebellum, and implying a
linkage between gene Fgf14 and nervous system evolution in
mammals.

Interneuron Cell Gene
NRXN3 belongs to the neuroprotein (NRXN) family, which can
act as a cell adhesion molecule in the process of synaptogenesis
and intercellular signaling.NRXN3 has a wide range of alternative
splicing and alternative promoters. Thus, the gene has multiple
transcription variants and protein isoforms. Previous research
suggested that NRXN3 variants are associated with abnormal
behavioral phenotypes, such as alcohol dependence, nicotine
addiction, and autism spectrum disorders. However, new
research showed that NRXN3 also plays a potential role in
disorders of synaptic transmission. NRXN3-related pathways
include muscular dystrophy and protein interactions at
synapses. Studies showed that mice with missense variants of
NRXN3 show increased fear. The possible change inNRXN3 from
arginine to tryptophan is a pathogenic variant of empathy and
fear (Keum et al., 2018). Researchers collected one data set related
to healthy aging and 3 data sets related to Alzheimer’s disease in
the hippocampus from the Gene Expression Omnibus database.
The results of functional analysis showed that NRXN3-led
synaptic dysfunction plays a prominent role in the process of
aging and Alzheimer’s disease-related cognitive decline. In
addition, when the expression of NRXN3 in an individual
decreases, the risk of Alzheimer’s disease increases, but its
underlying mechanism needs to be further elucidated (Zheng
et al., 2018). NRXN3 encodes an important part of synaptic
function related to autism and other neurodevelopmental/
neuropsychiatric diseases (Südhof et al., 2008). The
chromosome microarray analysis is used to identify rare exon
deletions affecting the NRXN3 alpha isoform in three-generation
Chinese families. The results of family cosegregation studies
indicate that NRXN3 affects autism and neurodevelopment/
neuropsychiatric disorders. Moreover, schizophrenia and facial
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deformities are potential new features of NRXN3 haploid
deficiency (Yuan et al., 2018). A study showed that the
NRXN3 gene is a potential factor affecting the risk of nicotine
addiction and that the NRXN3 marker rs1004212 is significantly
related to the amount of smoking (Novak et al., 2009). Combining
our analysis results and existing research, we further speculate
that the abnormal expression of NRXN3 is the cause of
neurological diseases that cannot be ignored, and its
expression level may also be an important marker for
representing the evolution of the nervous system of different
species.

The protein encoded by Ankyrin 2 (ANK2) belongs to the
ankyrin family and connects integral membrane proteins with the
cytoskeleton. Ankyrin is involved in cell proliferation and
movement and the maintenance of special domains. ANK2
can promote the localization of ion transporters and channels
and maintain the stability of cell membranes. For example, in
cardiomyocytes, ANK2 can coordinate the assembly of ion
exchangers to maintain and promote the targeting and
stability of ion exchangers. In addition, in neonatal
cardiomyocytes, ANK2 is indispensable for regulating the
contraction rate. In the skeletal muscle, ANK2 is involved in
the correct positioning of DMD and DCTN4 and in the
formation and/or stabilization of microtubule subsets related
to the ribs and neuromuscular junctions. In the rod-shaped
photoreceptor, ANK2 participates in the coordinated
expression of Na/K atpase, Na/Ca exchanger, and β-2-spectrin.
In addition, ANK2 is involved in important life processes, such as
endocytosis and intracellular protein transport. ANK2 variants
can cause long QT syndrome four and arrhythmia syndrome
(Watanabe and Minamino, 2016; Gessner et al., 2019). The
association between gene ANK2 and interneuron cells of
cerebellum have not been reported so far. Our study
demonstrated the significant difference in ANK2 expression
between human and mouse cerebellum, and it suggested a
potential role of ANK2 in nervous system development and
evolution.

Unipolar Brush Cells Gene
The phosphodiesterase (PDE) 1A gene encodes a Ca2+/
calmodulin-dependent PDE, which includes 23 exons and 9
subtypes. The PDE1A gene belongs to the cyclic nucleotide
PDE family. PDE, a phosphohydrolase, catalyzes the
hydrolysis of adenosine (cAMP) and/or guanine (cGMP) 3′,5′-
cyclic phosphate in the 3′-cyclic phosphate bond. PDE1A can
regulate the concentration of cyclic nucleotides in the cell and
influence signal transduction. The cyclic nucleotide PDE has dual
specificity for cAMP and cGMP and is involved in the regulation
of some important physiological processes. PDE1A can bind
calmodulin and cGMP, has higher affinity for cGMP than for
cAMP, and occupies an important position in the GPCR and
calcium signaling pathway. Current studies found that PDE1A9 is
highly expressed in the brain tissue, but its expression may lead to
functional changes depending on age. Studies showed that
compared with young controls, the phosphorylation level of
the transmembrane regulatory protein in the hippocampus of
aged rats is significantly reduced (Kelly et al., 2014), whichmay be

related to the expression of PDE1A in individuals of different
ages. Other diseases associated with PDE1A include Fraser’s
syndrome 1.

The encoded product of the G protein signal regulator 6
(RGS6) belongs to the G protein signal transduction regulator
protein family. The RGS6 protein is characterized by DEP and
GGL domains. The latter is the G beta 5 interaction domain, and
these proteins can activate the gtpase activity. Many alternatively
spliced transcripts of this gene have long or short N-terminal
domains, complete or incomplete GGL domains, and isotypes of
different C-terminal domains. The RGS protein may regulate G
protein-mediated signal transduction through negative feedback,
thereby affecting the activity of neurons, cardiovascular system,
and lymphocytes and may even increase the risk of cancer.
Mutations in RGS6 may cause Hirschsprung’s disease 1, night
blindness and congenital quiescence. RGS6-related pathways
include GPCR signal transmission and protein metabolism.
When the G protein surface receptor is activated, the G
protein initiates a signal cascade in the host cell. The RGS
protein inactivates the G protein and turns off this signaling
cascade. RGS6 belongs to the R7 subfamily and regulates the G
protein function, which is essential for the transmission of a
variety of neurotransmitters and neuronal responses. Genetic
variations in RGS6 may disrupt normal GPCR signals, leading to
disease or subtle features. For example, studies reported that
RGS6 abnormalities may be related to diseases, such as alcohol
dependence, Parkinson’s syndrome, and neurological or affective
disorders (Ahlers et al., 2016). In human dopamine neurons, the
expression of RGS6 is restricted but can regulate the D2R-Gi/o
pathway and can prevent Parkinson’s neurodegeneration,
resulting in the accumulation of α-neurite nuclein (Luo et al.,
2019). RGS6 has an important effect on the differentiation of
microtubules and neurons. RGS6 induces neuron differentiation
through a new mechanism involving the interaction of SCG10
with its GGL domain (Liu et al., 2002). Existing studies are
consistent with our analysis results. RGS6 is expressed in
humans and mice and is regarded as an important
characteristic gene in cerebellar cells. Compared with the
existing research, our analysis locates the specific cell type of
the RGS6 expression site from the single-cell level, laying a
foundation for in-depth mechanism research.

Analysis of Combined-Gene Rules
We built total 23 combined-gene rules through the DTmethod. A
total of 8, 2, 2 and 11 decision rules are observed for
distinguishing human from mouse cerebellum in Golgi cell,
GC, interneuron cell, and UBC, respectively. Given the
biological significance of these traits, how do we determine the
stage of evolution and development on the basis of the expression
of these traits? Here are some studies to introduce their
experimental evidence.

Golgi Cell Rules
The protein coding gene LINGO2 is one of the four important
families related to the nervous system (LINGO1–4) (Llorens et al.,
2008; Homma et al., 2009). This gene is enriched in early
spermatids, late spermatids, and bipolar cells. The LINGO2
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expression is detected in the neuronal tissues of the brains of adult
mice (Vilarino-Guell et al., 2010). The LINGO2 variant detected
in the Chinese population may increase the risk of gestational
diabetes. The results of a large number of Asian population
studies showed that LINGO2 may be a susceptibility gene for
ET and Parkinson’s syndrome and that the increased expression
of LINGO is a characteristic pathological response of
neurodegenerative diseases (Delay et al., 2014). When the
expression of LINGO2 gene is high, a low degree of nervous
system evolution is observed. By contrast, the expression of the
LINGO gene is low when the species evolves at a high level
especially when the nervous system is developed. On the basis of
existing research and our analysis results, we speculate that
LINGO2 may show specific expression patterns at different
stages of neurodevelopment and species evolution, which may
provide references for interpreting neurological disorders.

Thsd7b is another important gene involved in the decision
rules by our analysis. The thrombospondin type 1 domain
containing 7B (Thsd7b) is a protein-coding gene. Thsd7b is
enriched in human brain regions especially the pons and
medulla. Thsd7b is closely related to O-linked glycosylation,
glycosylation diseases, and Ehlers–Danlos syndrome.
Researchers found a correlation between Thsd7b and the
formation of cisplatin resistance. A large number of studies on
pancreatic cancer in Japan showed that the Thsd7b gene is
significantly associated with the risk of pancreatic cancer. In
addition, this gene is related to the prognosis of non-small cell
lung cancer with chemotherapy intervention (Lee et al., 2013). At
present, no study is available on the mechanism of Thsd7b related
to the cerebellum. Our analysis results fill in the gaps in the
development of the cerebellum especially the evolution of the
Golgi cell.

Granule Cell and Interneuron Cell Rule
The RNA coding gene Malat1 belongs to the long noncoding
RNA (lncRNA) category. lncRNA is closely related to diseases,
such as stroke (Qureshi and Mehler, 2012) and ischemic stroke
(Zhang et al., 2017). Malat1 is highly conserved, and previous
studies found that Malat1 is closely related to diseases, such as
hyperglycemia, leukemia, and acute mononucleosis. Recent
research results revealed that Malat1 is related to the
metastasis of lung cancer cells (Ji et al., 2003). In addition,
Malat1 promotes the development of renal carcinoma by
interacting with Ezh2 (Hirata et al., 2015). Tumor cell
proliferation in esophageal cancer is suppressed by Malat1
silencing (Wang et al., 2015). Studies reported that Malat1 can
be involved in regulating the function of endothelial cells and the
growth of blood vessels (Michalik et al., 2014). The
downregulation of Malat1 expression promotes the
macrophage polarization to the M1 phenotype. Our analysis
results showed that when Malat1 is expressed at high levels in
GCs and interneuron cells, the nervous system becomes mature.
Interestingly, the siRNA-mediated downregulation of Malat1
promotes T cell proliferation and accelerates the
transformation of T cells into the Th1/Th17 cell spectrum.
The contribution of Malat1 lncRNA to autoimmune
neuroinflammation has been observed in patients with

multiple sclerosis and mice with encephalomyelitis (Masoumi
et al., 2019). These data indicate that Malat1 has a potential anti-
inflammatory effect in the context of autoimmune
neuroinflammation. The regulatory mechanism of Malat1
helps to ascertain the therapeutic targets of central nervous
system diseases and help to establish a complete treatment
strategy.

Unipolar Brush Cell Rule
A relatively higher expression of Ccdc85a in UBCs was
required to indicate human cerebellum in decision rules.
The protein-coding gene coiled-coil domain containing 85A
(Ccdc85a) is expressed in various brain regions especially in
the cerebral cortex. Diseases associated with Ccdc85a include
hydrocephalus. Studies confirmed that the Ccdc85a protein is
required in the AppNL-F interaction group. The results of
colocalization analysis indicate that the Ccdc85a protein may
endogenously regulate the function of the amyloid β-protein.
In the early stage of Alzheimer’s disease, the upregulation of
Ccdc85a expression may be a compensation for the increase in
amyloid β-protein and the elimination of amyloid β-protein
metabolism. These findings suggest that Ccdc85a may play an
important role in nervous system development and evolution,
and become a new target and biomarker for clinical
intervention in neurological dysfunction diseases (Aladeokin
et al., 2019).

We use the mRMR feature screening method to conduct an in-
depth analysis of the existing single-cell transcriptome data set
and select the key and characteristically expressed genes.
Subsequently, we use DT and SMOTE tools to determine the
expression rules of characteristic genes. In the end, we obtain key
genes that may be related to evolution and neurodevelopment
and confirm the decision-making rules which reflect the
heterogeneity between species in different cerebellar cell types.
Our analysis results are consistent with many existing research
conclusions, but the specific pathogenic molecular mechanism of
each characteristic gene needs further verification. Overall, this
research has obtained representative species evolution genes and
their expression differences in various cerebellar cells. The
remarkable potential of these features and rules in studying
species evolution and are highlighted and provide insights into
new key genes. The excellent performance of our classifiers can be
attributed to the strong specificity of gene expression at species
and tissue levels, which can significantly distinguish human and
mouse. In addition, our research methods and strategies have a
good guiding role in exploring genetic evolution. Therefore, the
characteristic genes we have identified can be used to identify
specific cell groups and the evolutionary level of species and can
be regarded as biological indicators to provide research directions
for disease-related molecular mechanisms.
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