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Abstract

Introduction

In phenylketonuria (PKU), a gene mutation in the phenylalanine metabolic pathway causes

accumulation of phenylalanine (Phe) in blood and brain. Although early introduction of a

Phe-restricted diet can prevent severe symptoms from developing, patients who are diag-

nosed and treated early still experience deficits in cognitive functioning indicating shortcom-

ings of current treatment. In the search for new and/or additional treatment strategies, a

specific nutrient combination (SNC) was postulated to improve brain function in PKU. In this

study, a long-term dietary intervention with a low-Phe diet, a specific combination of nutri-

ents designed to improve brain function, or both concepts together was investigated in male

and female BTBR PKU and WT mice.

Material & methods

48 homozygous wild-types (WT, +/+) and 96 PKU BTBRPah2 (-/-) male and female mice

received dietary interventions from postnatal day 31 till 10 months of age and were distrib-

uted in the following six groups: high Phe diet (WT C-HP, PKU C-HP), high Phe plus specific

nutrient combination (WT SNC-HP, PKU SNC-HP), PKU low-Phe diet (PKU C-LP), and

PKU low-Phe diet plus specific nutrient combination (PKU SNC- LP). Memory and motor

function were tested at time points 3, 6, and 9 months after treatment initiation in the open

field (OF), novel object recognition test (NOR), spatial object recognition test (SOR), and

the balance beam (BB). At the end of the experiments, brain neurotransmitter concentra-

tions were determined.

Results

In the NOR, we found that PKU mice, despite being subjected to high Phe conditions, could

master the task on all three time points when supplemented with SNC. Under low Phe
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conditions, PKU mice on control diet could master the NOR at all three time points, while

PKU mice on the SNC supplemented diet could master the task at time points 6 and 9

months. SNC supplementation did not consistently influence the performance in the OF,

SOR or BB in PKU mice. The low Phe diet was able to normalize concentrations of norepi-

nephrine and serotonin; however, these neurotransmitters were not influenced by SNC

supplementation.

Conclusion

This study demonstrates that both a long-lasting low Phe diet, the diet enriched with SNC,

as well as the combined diet was able to ameliorate some, but not all of these PKU-induced

abnormalities. Specifically, this study is the first long-term intervention study in BTBR PKU

mice that shows that SNC supplementation can specifically improve novel object

recognition.

Introduction

The detrimental effects of increased phenylalanine (Phe) concentrations on the brain are

clearly visible in the metabolic disorder Phenylketonuria (PKU, OMIM 261600). In this disor-

der, a mutation in the gene encoding the hepatic enzyme phenylalanine hydroxylase causes a

disruption in the conversion of Phe to tyrosine. Consequently, when no restrictions are made

in natural protein intake, Phe accumulates in blood and brain and leads to severe cognitive dis-

abilities and epilepsy[1]. Neonatal screening facilitates early introduction of treatment prevent-

ing the development of these symptoms. Nonetheless, even patients, who are diagnosed early

and treated continuously, experience deficits in cognitive functioning, for instance in process-

ing speed, attention, working memory and social-cognitive functioning [2–5]. This suggests

that current treatment strategies still do not address all patient needs.

In the search for new and/or additional treatment strategies, a combination of specific

nutrients (SNC) was postulated to ameliorate the functional and neurobiological effects of

increased Phe [6]. These specific nutrients are precursors and cofactors for the synthesis of

phospholipids through the Kennedy pathway [7]. Using this same SNC, several experiments

have been conducted where an increase in brain phospholipid levels was shown, for example

in animal models of Alzheimer’s disease [8], Traumatic Brain Injury [9], and in aged rodents

[10]. Since the Kennedy pathway enzymes are not fully saturated under normal conditions,

providing more of the precursors will lead to enhanced phospholipid synthesis [11]. The neu-

ronal membrane is rich in phospholipids and we postulate that enhancing phospholipid syn-

thesis could improve some of the neurobiological alterations in PKU, such as synaptic changes

and neurotransmitter abnormalities. Indeed, we previously showed that SNC can normalize

PSD-95 immunostaining intensity in the PKU mouse brain [6]

It is unclear in which period SNC supplementation could have a beneficial effect for PKU

patients using life-long treatment with a Phe restricted diet. In addition, at present little is

known about what happens to the brain of early treated PKU patients with aging, as the treat-

ment was implemented just 50–60 years ago. To obtain more insight into the aging PKU brain

on a low Phe diet, combined with the beneficial effects of SNC supplementation over time on

cognitive and motor behavior, the BTBR PKU mouse model was chosen, as these mice show

clear differences in motor function and cognition compared to their wild-type controls [12].
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The aim of this study in PKU mice treated from one to ten months of age was thus twofold:

1) to investigate the consequences of a long-term Phe-restricted dietary treatment, and 2) to

examine the effect of SNC on the behavioral performance and neurotransmitter concentra-

tions of PKU mice under high Phe and low Phe conditions.

Methods

Animals

A breeding colony of heterozygous (+/-) mating pairs generated 48 wild-types (WT, +/+) and

96 PKU BTBRPah2 (-/-) male and female mice. Original breeding pairs were kindly provided

by prof. Puglisi-Allegra from the Sapienza, University of Roma, Rome, Italy. Breeding pairs

consisted of one male and one female housed together for 14 days. After these 14 days the male

was removed from the cage. On postnatal day (PND) 28 the animals were weaned, and the

genetic status of the animals was established via quantitative PCR analysis on DNA extracted

from ear tissue [12]. After weaning, all littermates were kept in the initial cage (26x42x15, plex-

iglass) without the mother until PND 31. On PND 31, the animals were group housed in sex-

matched pairs of two in cages of 26x42x15 (plexiglass) with sawdust bedding and cage enrich-

ment in the form of nesting material, paper rolls, and a small wooden stick made of Aspen

(Abedd). To reduce the chance of fighting among the males, a red transparent house-shaped

shelter was added in their cages in the adult stage. The climate condition of the housing facility

was kept constant at a temperature of 21±1˚C, 51% ±5 humidity, and a 12/12 light/dark cycle.

The animals received fresh food every day (between Zeitgeber Time (ZT) 8 and ZT10) and had

ad libitum access to water. Leftover food was collected every day before fresh food was pro-

vided. Together with a thorough search of bedding after cage cleaning, the difference with

offered food gave an estimate of weekly food intake per pair. Furthermore, body weight of the

mice was measured during this weekly cage cleaning (ZT 8–10). The dietary intervention

started at PND 31 until 10 months of age. The length of the experiment required clear humane

endpoints. These were set as a decrease in body weight of 15% together with other signs of

sickness behavior (e.g. inactive behavior, or displaying an arched back). If one of the pair of

mice was excluded from the experiment, females were placed in pairs of three. Males were kept

solitary. All experimental procedures were approved by an independent ethics committee for

animal experimentation (Animal Ethics Committee of the University of Groningen, permit

6504E, Groningen, the Netherlands) and complied with the principles of good laboratory ani-

mal care following the European Directive for the protection of animals used for scientific

purposes.

Dietary intervention

The dietary intervention started on PND 31. At this time point, pairs of mice were assigned to

one of the following six groups: WT control high Phe diet (WT C-HP), WT high Phe diet plus

SNC (WT SNC-HP), PKU high Phe diet (PKU C-HP), PKU high Phe diet plus SNC (PKU

SNC-HP), PKU low-Phe diet (PKU C-LP), and PKU low-Phe diet plus SNC (PKU SNC-LP).

The specifics of the diet containing the nutrient combination SNC are depicted in Table 1.

Phospholipids in this diet are derived from soy lecithin, namely Emulpur (Cargill Texturizing

Solutions, The Netherlands). Emulpur is de-oiled soy crude lecithin and mainly contains phos-

pholipids (77 g phospholipids/100 g lecithin) of which mainly PtdCho (20 g/100 g lecithin),

PtdIns (14 g/100 g lecithin), and PtdEtn (13 g/100 g lecithin, as provided by the supplier), with

mainly linoleic acid (18:2n-6), palmitic acid (16:0), and oleic acid (18:1n-9).

The high Phe diet is a normal diet for WT animals. Each group consisted of 12 males and

12 females. As the mice were at the pre-adolescence stage at the beginning of the experiments,
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the diet was based on the growth diet AIN-93G. In the adult stage (13 weeks), the mice were

switched to diets based on the maintenance diet AIN-93M manufactured by the same supplier

(Research Diet Services BV, Wijk bij Duurstede, The Netherlands). The key characteristics of

Table 1. Nutritional content of experimental diets.

C-HP SNC-HP C-LP SNC-LP

g/100g diet G M G M G M G M

Corn starch 33,45 41,34 30,66 38,55 33,87 41,76 31,08 38,97

Mais dextrine 13,20 15,50 13,20 15,50 13,20 15,50 13,20 15,50

Sucrose 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00

Dextrose 10,00 5,00 10,00 5,00 10,00 5,00 10,00 5,00

Fiber 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00

Alanine 0,46 0,33 0,46 0,33 0,46 0,33 0,46 0,33

Arginine 0,64 0,45 0,64 0,45 0,64 0,45 0,64 0,45

Aspartic acid 1,22 0,80 1,22 0,80 1,22 0,80 1,22 0,80

Cystine 0,37 0,24 0,37 0,24 0,37 0,24 0,37 0,24

Glutamic acid 3,63 2,55 3,63 2,55 3,63 2,55 3,63 2,55

Glycine 0,32 0,23 0,32 0,23 0,32 0,23 0,32 0,23

Histidine 0,46 0,33 0,46 0,33 0,46 0,33 0,46 0,33

Isoleucine 0,82 0,59 0,82 0,59 0,82 0,59 0,82 0,59

Leucine 1,57 1,09 1,57 1,09 1,57 1,09 1,57 1,09

Lysine 1,63 0,92 1,63 0,92 1,63 0,92 1,63 0,92

Methionine 0,46 0,33 0,46 0,33 0,46 0,33 0,46 0,33

Phenylalanine 0,62 0,62 0,62 0,62 0,20 0,20 0,20 0,20

Proline 2,05 1,43 2,05 1,43 2,05 1,43 2,05 1,43

Serine 0,97 0,67 0,97 0,67 0,97 0,67 0,97 0,67

Threonine 0,67 0,47 0,67 0,47 0,67 0,47 0,67 0,47

Tryptophan 0,21 0,16 0,21 0,16 0,21 0,16 0,21 0,16

Tyrosine 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50

Valine 1,00 0,70 1,00 0,70 1,00 0,70 1,00 0,70

Mineral premix (AIN-93G-MX) 3,5 3,5 3,5 3,5

Mineral premix (AIN-93M-MX) 3,5 3,5 3,5 3,5

Vitamin premix (AIN-93-VX) 1 1 1 1 1 1 1 1

Soy oil 1,900 1,900 1,900 1,900

Coconot oil 0,900 0,900 0,100 0,100 0,900 0,900 0,100 0,100

Corn oil 2,200 2,200 1,700 1,700 2,200 2,200 1,700 1,700

DHA25 oil 3,000 3,000 3,000 3,000

EPA28/12 oil 0,200 0,200 0,200 0,200

Choline bitartrate (41,1% choline) 0,250 0,250 0,250 0,250 0,250 0,250 0,250 0,250

Tert-butylhydroquinone 0,0014 0,0014 0,0014 0,0014 0,0014 0,0014 0,0014 0,0014

Pyridoxine-HCL 0,00328 0,00328 0,00328 0,00328

Folic acid (90%) 0,00067 0,00067 0,00067 0,00067

Cyanocobalamin (0,1% in mannitol) 0,00350 0,00350 0,00350 0,00350

Ascorbic acid (100% zuiver) 0,160 0,160 0,160 0,160

dl-α-tocopheryl acetate (500 IU/g) 0,4650 0,4650 0,4650 0,4650

UMP disodium (24%H2O) 1,0 1,0 1,0 1,0

Choline chloride (74,576%) 0,402 0,402 0,402 0,402

Soja lecithine (Emulpur) 0,755 0,755 0,755 0,755

Sodium selenite (46% min) 0,00023 0,00023 0,00023 0,00023

Energy (kcal/100 g diet) 385,99 385,99 374,84 374,84 385,99 385,99 374,84 374,84

https://doi.org/10.1371/journal.pone.0213391.t001
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the diets were kept the same; normal diet with or without SNC had Phe content of 6.2 g/kg

and tyrosine content of 15 g/kg and low-Phe diet (based on previous literature [13]) had Phe

content of 2.0 g/kg and tyrosine content of 15 g/kg. During the course of the experiments

some animals died, often for unclear reasons. See S1 Table for an overview.

Behavioral paradigms

During the dietary intervention, the animals were behaviorally assessed every 12 weeks starting

at four months of age. Each test session consisted of an open field test (OF), novel object recog-

nition (NOR), spatial object recognition (SOR), and a balance beam (BB). These sessions cov-

ered a period of 17 days during which only 1 test was conducted on a specific day (see Fig 1 for

the testing-scheme). The animals were tested between ZT1and ZT6. All procedures and exper-

imental setups were described in our previous study [12]. In short, the habituation phase of the

NOR was used as OF. On day 1 of the testing session, the animals were placed in the middle of

a square arena (50x50x35 cm) to explore the arena freely for ten minutes. The subsequent day

the animals could explore two identical objects for ten minutes in the familiarization phase of

the NOR. Again 24 hours later, one of the objects was replaced with a novel object and the

mice could explore this new setting for 10 minutes. After a period of five days without behav-

ioral testing, the animals were tested in the SOR. The first day the animals were exposed to

four sessions of 6 minutes. The first session was similar to the habituation phase of the NOR.

In the second to the fourth session, the animals could freely explore three different objects (in

shape, color, and texture) in a specific configuration. Between sessions, the animals were

placed back in the home cage for 2 minutes. The second day, one of the objects was moved to a

different location. The objects, the starting condition, and the displaced object were random-

ized over trials. Both the NOR and SOR were performed in a separate room recorded with a

camera (Panasonic WVCP500) connected to a computer outside the room with Media

recorder (Noldus, The Netherlands). The balance beam was performed in the housing facility

24 hours later. During this task, the animals had to cross a square wooden beam ((length 1 m,

width 5 mm, height 10 mm, horizontally positioned 50 cm above the underlying surface) over

four distances (10, 40, 75, and 100 cm). The final distance was used as read-out trial. In this

trial, the number of correct steps and total steps necessary to cross the beam were manually

scored and calculated to a percentage. A step was considered correct if the hind paw had a full

placement on the beam at the initiation and end of the forward movement.

The open field was analyzed with Ethovision v.11 (Noldus, The Netherlands). In this analy-

sis, the arena was divided into a center zone, four border zones, and four corner zones [14].

Activity was quantified by the distance moved, and anxiety-like behavior was examined by the

preference of the animal to visit, or stay in, the more sheltered zones, i.e. the corners. In the

Fig 1. Schematic representation of the experiment.

https://doi.org/10.1371/journal.pone.0213391.g001
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NOR and SOR, the exploration time of each object was manually scored with the program

ELINE (made in house). For the NOR, the discrimination index (DI) was calculated by the

time spent exploring the novel object minus the time exploring the same object divided by the

total exploration time of both objects [15]. For the SOR, the exploration time of the first three

training sessions was compared to the time exploring in the test session. The mice mastered

these learning paradigms when they explored either the novel object or the relocated object

above chance level.

Neurotransmitter

At the end of the experiment, all mice were euthanized and tissue was collected (procedures

were performed between ZT5 and ZT7). After deeply anesthetizing the animals with isoflur-

ane, the mice were briefly perfused with 0,9% NaCl, 0.1% EDTA solution. The brain, without

cerebellum and brainstem, was flash frozen in liquid nitrogen and stored at the -80˚C. Whole

brains of twelve animals (6 males/ 6 females) of each group (pairs were randomly chosen) were

used to determine neurotransmitter concentrations using liquid chromatography in combina-

tion with isotope dilution mass spectrometry, as previously described [16]. We used whole

brain homogenates as we did not expect to find significant regional effects of SNC in certain

parts of the brain for neurotransmitter levels. SNC will affect all brain areas containing neuro-

transmitter producing neurons (e.g. serotonin and norepinephrine in this study) and in our

PKU mice whole brain homogenates showed strong reductions in neurotransmitter levels

indicating that is a sensitive approach to determine changes in neurotransmitter level [17].

Statistics

All statistical analyses were performed with SPSS 22.0 (SPSS Inc. SPSS for Windows, Version

22.0. Chicago, SPSS Inc.). Food intake was tested non-parametrically with a Kruskal-Wallis

and post hoc analysis was done with a Mann-Whitney U test. Body weight and behavioral para-

digms have been analyzed using two mixed-effect model repeated measure (MMRM) models.

As the groups were not fully balance between the genotypes (WT mice are not able to receive

low Phe diet, as reduced intake of an essential amino acid is harmful for the animals), two

models were tested: 1) Differences between WT and PKU mice on high Phe diet and the influ-

ence of SNC supplementation within these groups were tested using an MMRM model with

time, genotype and the interaction term as factors, 2) Differences between the four different

diets in PKU mice (C-HP, SNC-HP, C-LP, and SNC-LP) were tested using an MMRM model

with time, specific nutrient combination and Phe condition. For body weight, we assume that

the body weight measurements taken close to short intervals are more closely related to each

other than the measurements taken with a larger time interval (for example we expect that

the body weight measurement of week 13 is more similar to week 14 than week to 41). There-

fore, the repeated covariance type was set to first order autoregressive. For the behavioral data

this assumption was not made, therefore a diagonal covariance type was selected. Checks for

normality (Shapiro-Wilk test) and homogeneity of variance (Levene’s test) have been

performed.

Furthermore, the ability to master the task was investigated by comparing the DI to chance

level (0) with a t-test. No corrections were made for multiplicity. Finally, an ANOVA with fac-

tors for sex and group with a Bonferroni correction was used to examine differences between

groups in neurotransmitter concentrations. A two-sided p-value equal to or less than 0.05 was

considered significant. If not specified, data are expressed as mean ± standard error of the

mean (SEM).
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Results

General health, body weight, and food intake

In the course of the experiment, 21 of the in total 144 animals were excluded from the experi-

ment, because they reached a humane endpoint or died before the end of the study. The

excluded animals (see S1 Table) were not in a specific treatment group (Kruskal-Wallis test,

groups p = 0.081) and dropout was not skewed by genotype or sex (Kruskal-Wallis test, geno-

type p = 0.134, sex p = 0.480).

The general health of the animals was, among others, monitored by body weight and food

intake. Both parameters were split for growth diet and maintenance diet: the first 9 weeks (Fig

2) and starting from 3 months (Fig 3) respectively. Furthermore, males and females were ana-

lyzed separately as food intake and body weight was different between the sexes. In addition,

graphs and analyses were split for all groups on a high Phe diet (model 1) and all PKU groups

(model 2). Overall, PKU mice have a lower body weight immediately after weaning, but catch

up in weight with their wild-type controls over time (Fig 2A–2D). Interestingly, SNC has a dif-

ferent effect on body weight increase in females than males when comparing PKU and WT

mice on a high Phe diet (Fig 2A and 2B). Specifically, in females, the increase in body weight

differed between WT and PKU mice (genotype x time p<0.001), and an interaction was found

between genotype and SNC supplementation (genotype x time x SNC p = 0.005), which was

not present in males, (time p<0.001, genotype x time p<0.001, genotype x time x SNC

p = 0.871). When transferred to maintenance diet at 3 months of age, in male mice the differ-

ences in the increase of body weight over time between WT and PKU on high Phe diet were

still present (genotype x time p = 0.002), but in females this interaction was no longer signifi-

cant (genotype x time p = 0.754). When comparing PKU mice on high and low Phe diet, the

increase in body weight over time was different between high Phe and low Phe conditions

(Female: Phe condition x time p = 0.002, Male Phe condition x time p = 0.009), but SNC sup-

plementation did not significantly change this.

Despite the difference in body weight gain between the groups, no differences were found in

food intake of either the growth or maintenance diet between the groups in female mice

(p = 0.173), and in male mice only between WT C-HP and PKU SNC-HP (p = 0.036). However,

it is important to note that a mere indication of the differences in food intake can be drawn from

these data, as only group housed individuals of the same genotype were included in this analysis.

Open field

There were subtle differences in distance moved in the OF between PKU and WT animals.

These differences were most pronounced in the female PKU high Phe group compared to

their WT counterparts (Fig 4). The distance covered in the open field was examined to explore

differences in activity and exploration. Sex differences were observed, and therefore male and

female mice were analyzed separately. Clearly, all groups move less through the open field over

time because of habituation to the open field. (Fig 4A Female: Time p<0.001; Fig 4B Male:

Time p<0.001; Fig 4C Female: Time p<0.001; Fig 4D Male: Time p<0.001). In female mice,

the WT mice covered more distance in the maze compared to PKU high Phe mice (p<0.001).

In male mice, the progression over time was different between WT and PKU high Phe mice

(p = 0.013) but no main effect was found (p = 0.663). The distance moved was differently influ-

enced by SNC supplementation in WT and PKU mice (p = 0.001). In female PKU mice (Fig

3C), PKU mice on low Phe diet covered more distance through the OF compared to PKU

mice on high Phe diet (p = 0.022). Furthermore, the progression over time was different

between these groups (p = 0.017). In male PKU mice (Fig 4D), the difference between high
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Phe and low Phe diet was inversed. The mice in the high Phe condition moved more through

the open field compared to the low Phe condition (p = 0.006). The progress over the three time

points did not differ between the conditions (p = 0.254).

When assessing the innate preference of mice to explore more sheltered areas of the arena,

there are clear differences in time spent in the corners between male and female mice, with

Fig 2. Growth diet. Results are separated for females and male (graphs A,C,E and graphs B,D,F, respectively). In figure A and B, the bodyweight curves

of the first eight weeks of treatment, starting on postnatal day 31, are depicted for all groups on high Phe diet (WT C-HP, WT SNC-HP, PKU C-HP,

PKU SNC-HP). In figure C and D, the body weight curves for all PKU mice groups are depicted. Mean daily food intake is depicted in graph E and F

(median depicted). Graphs A-D: mean ± SEM, x-axis depict days. Graphs E-F: median.

https://doi.org/10.1371/journal.pone.0213391.g002
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females increasingly spending more time in the corner over time (Fig 5). Over time, the time

spent in the corners was not constant (Fig 5A Female: Time p<0.001; Fig 5B Male; Time

p<0.001; Fig 5C Female: Time p<0.001; Fig 5D Male: Time p<0.001). In the females, the PKU

high Phe mice spent less time in the corners compared to WT mice (Fig 5A, genotype

p<0.001) with less of an increase in time spent in the corner between the three time points

(p = 0.040). In male mice, no difference was observed between WT and PKU high Phe mice or

the progression over time (genotype = 0.906, time x genotype = 0.055).

Fig 3. Maintenance diet. Graphs are identically organized as Fig 2. In graphs A-D, the bodyweight curves of the last 28 weeks of

dietary treatment are depicted, starting at week 13. In graphs E-F, mean daily food intake is depicted. Graphs A-D: mean ± SEM, x-

axis depict weeks. Graphs E-F: median.

https://doi.org/10.1371/journal.pone.0213391.g003
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Learning and memory paradigms: NOR and SOR

Two separate paradigms were used to assess learning and memory in the PKU and WT mice

on different diets (Table 2). Since there were no sex-differences, males and females were ana-

lyzed together in these paradigms. Similar to previous findings [12], in the NOR a significant

difference was found between WT and PKU high Phe diet in DI p<0.001). SNC supplementa-

tion improved the performance of PKU mice (p<0.001) while no overall differences were

found for high or low Phe conditions (p = 0.324) nor for the SNC supplementation (p =

0.236). In addition to using this statistical analysis to highlight the differences between the

groups, DI was compared to chance level, to assess the ability of the mice to master the learn-

ing and memory paradigm. From Fig 6A, it is clear that the mice of the WT-groups (C-HP

t(23) = 3.407, p = 0.002, SNC-HP t(23) = 3.715, p = 0.001), PKU SNC-HP (t(20) = 2.915,

Fig 4. Distance moved in open field. (A) Female mice on high Phe diet WT C-HP (3 mo); n = 11, WT SNC-HP (3mo); n = 12, PKU C-HP (3mo); n = 11, PKU

SNC-HP (3mo); n = 9, WT C-HP (6 mo); n = 11, WT SNC-HP (6mo); n = 12, PKU C-HP (6mo); n = 10, PKU SNC-HP (6mo); n = 7, WT C-HP (9 mo); n = 11, WT

SNC-HP (9mo); n = 12, PKU C-HP (9mo); n = 10, PKU SNC-HP (9mo); n = 7, (B) male mice on high Phe diet, WT C-HP (3 mo); n = 12, WT SNC-HP (3mo);

n = 12, PKU C-HP (3mo); n = 12, PKU SNC-HP (3mo); n = 11, WT C-HP (6 mo); n = 12, WT SNC-HP (6mo); n = 12, PKU C-HP (6mo); n = 12, PKU SNC-HP

(6mo); n = 12, WT C-HP (9 mo); n = 12, WT SNC-HP (9mo); n = 9, PKU C-HP (9mo); n = 11, PKU SNC-HP (9mo); n = 9 (C) female PKU mice, PKU C-HP (3mo);

n = 11, PKU SNC-HP (3mo); n = 9, PKU C-LP (3mo); n = 12, PKU SNC-LP; n = 12, PKU C-HP (6mo); n = 10, PKU SNC-HP (6mo); n = 7, PKU C-LP (6mo);

n = 11, PKU SNC-LP (6mo), n = 11, PKU C-HP (9mo); n = 10, PKU SNC-HP (9mo); n = 7, PKU C-LP (9mo); n = 11, PKU SNC-LP (9mo); n = 11 and (D) male

PKU mice, PKU C-HP (3mo); n = 12, PKU SNC-HP (3mo); n = 11, PKU C-LP (3mo); n = 12, PKU SNC-LP (3mo);n = 12, PKU C-HP (6mo); n = 12, PKU SNC-HP

(6mo); n = 12, PKU C-LP (6mo); n = 12, PKU SNC-LP (6mo), n = 11, PKU C-HP (9mo); n = 11, PKU SNC-HP (9mo); n = 9, PKU C-LP (9mo); n = 11, PKU

SNC-LP (9mo); n = 10. (mean ± SEM).

https://doi.org/10.1371/journal.pone.0213391.g004
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Fig 5. Time spent in corners of the open field. The time spent in the corners of the open field is thought to represent anxiety-like behavior as the mice seek

out the more sheltered areas of the arena. (A) Female mice on high Phe diet WT C-HP (3 mo); n = 11, WT SNC-HP (3mo); n = 12, PKU C-HP (3mo); n = 11,

PKU SNC-HP (3mo); n = 9, WT C-HP (6 mo); n = 11, WT SNC-HP (6mo); n = 12, PKU C-HP (6mo); n = 10, PKU SNC-HP (6mo); n = 7, WT C-HP (9 mo);

n = 11, WT SNC-HP (9mo); n = 12, PKU C-HP (9mo); n = 10, PKU SNC-HP (9mo); n = 7, (B) male mice on high Phe diet, WT C-HP (3 mo); n = 12, WT

SNC-HP (3mo); n = 12, PKU C-HP (3mo); n = 12, PKU SNC-HP (3mo); n = 11, WT C-HP (6 mo); n = 12, WT SNC-HP (6mo); n = 12, PKU C-HP (6mo);

n = 12, PKU SNC-HP (6mo); n = 12, WT C-HP (9 mo); n = 12, WT SNC-HP (9mo); n = 9, PKU C-HP (9mo); n = 11, PKU SNC-HP (9mo); n = 9 (C) female

PKU mice, PKU C-HP (3mo); n = 11, PKU SNC-HP (3mo); n = 9, PKU C-LP (3mo); n = 12, PKU SNC-LP;n = 12, PKU C-HP (6mo); n = 10, PKU SNC-HP

(6mo); n = 7, PKU C-LP (6mo); n = 11, PKU SNC-LP (6mo), n = 11, PKU C-HP (9mo); n = 10, PKU SNC-HP (9mo); n = 7, PKU C-LP (9mo); n = 11, PKU

SNC-LP (9mo); n = 11 and (D) male PKU mice, PKU C-HP (3mo); n = 12, PKU SNC-HP (3mo); n = 11, PKU C-LP (3mo); n = 12, PKU SNC-LP (3mo);

n = 12, PKU C-HP (6mo); n = 12, PKU SNC-HP (6mo); n = 12, PKU C-LP (6mo); n = 12, PKU SNC-LP (6mo), n = 11, PKU C-HP (9mo); n = 11, PKU

SNC-HP (9mo); n = 9, PKU C-LP (9mo); n = 11, PKU SNC-LP (9mo); n = 10. (mean ± SEM).

https://doi.org/10.1371/journal.pone.0213391.g005

Table 2. Discrimination index of the SOR. Data are shown as mean ± SEM.

Discrimination index WT PKU

C-HP SNC-HP C-HP SNC-HP C-LP SNC-LP

3 mo–displaced object 6.5 ± 2.7 6.8 ± 2.8 3.4 ± 3.1 5.2 ± 4.4 6.5 ± 3.0 5.0 ± 3.6

3 mo–non displaced object -3.3 ± 1.3 -2.3 ± 1.4 -0.9 ± 1.6 -1.9 ± 2.4 -3.2 ± 1.5 -1.7 ± 1.9

6 mo–displaced object 7.5 ± 4.0 7.1 ± 4.1 10.6 ± 2.9 4.9 ± 3.0 13.2 ± 3.4 8.4 ± 3.6

6 mo–non displaced object -3.7 ± 2.0 -3.6 ± 2.1 -5.3 ± 1.4 -2.4 ± 1.5 -6.6 ± 1.7 -4.2 ± 1.8

9 mo–displaced object 3.9 ± 2.4 9.4 ± 2.6 4.3 ± 2.4 10.6 ± 5.8 5.4 ± 4.1 2.2 ± 4.7

9 mo—non displaced object -2.0 ± 1.2 -4.7 ± 1.3 -2.1 ± 1.2 -5.3 ± 2.9 -2.7 ± 2.0 -1.1 ± 2.4

https://doi.org/10.1371/journal.pone.0213391.t002
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Fig 6. Novel object recognition. Discrimination index ((exploration novel object- exploration same object)/total

exploration time) is tested against chance level (0). (A) 3 months, WT C-HP; n = 23, WT SNC-HP; n = 24, PKU C-HP;
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p = 0.009), and PKU C-LP (t(23) = 3.646 p = 0.001) are able to master the task after three

months of treatment. However, the PKU C-HP (t(22) = 0.070 p = 0.944) and PKU SNC-LP (t

(23) = 1.707 p = 0.103) did not. After six months of treatment (Fig 6B), all groups except for

the PKU C-HP learned the task (WT C-HP t(23) = 7.789 p<0.001, WT SNC-HP t(23) = 6.924

p<0.001, PKU C-HP t(20) = 0.826 p = 0.418, PKU SNC-HP t(18) = 3.573 p = 0.002, PKU

C-LP t(23) = 2.137, p = 0.043, PKU SNC-LP t(22) = 2.648 p = 0.015). After the nine months of

treatment, for a second time, all groups mastered the NOR task, with the exception of PKU

C-HP (WT C-HP t(21) = 3.482 p = 0.002, WT SNC-HP t(20) = 3.081 p = 0.006, PKU C-HP t

(21) = 1.729 p = 0.098, PKU SNC-HP t(15) = 6.037 p<0.001, PKU C-LP t(22) = 2.230

p = 0.036, PKU SNC-LP t(20) = 5.461, p<0.001).

In PKU mice, SNC supplementation did not affect the time spent on exploring the objects

(p = 0.294). PKU mice on high Phe diet did spend more time exploring the objects (p = 0.012).

In WT mice, SNC supplementation increased the exploration (p = 0.033).

The analysis of the SOR data did not reveal a PKU phenotype of the PKU control high Phe

group compared to the WT group (p = 0.768). However, when comparing the DI to chance

level and eliminating outliers (values two standard deviations outside the mean), similar results

were found after three months of treatment as described above in the NOR. The mice of the

WT-groups (C-HP t(23) = 2.450, p = 0.022, SNC-HP t(22) = 2.123, p = 0.045), PKU SNC-HP

(t(19) = 2.228, p = 0.038), and PKU C-LP (t(23) = 2.193 p = 0.037) were able to master the task

after three months of treatment, while the PKU C-HP (t(19) = -.069 p = 0.946) and PKU

SNC-LP (t(23) = 1.385 p = 0.179) were not. However, the WT mice could no longer master the

SOR after six months of treatment (C-HP t(22) = 2.450, p = 0.074, SNC-HP t(23) = 1.719,

p = 0.099), leaving no window to observe an improvement with the dietary intervention.

Balance beam

Motor balance and coordination was assessed using the BB, In both females and males a clear

difference was observed in the percentage of correct steps between WT and PKU mice on high

Phe diet (Fig 7A Female: p<0.001;Fig 7B Male: p<0.001). In female PKU mice (Fig 7A), SNC

supplementation reduced the relative number of correct steps (p = 0.037), while in male PKU

mice, this effect was not observed (p = 0.785).

A low Phe diet was able to improve performance on the balance beam in female, but not

male, PKU mice (Fig 7C Female; p<0.001, Fig 7D Male; p = 0.863). When analyzing the overall

effect of SNC supplementation in both high and low Phe groups, SNC was not able to change

the performance of the PKU mouse groups (female: p = 0.587, male: p = 0.671).

Neurotransmitters in brain

Next, we determined whether the behavioral differences between groups were associated with

changes in neurotransmitter levels of the monoaminergic neurotransmitters dopamine, nor-

epinephrine and serotonin in whole brain homogenates. No interaction effect was observed

between sex and group (Dopamine: F(5,71) = 1.441, p = 0.223, Norepinephrine F(5,71) =

1.881, p = 0.111, Serotonin F(5,71) = 2.081, p = 0.080, or 5-HIAA/Serotonin F(5,71) = 1.042,

p = 0.402). Therefore, Fig 8 depicts the data of both male and female mice.

n = 23, PKU SNC-HP; n = 21,PKU C-LP; n = 24, PKU SNC-HP = 24, (B) 6 months, WT C-HP; n = 23, WT SNC-HP;

n = 24, PKU C-HP; n = 22, PKU SNC-HP; n = 19,PKU C-LP; n = 24, PKU SNC-HP = 23 (C) 9 months, WT C-HP;

n = 22, WT SNC-HP; n = 21, PKU C-HP; n = 21, PKU SNC-HP; n = 16, PKU C-LP; n = 23, PKU SNC-HP = 21 �

represent a significant difference from chance level. (mean ± SEM).

https://doi.org/10.1371/journal.pone.0213391.g006
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As previously reported, PKU mice have lower levels of norepinephrine and serotonin, but

not dopamine, in whole brain homogenates [17] (Fig 8: Dopamine F(5,72) = 0.526, p = 0.756,

Norepinephrine F(5,71) = 14.737, p<0.001, Serotonin F(5,71) = 28.805, p<0.001, 5-HIAA/

Serotonin F(5,71) = 8.009, p<0.001). In addition, serotonin turnover, measured as the ratio of

NIAA/serotonin, was reduced in PKU mice compared to wild-type controls. Long lasting die-

tary treatment with a low Phe diet normalized these levels of norepinephrine and serotonin,

but not serotonin turnover. However, despite having a positive effect on memory in the NOR,

a long lasting diet with SNC did not affect the levels of any of the neurotransmitters measured.

For the turnover of serotonin (Fig 8D; 5-HIAA/serotonin), a significant difference was

found between the WT C-HP and PKU C-HP and PKU SNC-HP (p = 0.013 and p = 0.011,

respectively). WT on the supplemented diet had a higher turnover compared to all PKU

groups (PKU C-HP p<0.001, PKU SNC-HP p<0.001, PKU C-LP p = 0.005, PKU SNC-LP

p = 0.041). No significant differences were observed between the control and the correspond-

ing supplemented groups for all depicted measurements.

Discussion

In this study, a long-term dietary intervention with a low-Phe diet, a specific combination of

nutrients designed to improve brain function or both concepts together was investigated in

male and female BTBR PKU and WT mice. We replicated abnormalities in growth, motor

behavior and learning and memory in PKU BTBR mice compared to WT BTBR controls,

Fig 7. Motor performance. The relative number of correct steps made in the probe trial (100 cm) is depicted. (A) Female mice on high Phe diet, WT C-HP (3

mo); n = 11, WT SNC-HP (3mo); n = 12, PKU C-HP (3mo); n = 11, PKU SNC-HP (3mo); n = 9, WT C-HP (6 mo); n = 11, WT SNC-HP (6mo); n = 12, PKU

C-HP (6mo); n = 10, PKU SNC-HP (6mo); n = 7, WT C-HP (9 mo); n = 11, WT SNC-HP (9mo); n = 12, PKU C-HP (9mo); n = 10, PKU SNC-HP (9mo);

n = 7 (B) male mice on high Phe diet, WT C-HP (3 mo); n = 12, WT SNC-HP (3mo); n = 12, PKU C-HP (3mo); n = 12, PKU SNC-HP (3mo); n = 11, WT

C-HP (6 mo); n = 12, WT SNC-HP (6mo); n = 12, PKU C-HP (6mo); n = 12, PKU SNC-HP (6mo); n = 12, WT C-HP (9 mo); n = 12, WT SNC-HP (9mo);

n = 9, PKU C-HP (9mo); n = 11, PKU SNC-HP (9mo); n = 9 (C) female PKU mice, PKU C-HP (3mo); n = 11, PKU SNC-HP (3mo); n = 9, PKU C-LP (3mo);

n = 12, PKU SNC-LP;n = 12, PKU C-HP (6mo); n = 10, PKU SNC-HP (6mo); n = 7, PKU C-LP (6mo); n = 11, PKU SNC-LP (6mo), n = 11, PKU C-HP

(9mo); n = 10, PKU SNC-HP (9mo); n = 7, PKU C-LP (9mo); n = 11, PKU SNC-LP (9mo); n = 11, and (D) male PKU mice, PKU C-HP (3mo); n = 12, PKU

SNC-HP (3mo); n = 11, PKU C-LP (3mo); n = 12, PKU SNC-LP (3mo);n = 12, PKU C-HP (6mo); n = 12, PKU SNC-HP (6mo); n = 12, PKU C-LP (6mo);

n = 12, PKU SNC-LP (6mo), n = 11, PKU C-HP (9mo); n = 11, PKU SNC-HP (9mo); n = 9, PKU C-LP (9mo); n = 11, PKU SNC-LP (9mo); n = 10.

(mean ± SEM).

https://doi.org/10.1371/journal.pone.0213391.g007
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along with reduced levels of monoaminergic neurotransmitters in whole brain homogenate

[12,17]. We found that both a long-lasting low Phe diet, the diet enriched with SNC as well as

the combined diet was able to ameliorate some, but not all of these above mentioned PKU-

induced abnormalities.

Specifically, a long-term low Phe diet, starting at the time of weaning, was able to almost

completely normalize the brain levels of norepinephrine and serotonin, albeit without improv-

ing the serotonin turnover. At the same time, the low Phe diet improved growth and normal-

ized performance on the balance beam, with the latter effect being more pronounced in male

than in female mice. This is in line with the human situation where it is well established that

Fig 8. Neurotransmitter concentrations in brain. (A) Dopamine, (B) Norepinephrine, (C) Serotonin, (D) 5-HIAA/Serotonin; turnover of serotonin � p<0.05,

5-HIAA = 5-Hydroxyindoleacetic acid (metabolite of serotonin), n = 12, (mean ± SEM).

https://doi.org/10.1371/journal.pone.0213391.g008
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early intervention in PKU patients can prevent the irreversible cognitive disabilities found in

untreated PKU patients [18] and modify the outcome in those who are diagnosed at a later

age. In our current study, we introduced the SNC supplementation and low-Phe conditions at

PND 31. At this time point, the maturation of the brain and the characteristic behavior in mice

is thought to represent the early adolescent stage in humans [19] and, in BTBR PKU mice, this

time point is after the onset of the behavioral and neurochemical deficits [20]. The introduc-

tion of our nutritional intervention would, therefore, surpass the early prevention window of

PKU treatment to prevent cognitive disabilities, which is inherent to the PKU mouse model

where early intervention would be complex, as the pups continue to drink with their dam until

weaning and any nutritional intervention to the pups would be highly stressful. Nevertheless,

the PKU mice on a control low Phe diet did master the NOR paradigm, suggesting, at least in

PKU mice, that the low Phe conditions introduced later in life can be beneficial for object rec-

ognition memory. These findings reinforce the notion that a life-long diet of protein restric-

tion and amino acid substitutes is beneficial to PKU patients [18]. Indeed, even in late-

diagnosed PKU patients, a Phe-restricted diet can still have positive effects [21].

The other dietary intervention that was tested in this study is a specific combination of

nutrients (referred to as SNC) designed to improve brain function. These specific nutrients are

precursors and cofactors for the synthesis of phospholipids through the Kennedy pathway [7].

Through increased phospholipid synthesis, we hypothesized that the SNC nutrients might

improve neurotransmitter release, synaptic functioning, white matter integrity, and oxidative

stress in the PKU brain. Most evidence supporting these hypotheses comes from work in ani-

mal models of different conditions [7]. In the C57Bl6 PKU mouse model we have previously

shown that SNC normalizes PSD-95 immunostaining intensity in subregions of the hippocam-

pus [6], suggesting an effect on synaptic functioning. Improved synaptic functioning in the

hippocampus could lead to improvements in learning and memory. Memory performance

was tested in the SOR and NOR in this study [15,22]. The BTBR mouse, especially at an older

age, have difficulties mastering the task irrespective of having PKU. The dietary impact on

SOR performance is therefore inconclusive. However, we found that BTBR PKU mice, despite

being subjected to high Phe conditions, could master the NOR task on all three time points

when supplemented with SNC, while those that did not receive SNC could not. However, addi-

tional brain regions such the perirhinal cortex, and other brain regions involved in visual,

olfactory, and somatosensory perception are important in object recognition, and the consoli-

dation, acquisition and retrieval of the memory necessary for mastering the NOR paradigm

[15,23]. As such, the current dataset does not allow us to make any mechanistic links between

synaptic functioning and behavioral performance. Besides synaptic functioning also a decrease

in neuroinflammation by SNC could play a role [24], as enhanced neuroinflammation is often

found in metabolic diseases including PKU [25,26]. In contrast to an improvement on mem-

ory performance with SNC, this supplementation did not consistently influence the motor per-

formance in PKU mice. In the SOR and open field, one could argue that the window between

PKU and WT mice was too small to be able to observe significant differences induced by any

intervention.

Previously it was shown that acetylcholine release and signaling are positively affected by

SNC supplementation [27,28]. Here we tested whether long-term SNC supplementation affects

the whole brain levels of monoaminergic neurotransmitters that are lower in the PKU brain,

most likely due to reduced availability of precursors because of competition of large neutral

amino acids at the blood brain barrier [17]. However, while the low Phe diet normalized the

levels of norepinephrine and serotonin in whole brain homogenate, SNC had no effect on

these parameters.
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This study was the first to investigate the long-term effect on behavior of different dietary

interventions in the BTBR PKU mouse model. Therefore, we were unprepared for the loss of

animals during the experiment, and notwithstanding that the deaths did not occur in specific

groups, they led to unbalanced groups and smaller numbers of animals to be tested. As such,

this study shows that future studies should be aware of this early drop-out of genetic models

on a BTBR background. In this study, we performed multiple rounds of behavioral testing in

the same animal which allows us to examine changes with aging. In the open field, we found a

reduction in locomotor activity and an increase in time spent in the corners even in the WT

mice, in addition to a difference between males and females. This reduced locomotor activity

with aging is in line with other mouse studies that show this, although we cannot exclude the

effect of habituation to the open field [29,30]. In the NOR and the balance beam, performance

was stable over time with aging, which demonstrates the feasibility of retesting on the perfor-

mance in these tasks. In contrast, in the SOR, the difference between WT and PKU mice

observed at 3 months was not replicated at 6 and 9 months. Although it is possible that multi-

ple rounds of behavioral testing could have influenced this outcome, impairments of spatial

memory are reported in normal aging mice and BTBR mice [31–36]. However from these

experiments it is not possible to conclude whether the lack of effect on the SOR at 6 and 9

months is due to aging or due to re-testing. Taken together, we have shown that it is possible

to perform a long-term dietary intervention in the PKU mouse model, with reliable test-retest

ability on different behavioral tasks, including NOR, open field, and balance beam.

Conclusion

This study is the first to demonstrate that both a long-term low Phe diet, a diet enriched with

SNC as well as both diets combined is able to ameliorate some, but not all of the PKU-induced

abnormalities. Both diets seem to improve some, but not other domains that are impaired in

the BTBR PKU mouse model. Specifically, this study demonstrates that a long-term interven-

tion study in BTBR PKU mice improves novel object recognition, while a long-term interven-

tion with a low Phe diet nearly normalizes serotonin and norepinephrine levels. Future

research should be aimed at developing an optimal nutritional intervention to target brain

function in PKU patients.
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