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Abstract

Embryonal rhabdomyosarcoma (ERMS) of the uterus has recently been shown to frequently harbor DICERI mutations.
Interestingly, only rare cases of extrauterine DICER 1-associated ERMS, mostly located in the genitourinary tract, have been
reported to date. Our goal was to study clinicopathologic and molecular profiles of DICERI-mutant (DICERI-mut) and
DICERI-wild type (DICERI-wt) ERMS in a cohort of genitourinary tumors. We collected a cohort of 17 ERMS including
nine uterine (four uterine corpus and five cervix), one vaginal, and seven urinary tract tumors. DNA sequencing revealed
mutations of DICERI in 9/9 uterine ERMS. All other ERMS of our cohort were DICERI-wt. The median age at diagnosis of
patients with DICER-mut and DICER-wt ERMS was 36 years and 5 years, respectively. Limited follow-up data (available
for 15/17 patients) suggested that DICERI-mut ERMS might show a less aggressive clinical course than DICER[-wt ERMS.
Histological features only observed in DICERI-mut ERMS were cartilaginous nodules (6/9 DICERI-mut ERMS), in one
case accompanied by foci of ossification. Recurrent mutations identified in both DICERI-mut and DICERI-wt ERMS
affected KRAS, NRAS, and TP53. Copy number analysis revealed similar structural variations with frequent gains on
chromosomes 2, 3, and 8, independent of DICERI mutation status. Unsupervised hierarchical clustering of array-based
whole-genome DNA methylation data of our study cohort together with an extended methylation data set including different
RMS subtypes from genitourinary and extra-genitourinary locations (n = 102), revealed a distinct cluster for DICER-mut
ERMS. Such tumors clearly segregated from the clusters of DICERI-wt ERMS, alveolar RMS, and MYODI-mutant spindle
cell and sclerosing RMS. Only one tumor, previously diagnosed as ERMS arising in the maxilla of a 6-year-old boy
clustered with DICERI-mut ERMS of the uterus. Subsequent sequencing analysis identified two DICERI mutations in the
latter case. Our results suggest that DICERI-mut ERMS might qualify as a distinct subtype in future classifications of RMS.

Introduction

Rhabdomyosarcoma (RMS) represents the most common
soft tissue sarcoma of children and adolescents, accounting
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for almost 50% of all pediatric soft tissue sarcomas [1]. The
current WHO classification of soft tissue tumors defines
embryonal rhabdomyosarcoma (ERMS), alveolar rhabdo-
myosarcoma (ARMS), pleomorphic rhabdomyosarcoma,
and spindle cell and sclerosing rhabdomyosarcoma
(SRMS) as separate subtypes of RMS [2]. Beyond this
classification, recent clinicopathological studies have
identified novel molecular subtypes of RMS including two
variants of SRMS harboring either MYODI mutations
or VGLL2/NCOA2 gene fusions, as well as RMS with
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a predominantly epithelioid phenotype and TFCP2 gene
fusions [3].

ERMS represents the most common subtype, being most
prevalent within the head and neck region, followed by the
genitourinary tract [4]. In the genitourinary tract ERMS most
frequently arises in the vagina and the urinary tract of infants
[5]. ERMS of the uterine cervix and corpus are uncommon
and are usually associated with a later age of onset [6, 7].
While ERMS mostly arises sporadically, it may also develop
in the context of various familial tumor predisposition syn-
dromes, such as Li-Fraumeni syndrome (7P53), neurofi-
bromatosis type 1 (NF1), Noonan syndrome (multiple genes),
and Costello syndrome (HRAS) [8—12]. Interestingly, uterine
ERMS may develop in connection with the pleuropulmonary
blastoma (PPB) familial tumor predisposition syndrome,
which is characterized by germline mutations in DICERI
(DICER1 syndrome) [6, 13]. Neoplasms associated with the
DICERI1 syndrome usually arise in young children and ado-
lescents, and may—besides ERMS—include PPB, multi-
nodular goiter, cystic nephroma, Sertoli-Leydig cell tumor of
the ovary, and other rare tumor entities [14]. DICERI is part
of the ribonuclease III family and plays an important role in
modulating gene expression at the posttranslational level
through the processing of miRNA. Mutations in DICERI may
thus contribute to tumorigenesis by activation of oncogenes
through dysregulation of miRNA [15].

Recent studies have shown recurrent germline and
somatic DICER] mutations to occur in a majority of uterine
ERMS [7, 16, 17]. At the same time, only rare cases of
extrauterine DICER1-associated ERMS, mostly located in
the genitourinary tract, have been reported [16, 18-20].
In addition, molecular studies of larger cohorts of ERMS
have failed to identify significant numbers of DICERI
alterations, considering that most analyzed cases were
located outside of the genitourinary tract [21-23]. Thus, the
question arises, if DICERI-mutant (DICERI-mut) ERMS
represents a separate clinicopathologic subgroup distinct
from DICERI-wild type (DICERI-wt) ERMS.

In an attempt to contribute data to the ongoing discussion
on DICER] alterations in ERMS, we report the clin-
icopathological characteristics of a cohort of genitourinary
ERMS including DICERI-mut and DICERI-wt tumors by
applying targeted DNA sequencing and performing com-
parative, genome-wide DNA methylation and copy number
variation (CNV) analyses.

Material and methods
Study cohort and pathology review

A total of 17 ERMS of the genitourinary tract were col-
lected, including nine uterine (four uterine cervix and five

uterine corpus), one vaginal, and seven urinary-tract tumors
(four bladders, one prostate, and two bladder/prostate not
other specified). Uterine tumors were collected from the
referral center archives of two of the authors (DSc, FK, n =
9). The remaining ERMS were allocated from the study
archives of two of the authors (JM, ME, n = 3), as well as
from the INFORM study cohort (n = 5) [24]. For all but one
tumor, Hematoxylin & Eosin (H&E) slides from either fresh
frozen (n=2) or formalin-fixed and paraffin-embedded
(FFPE) (n = 14) material was available. Additional desmin
(Dako, mouse monoclonal, clone D33) and myogenin (Cell
Marque, Rocklin, CA, USA, mouse monoclonal, clone
F5D) immunohistochemistry (IHC) was only performed in
cases were additional FFPE material was available (uterine
tumors only, n =9). All tumors with available H&E slides
were subject to expert pathology review. A diagnosis of
ERMS was made applying the current WHO criteria [2]. In
cases of uterine tumors, special attention was given to the
distinction from and the exclusion of uterine adenosarcoma,
a well-known differential diagnosis of uterine ERMS [6].
Because this distinction is exceptionally difficult, for this
study, uterine tumors where no consensus diagnosis of
ERMS could be reached were excluded. Molecular features
of two of the cases presented herein (ERMS 3 and 4) have
previously been described elsewhere [25]. This study was
approved by the institutional ethics committee and per-
formed in accordance with the Declaration of Helsinki.

DNA extraction

DNA was extracted from either fresh-frozen or FFPE tumor
tissue. The Maxwell® 16 FFPE Plus LEV DNA Kit or
the Maxwell® 16 Tissue DNA Purification Kit (for frozen
tissue) was applied on the automated Maxwell device
(Promega, Madison, WI, USA) according to the manu-
facturer’s instructions. A minimum of 100 ng DNA was
extracted in every case and provided for subsequent DNA
sequencing and array-based DNA methylation analysis.

DNA sequencing

DNA was sequenced either as whole-exome using Agilent
SureSelectXT Human V5 or V7 kit (n =35, including from
germline) or using a customized SureSelect XT technology
(Agilent) panel (n = 14, no germline available) covering the
coding regions of 130 genes. Library preparation, quality
control, sequencing on a NextSeq or HiSeq sequencer
(Ilumina), and data processing were performed as previously
described [24, 26]. Reads were aligned to the reference gen-
ome hgl9 and variants were annotated using ANNOVAR
software [27]. For samples without a matching germline
control, synonymous and stop-loss variants, variants with a
frequency exceeding 1% in the healthy population as well as
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variants described as known polymorphisms in the single
nucleotide polymorphism database were excluded.

Genome-wide DNA methylation data generation,
plotting and pre-processing

DNA was also analyzed using the Illumina Infinium
HumanMethylation450 (450 k) BeadChip or the EPIC/850k
BeadChip (Illumina, San Diego, USA) at the Genomics and
Proteomics Core Facility of the German Cancer Research
Center (DKFZ) in Heidelberg. DNA methylation data were
normalized by applying background correction and dye bias
correction (shifting of negative control probe mean intensity
to zero and scaling of normalization control probe mean
intensity to 20,000, respectively). Probes targeting sex
chromosomes, probes containing multiple single nucleotide
polymorphisms, and probes that could not be uniquely
mapped were removed.

Copy number analysis, unsupervised clustering and
t-SNE analysis

Copy number assessment was performed on methylation array
data using the R-package conumee and copy number variants
were identified by manual inspection [28]. For subsequent
DNA methylation analyses, we included a previously compiled
methylation data set of a large cohort of RMS of genitourinary
and extra-genitourinary locations, including ARMS (n =43),
MYODI-mutant SRMS (n = 12), as well as additional cases of
ERMS (n=39) and non-neoplastic striated muscle (control,
n=38), which has previously been published in part [29]. For
unsupervised hierarchical clustering of DNA methylation data,
10,000 probes with the highest median absolute deviation
across beta values were selected. Samples were hierarchically
clustered using Euclidean distance and Ward’s linkage method.
Methylation probes were reordered by hierarchical clustering
using Euclidean distance and complete linkage. The unscaled
methylation levels were shown in a heat map from the
unmethylated state (blue color) to the methylated state (red
color). For the unsupervised 2D representation of pairwise
sample correlations, dimensionality reduction by t-distributed
stochastic neighbor embedding (t-SNE) was performed using
the 10,000 most variable probes, a perplexity of 10 and 3000
iterations. The stability of methylation groups was tested by
varying the number of the most variable probes.

Results
DICER1 mutations in ERMS of the genitourinary tract

DNA sequencing of our cohort revealed a total of 14
DICERI-mutations in 9/9 (100%) uterine ERMS (Table 1,

SPRINGER NATURE

Fig. 1a, c). In detail, we identified ribonuclease III (RNase
IIIb) domain hotspot mutations of DICER]I in nine uterine
ERMS. Four cases harbored additional nonsense or fra-
meshift mutations of DICERI. In one case we identified
an additional non-hotspot DICERI missense alteration
(p.-T1474A), which has previously been reported in
hepatocellular carcinoma [30]. In four uterine ERMS,
only the single RNase IIIb domain hotspot mutation of
DICERI was identified. Analysis of the allelic fraction of
the alteration indicated homozygous mutations in three of
the latter tumors (ERMS 1, 3, and 4). Due to low tumor
cell content in the fourth tumor (ERMS 9) the allelic
fraction of the DICER] alteration was not informative of
zygosity (Fig. 1b). Unfortunately, no germline data was
available for DICERI-mut ERMS. No DICER] alteration
was identified in any of the extrauterine genitourinary
ERMS of our cohort (Fig. 1a).

Clinicopathological features of DICERT-mut and
DICER1-wt ERMS

Median patient age at primary diagnosis was 36 years for
DICERI-mut ERMS (mean: 38.3 years, range: 28-67
years) and 5 years in cases of DICERI-wt ERMS (mean: 7
years, range: 0.5-19 years). While all DICERI-mut ERMS
arose in women, the male-to-female ratio for DICERI-wt
tumors was 1.6 (63% male and 37% female). Classical
histomorphological features of ERMS were present in both
DICERI-mut (Fig. 2) and DICERI-wt (Fig. 3) tumors.
These included polypoid growth of hyper- and hypocel-
lular areas of small blue cells with scant cytoplasm and
varying foci of rhabdomyoblastic differentiation exhibiting
tumor cells with abundant eosinophilic cytoplasm (so-
called “strap cells”). Perivascular condensation of tumor
cells was seen in hypocellular areas. A subset of ERMS
exhibited polypoid exophytic growth with a cambium
layer consisting of a linear subepithelial tumor cell con-
densation, resembling the botryoid variant of ERMS
(sarcoma botryoides). Marked anaplasia in the form of
poorly differentiated spindle cells with high-grade nuclear
atypia was focally detected in DICERI-mut (1/9) and
DICERI-wt (3/8) tumors. The majority of DICERI-mut
ERMS (6/9) showed small foci of cartilaginous differ-
entiation, while such differentiation did not occur in any of
the DICERI-wt ERMS. Interestingly, one DICERI-mut
ERMS (ERMS 2) arising in a 67-year-old patient showed
focal ossification (formation of osteoid deposits with
associated multinucleated osteoclast-like giant cells),
abutting atypical nodular cartilaginous differentiation
(Fig. 2a, b). IHC of DICERI-mut tumors showed immu-
noreactivity for desmin and at least focal positivity for
myogenin in all DICERI-mut ERMS (n=29). Limited
clinical follow-up was obtained in 15/17 of selected cases.
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Fig. 1 Clinical and molecular features of 17 ERMS of the
genitourinary tract. a Age at diagnosis, gender distribution, sites of
origin and DNA sequencing data, (b) variant allele frequency (VAF)
of DICERI alterations suggesting either retained (ROH) or loss

6/7 DICERI-mut ERMS showed an uneventful clinical
course (median follow-up time: 8 years, range: 3-9 years).
The remaining patient died of disease after 3 years. Among
DICERI-wt ERMS 7/9 patients of our series suffered
tumor recurrences or died of disease (median follow-up
time: 5.5 years, range: 1-15 years). Clinicopathological
data are summarized in Table 1.

Recurrent alterations affecting TP53 and the RAS-
pathway in DICERT-mut and DICER1-wt ERMS

Mutations identified in both DICERI-mut and DICERI-wt
ERMS (Fig. 1a) affected KRAS and NRAS (3/9 DICERI-
mut and 1/8 DICERI-wt ERMS) and TP53 (1/9 DICERI-
mut and 2/8 DICERI-wt ERMS). Alterations only identified
in either DICERI-mut or DICERI-wt ERMS affected
KTM2D (1/9 DICERI-mut ERMS), BRAF (1/8 DICERI-wt
ERMS), and NF1 (1/8 DICERI-wt ERMS). CNV identified
in both DICERI-mut and DICERI-wt ERMS included
frequent gains on chromosomes 2, 3, and 8 (Fig. 1d, e).
While no amplifications were noted in any ERMS of our
cohort, one DICERI-wt tumor harbored a somatic deletion
including the NF1 locus. Detailed DNA sequencing results
are provided in Supplementary Table 1.

SPRINGER NATURE

@ M|ssensg muta(lo.n z g E (é‘)
V Frameshift mutation Q 8 S o
WV Nonsense mutation ” a R @2
258 53 § w oo uw
D ® D NN
Scr 3% 888
DICER1 2 S L I
AAA 4 A (O] [
‘ DEXDH Hetice|  (%RNA l Pz ‘ S RNase lil> ‘
r T T T .
0 500 1000 1500 1922
Rhabdomyosarcoma DICER1-mut (n = 9)
100 i
_ |
S [
@ [
x=) B
3 |
H 0
® | [
6 [ [ {
2 ' i 1
© | |
h h
. |
100 T
1 2 3 4 5 6 7 8 9 10 f 1

1 12 13 14 15 16 17 1819202122

100
80
60
40
20

0
20
40
60
80

100

rate of alterations (%)

T2 3 & 5 6 71 &8

9 10 11 12 13 14 15 16 17 1819202122

(LOH) of heterozygosity and (c¢) mutational spectrum of DICER]
mutations in 9 uterine ERMS. Cumulative copy-number profiles of
(d) 9 DICERI-mut ERMS and (e) 8 DICERI-wt ERMS. Molecular
data of ERMS 3 and 4 have previously been reported elsewhere [25].

Distinct patterns of DNA methylation in DICERT-mut
ERMS

Unsupervised hierarchical clustering analysis of 17 ERMS
of our cohort revealed two distinct methylation clusters
corresponding to DICERI-mut and DICERI-wt ERMS
(Supplementary Fig. 1a). Unsupervised hierarchical clus-
tering (Fig. 4a) and t-SNE analysis (Fig. 4b) of 17 ERMS of
our cohort, together with a large methylation data set of
RMS of genitourinary and extra-genitourinary locations,
confirmed a distinct DICERI-mut ERMS cluster. Such
tumors clearly segregated from clusters of DICERI-wt
ERMS, alveolar RMS, MYODI-mutant spindle cell, and
sclerosing RMS and non-neoplastic striated muscle sam-
ples. Methylation clusters remained stable when varying the
analyzed number of CpG sites (data not shown). Interest-
ingly, one ERMS from the reference set, arising in the
maxillary region of a 6-year-old boy clustered with
DICER-mut ERMS. Histomorphological evaluation of this
case revealed classical features of ERMS with focal ana-
plasia, however, no foci of cartilaginous differentiation
were noted. Subsequent targeted DNA sequencing identi-
fied a missense (p.E844X) and an RNase IIIb domain hot-
spot mutation of DICERI (p.D1709N). The patient remains
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Fig. 2 Histological features of
DICERI-mut ERMS.

a Nodular growth of
hypocellular areas resembling
the botryoid variant of ERMS,
(b) entrapment of epithelium
with cuffing of adjacent small
blue cells with scant cytoplasm,
as well as (c¢) desmin and (d)
myogenin positivity. e Focal
rhabdomyoblasts, and (f)
anaplasia may be present.

g Nodules of chondroid matrix
as well as (h) areas of abutting
ossification with osteoid matrix
and multinucleated osteoclast-
like giant cells may be
suggestive of DICER1-
association.

without evidence of disease 8 years after the initial diag-
nosis. Detailed information on the latter case is given in
Supplementary Fig. 2.

Discussion

Herein we present the clinicopathologic characteristics of a
cohort of DICERI-mut and DICERI-wt ERMS of the geni-
tourinary tract. We found DICERI alterations to be present in
all ERMS of the uterine corpus and cervix, while no such
mutations were identified in the remaining cases of our

Ve
! al
G

i o

series. To date, only rare cases of DICER[-mut ERMS of the
vagina and the urinary tract have been published [16, 31-33].
In keeping with the latter findings, most published series of
molecularly analyzed ERMS arising in the vagina or urinary
tract have lacked any tumors with DICERI mutations
[16, 21, 22]. In contrast, most cases of molecularly analyzed
ERMS of the uterine corpus and cervix harbor DICERI
mutations [7]. In addition, few cases of ERMS arising in the
broad ligament, the ovary, and the fallopian tube are also
DICERI mutation-positive [18, 20]. In combination with
published evidence, our results suggest that ERMS of the
inner female genital tract—maybe with the exception of most

SPRINGER NATURE
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Fig. 3 Histological features of
DICERI1-wt ERMS. a Botryoid
variant of ERMS with (b) a
distinct cambium layer and (c)
proliferation of small blue cells
with scant cytoplasm. d
Anaplasia and rhabdomyoblasts
may be present, however, in
contrast to DICERI-mut ERMS
no nodules of cartilage or
osteoid are present.
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Fig. 4 Distinct patterns of DNA methylation in DICERI-mut
ERMS. Unsupervised hierarchical clustering (a) and t-SNE analysis
(b) of 9 DICERI-mut and 8 DICERI-wt ERMS, together with a large
methylation data set of RMS of genitourinary and extra-genitourinary

tumors arising in the vagina—are associated with DICER]
mutations, in contrast to other ERMS arising in the urinary
tract which is usually DICERI-wt. In their recent paper,
Appellaniz-Ruiz et al. hypothesized that DICER! mutations
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locations shows distinct cluster formation for ARMS (n=43),
MYODI-mut SRMS (n = 12), ERMS (n = 46), non-neoplastic striated
muscle tissue (control; n = 8) and DICERI-mut ERMS (n = 10).

could predispose to tumor development in Miillerian-derived
tissues [34]. The Miillerian ducts ontogenetically give rise to
the upper portion of the vagina, the uterine cervix, and cor-
pus, as well as the fallopian tubes, potentially providing a
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developmental explanation for the predilection of DICERI-
mut ERMS at these sites.

Our results further indicate clinical differences between
DICERI-mut and DICERI-wt ERMS. Here, the presence
of DICERI alterations in ERMS was associated with older
patient age at diagnosis (median age 36 years vs. 5 years
for DICERI-wt ERMS). These results are in line with a
recent report by de Kock et al. who reported a series of 19
DICERI1-associated uterine ERMS with a median age at
diagnosis of 30 years [7]. In contrast, a younger median
age of 16 years at diagnosis of patients with DICERI1-
associated ERMS arising anywhere in the female genital
tract was published in a recent meta-analysis [34]. Our
results suggest that on the other hand most extrauterine
ERMS, more specifically DICERI-wt ERMS, usually do
not occur in older patients [5]. Although potentially lim-
ited by a selection bias, in our study, follow-up data
suggest that in the genitourinary tract, DICERI-mut
ERMS might show a more favorable clinical course as
compared to DICERI-wt ERMS. Interestingly, genitour-
inary RMS arising in so-called non-bladder/non-prostate
sites, such as the vagina or the uterus was reported to
behave less aggressively than those with primary location
in the urinary tract, irrespective of DICERI mutation
status in two studies [35, 36]. While clinical information
on DICER1-associated ERMS has rarely been published
to date, potentially aggressive behavior of these tumors is
exemplified by one of our patients who died of disease 3
years after initial diagnosis. Further, McCluggage et al.
recently reported a DICERI-mut ERMS of the ovary,
which relapsed only 3 months after surgery [20]. Given
the above, further investigations of the clinical behavior
of DICERI-mut ERMS are clearly needed.

Histologically, ERMS of the genitourinary tract invol-
ving epithelial-lined viscera such as the vagina, the bladder,
and the uterus, often resemble botryoid ERMS [37-39].
Despite a similar or in some instances even identical mor-
phology, the presence of cartilaginous nodules has pre-
viously been described in DICERI-associated ERMS, a
finding that is confirmed by the current study [7, 20].
Similarly, we report osteoid formation in conjunction with
DICERI mutations in a uterine ERMS, which has pre-
viously been reported in two cases of DICER1-associated
ERMS of the female genital tract [34, 40]. Thus, identifi-
cation of cartilaginous nodules and/or osteoid formation in
ERMS of the genitourinary tract, including the uterus, may
suggest a DICER 1-association. Therefore, patients with this
diagnosis should be referred to genetic counseling.

DICERI-wt ERMS are known to frequently harbor
alterations impacting the RAS-RAF-MAPK (mitogen-
activated protein kinase 1) pathway, including mutations in
RAS genes (NRAS, KRAS, and HRAS) and TP53 [21, 41].
Furthermore, genetic hallmarks of DICERI-wt ERMS may

include aneuploidy with chromosome gains most frequently
involving chromosomes 2, 3, and 8, as well as copy number
neutral loss of heterozygosity (cnLOH) of chrllp alleles
(11p15.5) [21, 42]. Interestingly, we identified similar pat-
terns of aneuploidy as well as mutations affecting 7P53 and
activating the RAS signaling cascade in both DICER/-mut
and DICERI-wt ERMS. Preliminary analysis of single
nucleotide polymorphism data from gene panel sequencing
suggests that cnLOH of chrllp, typically a hallmark of
ERMS, may not be a common feature of DICERI-mut
ERMS. The panel data, however, do not cover sufficient
loci in this region to be conclusive, and the 11p status in this
subgroup will need confirming with more detailed analysis
in the future.

A key finding of our study is that DICERI-mut and
DICERI-wt ERMS are defined by distinct DNA methyla-
tion profiles, irrespective of their primary location. Recent
studies have shown whole-genome DNA methylation pro-
filing to be helpful in the identification of novel tumor
entities and to be able to reliably assign CNS and
mesenchymal tumors to diagnostic groups, including RMS
and various uterine neoplasms [22, 29, 43-46]. The ratio-
nale behind this approach is the assumption that cancer cell-
specific DNA methylation patterns to some extent recapi-
tulate the DNA methylation patterns of their originating
precursor cell, which are retained through cell division and
tumorigenesis [47, 48]. Developmentally, RMS is believed
to originate from myogenic progenitors, a concept sup-
ported by the expression of myogenic genes such as desmin
and myogenin in RMS tumor cells [49-51]. Yet, studies
have suggested that RMS may also develop from transdif-
ferentiating non-myogenic cells, such as endothelial pro-
genitors [52]. While the cell of origin of RMS remains
elusive and may vary contextually, our results may suggest
a differing cell lineage of DICERI-mut and DICERI-
wt ERMS.

In DICER1 syndrome-associated neoplasms, predispos-
ing loss-of-function mutations in DICER] typically occur
together with a characteristic somatic missense hotspot
mutation on the second allele [13]. However, also sporadic
DICER1-associated neoplasms with biallelic DICERI
alterations have been identified in the absence of germline
alterations [53]. Although no germline DNA was available
for study in the current paper, four DICERI-mut ERMS
showed a combination of a DICER] frameshift or nonsense,
and a DICERI hotspot mutation, consistent with alterations
previously reported in DICER1 syndrome associated ERMS
[7, 16]. The remaining DICERI1-associated ERMS of our
cohort showed multiple missense mutations or homozygous
hotspot mutations in DICERI. Interestingly, the DICERI
locus (14q) in the latter neoplasms of our cohort did not
show any copy number alterations, particularly no deletion/
microdeletion. However, we cannot rule out that a cnLOH
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may inactivate the second DICER] wild-type allele in these
cases [54].

In the uterus, DICER]I alterations are not limited to
ERMS but have also been identified in a significant number
of uterine adenosarcomas and few cases of carcinosarcoma
[55, 56]. Adenosarcoma is a mesenchymal neoplasm typi-
cally exhibiting a phyllodes-like growth which may show
significant morphological overlap with ERMS, especially
when exhibiting sarcomatous overgrowth and/or rhabdo-
myoblastic differentiation [57]. A recent paper by de Kock
et al. has elegantly shown that although DICER] alterations
may be significantly more frequent in uterine ERMS, a
distinction between uterine ERMS and adenosarcoma,
based on DICERI mutations status alone is not always
possible [7]. In keeping with this finding, few cases of
uterine tumors resembling ERMS were excluded from our
study after pathology review, as no consensus diagnosis
could be reached due to equivocal histologic features, thus
limiting the number of uterine cases in our series. Future
studies investigating the potential of DNA methylation-
based profiling in clarifying the relationship of the latter
neoplasms are warranted.

Apart from uterine sarcomas, DICER]I alterations have
also been reported in other rare sarcoma entities, such as
anaplastic sarcoma of the kidney and a recently described
primary intracranial sarcoma with DICERI mutation
[25, 58, 59]. Furthermore, DICERI-associated sarcomas of
various locations show a significant morphological overlap
with other DICER 1-associated neoplasms such as PPB and
Sertoli-Leydig-cell tumors [60, 61]. Shared histological
features may include undifferentiated small blue cells,
poorly differentiated spindle cells with areas of rhabdo-
myoblastic differentiation, a subepithelial cambium layer,
chondroid differentiation as well as bone/osteoid formation
[58]. Consequently, a novel unifying nomenclature for such
neoplasms has been proposed [62]. However, more detailed
comparative studies investigating the clinical and molecular
characteristics of such rare DICER]I-associated neoplasms
arising in different anatomical locations are needed in order
to clarify whether such tumors are in fact part of the same
biological tumor spectrum.

Herein we describe the clinicopathologic features of a
cohort of genitourinary ERMS in relation to DICERI muta-
tion status. While all genitourinary ERMS showed over-
lapping morphological features, diverging clinicopathological
characteristics and distinct DNA methylation profiles imply
that DICERI-mut ERMS might qualify as a distinct subtype
in future classifications of RMS.

Data availability

The data for this study data are available upon reasonable
request.
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