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Abstract

Lactate in the brain is considered an important fuel and signalling molecule for neuronal

activity, especially during neuronal activation. Whether lactate is shuttled from astrocytes to

neurons or from neurons to astrocytes leads to the contradictory Astrocyte to Neuron Lac-

tate Shuttle (ANLS) or Neuron to Astrocyte Lactate Shuttle (NALS) hypotheses, both of

which are supported by extensive, but indirect, experimental evidence. This work explores

the conditions favouring development of ANLS or NALS phenomenon on the basis of a

model that can simulate both by employing the two parameter sets proposed by Simpson

et al. (J Cereb. Blood Flow Metab., 27:1766, 2007) and Mangia et al. (J of Neurochemistry,

109:55, 2009). As most mathematical models governing brain metabolism processes, this

model is multi-scale in character due to the wide range of time scales characterizing its

dynamics. Therefore, we utilize the Computational Singular Perturbation (CSP) algorithm,

which has been used extensively in multi-scale systems of reactive flows and biological sys-

tems, to identify components of the system that (i) generate the characteristic time scale

and the fast/slow dynamics, (ii) participate to the expressions that approximate the surfaces

of equilibria that develop in phase space and (iii) control the evolution of the process within

the established surfaces of equilibria. It is shown that a decisive factor on whether the ANLS

or NALS configuration will develop during neuronal activation is whether the lactate trans-

port between astrocytes and interstitium contributes to the fast dynamics or not. When it

does, lactate is mainly generated in astrocytes and the ANLS hypothesis is realised, while

when it doesn’t, lactate is mainly generated in neurons and the NALS hypothesis is realised.

This scenario was tested in exercise conditions.

Introduction

The human brain uses glucose as its main source of energy. Even though the adult brain

accounts for�2% of the body weight, it consumes�20% of glucose-derived energy. Brain
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neurons have the highest energy demand [1] and the brain becomes dependent on glucose for

proper functioning.

Glucose is metabolized to pyruvate in the presence oxygen, in both astrocytes and neurons.

Pyruvate can follow two different pathways: oxidative or aerobic (producing energy in the

mitochondria, in the presence of oxygen) and non-oxidative or anaerobic (producing energy

and lactate in the cytosol, before the involvement of oxygen). Even though brain metabolism

has been the subject of interest and research for decades, there is still a lot of discussion on to

what extent energy derived from glucose is consumed by the astrocytes and the neurons them-

selves, and how much is shuttled between astrocytes and neurons in the form of lactate [2].

Two different hypotheses were introduced for the shuttling of lactate; one advocating the flow

of lactate from astrocytes to neurons and another one advocating the flow of lactate from neu-

rons to astrocytes. These two hypotheses are supported by experimental data, which are indi-

rect “because current technology does not have adequate spatiotemporal resolution to quantify

metabolic activity in single cells in vivo” [3].

The astrocyte-to-neuron lactate shuttle (ANLS) was proposed on the basis of glutamate-

evoked increases in glucose utilization and lactate release by cultured astrocytes [4, 5]. Accord-

ing to ANLS, the neuronal activity triggers a glucose uptake in astrocytes, which leads to large

increases in production of lactate. Lactate is then released to the extracellular space and trans-

ports to nearby neurons, where it is used as substrate for energy production (for detailed

review see Ref. [5]). The validity of the ANLS hypothesis has been supported by experimental

evidence over the years; many of them can be found in Refs. [6, 7].

On the other hand, the neuron-to-astrocyte lactate shuttle (NALS) states that lactate is

generated by neurons and taken up by astrocytes during activation. Due to the high energy

demands in neuronal activation, neurons take up glucose and transfer lactate to astrocytes,

since the neuronal glucose transporter, GLUT3, appears to have higher transport rate com-

pared with the astrocytic glucose transporter, GLUT1 [8–12]. Similarly to the ANLS hypothe-

sis, there is experimental evidence that supports the NALS hypothesis [13–15].

In the context of the ANLS hypothesis, neurons are unable to increase their glycolytic activ-

ity in response to neuronal activation [16–18]. Therefore, enhanced glycolysis due to neuronal

activation can take place only in astrocytes. On the other hand, in the context of the NALS

hypothesis, neuronal activation enhances glycolysis in neurons [19–21].

A large portion of the scientific community is currently split between the validity of either

the ANLS or NALS hypothesis, while another portion advocates that both hypotheses can be

valid depending on the operating conditions. There is a large body of literature advocating the

validity of ANLS [6, 22–32], as this is supported by indirect experimental findings [4, 18, 32–

44]. The main criticism of the ANLS hypothesis stems from the NALS supporters [8, 9, 45–54],

and the related indirect experimental evidence [10, 13–15, 55–64]. On the other hand, recent

findings suggest that perhaps brain responds differently to different environmental challenges,

depending on the availability of the fuel source. For example, it was shown that under inade-

quate supply of glucose, alternative substrates contribute to brain energetics [7, 11], such as

lactate and/or ketones during exercise, hypoxia, hypoglycemia or intense brain activity [65,

66]. Therefore, under different brain environmental conditions either the ANLS or NALS

hypothesis can be valid. The identification of the conditions under which ANLS or NALS

manifests is one of the objectives of this manuscript.

The very beginning of the brain chemistry can be traced back to 1884 [67] but early evi-

dence on metabolism in brain tissue can be found in Himwich’s early work [68] dated in 1951.

Since then, the brain energy metabolism network has been investigated extensively mainly

through in vitro and in vivo experiments and measurements on rats (e.g., Refs. [34, 69–76])

and humans (e.g., Refs. [55, 70, 77–79]).
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On the other hand, the development of mathematical models that aim to simulate the meta-

bolic interactions between metabolites into and among the various cerebral compartments has

been flourishing very recently. Aubert et al. were among the first to develop mathematical

brain metabolism models in order to investigate the connections between electrical activity,

energy metabolism and hemodynamics [80, 81]. These models served as baselines for the

development of more detailed ones with various investigation objectives like: the ANLS

hypothesis [82], the initial rapid decrement in the extracellular lactate concentration [83], the

blood oxygenation level-dependent (BOLD) signal in functional MRI (fMRI) [84], the inclu-

sion of glycogen dynamics in astrocytes [85]. The model proposed by Simpson et al. [9] was

developed with the purpose of addressing the role of transport in cerebral metabolism and the

limitations of the previously developed models related to the concentrations and kinetic prop-

erties of the glucose transporters (GLUTs) and monocarboxylate transporters (MCTs) in the

brain. With this work, Simpson et al. provided the setup for both the ANLS and the NALS

hypotheses. Although, this model was criticized for its simplisity, its increased accuracy com-

pared to in vivo rodent data lead to its utilization (with small parameters’ adjustments) for

studying in vivo data from humans at high field functional magnetic resonance spectroscopy

(fMRS) by Mangia et al. [10].

Combining the models proposed in [9, 10, 81, 82], Di Nuzzo et al. [8] introduced a new

model to investigate the effects of cellular transport, metabolic capacity, specialization for

energy use and metabolite trafficking during normal and enhanced cerebral activity. Aiming

on the steady state conditions of the metabolic pathways and their relation to neuronal activa-

tion, Occhipinti et al. initially proposed a model [86] and used statistical tools to examine the

reaction fluxes and the transport rates. Later this model was revised in [87] in order to investi-

gate the preferred energy substrate (i.e., glucose or lactate) in neurons at high activity. They

further investigated the reasons of production of γ-aminobutyric acid (GABA), by revising

accordingly their latest model in [88]. By modifying and extending the models of Occhipinti

et al. [87, 88] for glutamatergic neurons and astrocyte-GABAergic neuron cellular complex,

respectively, Calvetti at al. [89] proposed a very detailed steady state model comprising of three

cells, each one subdivided into cytosol and mitochondria, where astrocytes, glutamatergic, and

GABAergic neurons interact through a common extracellular space (ECS). Finally, the models

proposed in [82, 84] were used recently as baseline for the development of a more sophisti-

cated model by Jolivet et al. [22], in order to investigate the ANLS hypothesis and its connec-

tion to cerebral blood flow.

Sensitivity analysis and flux analysis are the standard and widely used techniques for the

investigation of such complex models. The former technique quantifies the effect of a pertur-

bation in the model’s parameters to the evolution of the system. It is often utilized to obtain

insights into the metabolic properties of the system by examining the derivative of fluxes with

respect to each model parameters [8, 85], but also to quantify the relative contribution of input

parameters on the features of an output attribute, such as BOLD signal [90, 91]. On the other

hand, flux balance analysis targets on finding the physiological feasible configuration of reac-

tion fluxes and transport rates capable on maintaining a steady state. It is often utilized to ver-

ify the hypotheses on the role of different pathways related to a brain function that have been

proposed and to predict the activation levels of pathways at different inputs according to the

initial hypotheses [86, 92]. Flux balance analysis can be applied in a mathematical model even

when only the stoichiometry is known, and therefore it has been widely used and extended in

both deterministic [93, 94] and stochastic frameworks [87, 95, 96]. Flux balance analysis is

indeed useful in the interrogation of biochemical systems, but its value is limited since it can

lead to conclusions that are only global in character. In addition, sensitivity coefficients (deter-

mined through conventional local sensitivity analysis) can be misleading, since a parameter
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can be related to insignificant sensitivity coefficient and yet be important [97]. Moreover, even

in the early 80s works it was acknowledged that there are functional connections between the

sensitivity coefficients that they cannot be identified by their mere inspection, thus, additional

treatment of the local sensitivity coefficients was proposed [98]. As such, none of these meth-

ods can provide details on the temporal evolution of the set of biochemical reactions and

metabolites that are most influential on the dynamics and progress of the system [94]. More-

over, they cannot identify the chemical reactions that control the evolution of a metabolite or a

variable in general. Such identifications are of paramount importance since they can facilitate

the associated physical understanding and eventually can lead to the development of efficient

drugs.

Here, the Computational Singular Perturbation (CSP) algorithm will be employed for the

analysis of a brain lactate metabolism model. CSP is an algorithmic method for asymptotic

analysis developed in the late 1980s by Lam and Goussis [99–101]. It exploits the fact that

systems describing the time evolution of biological kinetics models, are driven by processes

characterized by a wide range of time scales. In such systems, the processes characterized by

the fastest time scales become quickly equilibrated (exhausted). The system is thus confined

to evolve within the related surfaces of equilibria that emerge in phase space and is driven

by the processes that are characterized by the slow time scales. CSP can provide both mathe-

matical expressions that approximate the generated surfaces of equilibria and the simplified

system that approximates the slow evolution along these surfaces. CSP was initially devel-

oped to treat large and complex chemical kinetic mechanisms in the context of reacting

flows [100, 102], but was later employed for the analysis of other physical problems, like

computational mechanics [103], atmospheric science [104], etc., including biological sys-

tems [105–108] and pharmacokinetics [109, 110]. CSP exhibits many advantages compared

to other similar approaches. Firstly, it is fully algorithmic, requiring no input from the

investigator, apart from the detailed model and the accuracy that the simplified model is

required to provide. In addition, the CSP algorithm can identify the physical processes in

the model that contribute to the emergence of the surfaces of equilibria, those that control

the slow (long-term) evolution of the system and those that are responsible for the develop-

ment of the fast and slow time scales. Finally, CSP can identify the variables whose evolution

is characterised by the fast or slow time scales. This understanding allows the investigator to

identify the processes that can control not only the slow evolution of the whole system, but

also the evolution of each individual metabolite; e.g., see the applications in pharmacokinet-

ics [109, 110].

The CSP algorithm refers to the Geometric Singular Perturbation (GSP) theory, which intro-

duced slow invariant manifolds (low dimensional surfaces on which trajectories evolve accord-

ing to the slow time scales) and the fast fibers (along which trajectories approach the slow

manifold according to the fast time scales) [111–113]. At each point on the manifold, CSP pro-

vides basis vectors that span the fast and slow subdomains of the tangent space. These vectors

are provided by two iterative procedures; one that improves the accuracy of the basis vectors

that are tangent to the manifold and one that improves the accuracy of the basis vectors aligned

with the fast fibers. Considering the small parameter �, equal to the ratio of the characteristic

fast and slow time scales, each of these iterations increases the accuracy of the CSP basis vec-

tors by Oð�Þ [114–117]. With this set of basis vectors being available, the slow manifold is

approximated by the relations that result from the negligible projection of the vector field

along the fast basis vectors and the system that governs the flow on the manifold is approxi-

mated by the projection of the vector field along the slow basis vectors [100]. Due to the multi-

scale character and the complexity of the models that are currently of interest, approaches

based on the GSP theory are becoming popular in the field of biology [118–122]. The major
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advantage of CSP is that is algorithmic and does not require the mathematical model to be cast

in a non-dimensional form [105–110].

In the current study, CSP and its algorithmic tools are employed in order to analyse brain

lactate metabolism, using the model proposed by Simpson et al. [9], as modified by Mangia

et al. [10]. This model was selected for the following reasons. Firstly, it is a fairly simple model,

thus, an ideal candidate for the demonstration purpose of the proposed method (i.e., CSP and

its tools). Secondly, the model of Mangia et al. [10] provides a basis for both the ANLS and the

NALS hypotheses. Therefore, both hypotheses can be examined, in view of the same mecha-

nism, which can lead to a fair comparison of the results. Thirdly, it is among the very few mod-

els that was fitted against human in vivo data [10, 28, 84], in contrast to the majority of the

models that are calibrated against in vitro human data [8, 80–84, 88, 89] or in vivo rat data [9,

28, 85].

In the following, results obtained from the CSP analysis of a simple brain lactate metabo-

lism model will be reported. By investigating the fast and slow dynamics of the model, the cou-

plings among the glucose and lactate pathways are revealed in the context of both the ANLS

and the NALS hypotheses. In addition, the rate limiting steps in each of the two pathways are

identified. These findings are crucial in order to understand the mechanism for lactate shut-

tling in the brain, and for the identification of the most conducive point in the pathways for

the control of the process. These findings will be demonstrated in normal and exercise condi-

tions of neuronal activation.

Methods

The computational model

The brain lactate metabolic network is analyzed by utilizing the model introduced in Simpson
et al. [9], as modified by Mangia et al. [10], which simulates the kinetic behavior of glucose and

lactate among the cerebral compartments. As shown in Fig 1 the model consists of 5 compart-

ments: the endothelium (e), the basal lamina (bl), the astrocyte (a), the interstitium (int) and

the neuron (n). Glucose (Glc) and lactate (Lac), which are the only chemical species that are

accounted for in the model, are oxidized in astrocytes and neurons in order to produce energy.

The transport or diffusion of these two substances from one compartment to another is

Fig 1. The 5-compartmental model introduced in [9]. The initial quantity of Glc and Lac is provided to the system

through serum and then Glci and Laci transports, diffuses or metabolizes through the various compartments, (i = e, bl,
a, int, n), by the 12 reversible and the 6 irreversible reactions.

https://doi.org/10.1371/journal.pone.0226094.g001
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denoted as a reaction. As shown in Fig 1, there are 12 reversible and 6 irreversible reactions in

the model; see S1 Text for a detailed description of the model. At this point it suffices to state

that the interactions of Glc and Lac through the various compartments is governed by a

10-dimensional system of Ordinary Differential Equations (ODEs):

dy
dt
¼
XK

k¼1

SkR
kðyÞ ¼ gðyÞ ð1Þ

where y is the N-dim. column vector containing the concentrations of species Glci and Laci at

the five compartments (N = 2 × 5 = 10), Sk denotes the N-dim. stoichiometric vector of the K
unidirectional reactions and Rk is the related reaction rate. In order to assess the influence of

the two directions in a reversible reaction, in the analysis that follows the contribution of a

reversible reaction SiRi will be considered as a contribution of two unidirectional reactions, Si;f
R

and Si;b
R , respectively (K = 12 × 2 + 6 = 30). The system will be analysed for normal and exercise

conditions, which are distinguished by the level of lactate in the serum; Glcs = 5.5 mmol/L and

Lacs = 1 mmol/L in the case of normal conditions and Glcs = 5.5 mmol/L and Lacs = 20 mmol/

L in the case of exercise conditions [123, 124].

Computational singular perturbation (CSP) method and algorithmic tools

The Computational Singular Perturbation (CSP) method relies on the multi-scale character of

the system under investigation and leads to an algorithm that delivers everything the tradi-

tional singular perturbation technique does. As the system evolves, CSP identifies the sub-

spaces in phase space, in which the fast and slow dynamics act. The components of the model

that tend to drive the system along the fast directions equilibrate, generating thus constraints

in which the system is bound to evolve. This evolution is driven by components that act along

the slow directions. With the fast and slow subspaces provided by CSP at each point in time,

the components of the model that are mainly responsible for the generated constraints and for

driving the system are easily identified.

According to the CSP approach, the vector field g(y) is resolved in N modes, so that Eq (1)

is cast in the form [100, 125]:

dy
dt
¼ gðyÞ ¼

XN

n¼1

anðyÞf
nðyÞ f nðyÞ ¼ bn

ðyÞ � gðyÞ ¼
XK

k¼1

bn
ðyÞ � Skð ÞRkðyÞ ð2Þ

where an is the N-dim. CSP column basis vector of the n-th mode, bn is the N-dim. dual row

vector that satisfies the orthogonality conditions bi
� aj ¼ d

i
j and fn is the related amplitude (set

positive by properly adjusting the sign of the N-dim. row vectors bn) [99, 100]. Each mode

an fn relates to a distinct time scale, say τn; see S2 Text. The amplitude fn of the n-th mode pro-

vides a measure of the projection of the vector field g(y) on the CSP vector an. Therefore, when

the system in Eq (2) exhibits M time scales that are (i) of dissipative nature, i.e. the components

of the system that generate them tend to drive the system towards a fixed point and (ii) much

faster than the rest, the following reduced model is obtained:

f rðyÞ � 0 ðr ¼ 1; . . . ;MÞ
dy
dt
�
XN

s¼Mþ1

asðyÞf
sðyÞ ð3Þ

when these M fast time scales become exhausted. Interested in leading order accuracy, the

CSP vectors ai and bi (i = 1, . . ., N) can be approximated by the right and left, respectively,

eigenvectors of the N × N-dim. Jacobian J of g(y); i.e., ai = αi and bi = βi [100, 125, 126]. The
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first relation in Eq (3) is an M-dim. system of algebraic equations and defines the manifold

M (a low dimensional surface in phase-space, where the system is confined to evolve), while

the second relation is an N-dim. system of ODEs that governs the slow evolution of the system

on this manifold. In the following, the dependency of Rk, g, α, etc. from y will be omitted for

simplicity.

The M constraints in Eq (3) fr = (βr � S1)R1 + . . . + (βr � SK)RK� 0 (r = 1, . . ., M) are the

result of significant cancellations among some of the additive terms (βr � Sk)Rk (k = 1, . . ., K).

The reactions that contribute significantly to the formation of each of the M constraints are

identified by the Amplitude Participation Index (API):

Pr
k ¼

ðβrSkÞR
k

XK

i¼1
jðβrSiÞR

ij
: ðk ¼ 1; . . . ;KÞ ð4Þ

where by definition
PK

k¼1
jPr

kj ¼ 1, [99, 127, 128]. Pr
k provides a measure of the contribution of

the k-th reaction to the cancellations among the additive terms in fr� 0 and can be either posi-

tive or negative, the sum of positive and negative terms equaling 0.5, by definition.

The formation of the M constraints and the dynamics of the slow system in Eq (3) are char-

acterized by the M fastest time scales and by the fastest of the N −M slow ones, respectively.

These time scales are approximated by the inverse of the eigenvalues of the Jacobian J, τn =

|λn|−1 (n = 1, . . ., N). The reactions that contribute significantly to the generation of these time

scales are identified by the Time scale Participation Index (TPI):

Jnk ¼
cnkPK

i¼1
jcni j

ðk ¼ 1; . . . ;KÞ ð5Þ

where ln ¼ cn
1
þ . . .þ cnK and by definition

PK
k¼1
jJnk j ¼ 1 [127, 129, 130]. cnk denotes the contri-

bution of the k-th reaction to the n-th eigenvalue and can be calculated as cnk ¼ βnrðSkRkÞαn,

where
PK

k¼1
rðSkRkÞ is the Jacobian J; see S2 Text for details. cnk can be either positive or nega-

tive and therefore, when Jnk is positive (negative), it implies that the k-th reaction contributes to

an explosive (dissipative) character of the n-th time scale τn. By definition, explosive (dissipa-

tive) time scales relate to the components of the system that tend to drive it away from

(towards) a fixed point [99, 100].

Each chemical species associates differently to each exhausted CSP mode, e.g., a chemical

species can relate mostly to the m-th CSP mode (m = 1, . . ., M) and much less to the rest. The

relation of the m-th CSP mode to the various chemical species is assessed by the CSP Pointer
(Po):

Dm ¼ diag½αmβ
m� ¼ ½a1

mb
m
1
; a2

mb
m
2
; . . . ; aNmb

m
N � ðm ¼ 1; . . . ;MÞ ð6Þ

where, due to the orthogonality condition βi � αj ¼ d
i
j, the sum of all N elements of Dm equals

unity; i.e.,
PN

i¼1
aimb

m
i ¼ 1 [99, 128, 131, 132]. Values of aimb

m
i close to unity indicate that the

i-th variable is strongly connected to m-th CSP mode and the corresponding time scale. Chem-

ical species with Po values close to unity are potentially in Quasi Steady-State (QSS) [132].

The reactions that contribute the most to the evolution of the system within the M con-

straints, according to the N-dim. system of ODEs in Eq (3), are identified by the slow Impor-
tance Index (II):

Ink ¼
PN

s¼Mþ1
ans ðβ

s � SkÞRk

PK
j¼1
j
PN

s¼Mþ1
ans ðβ

s � SjÞRjj
ðn ¼ 1; . . . ;N; k ¼ 1; . . . ;KÞ ð7Þ
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where by definition,
PK

k¼1
jIikj ¼ 1 [99, 127, 133]. Ink provides a measure of the relative impor-

tance of the k-th reaction to the production (when positive) or consumption (when negative)

of the n-th chemical species [99, 128, 131, 134]. A detailed description of the CSP methodology

is available at S2 Text.

Results

The dynamics of the system

The evolution of glucose and lactate concentrations in the various cerebral compartments is

simulated during neuronal activation by the model described briefly in the previous section

and in detail in S1 Text. The variations of the concentrations of metabolites during neuronal

activation (electrical and chemical excitability of neurons) have been recorded experimentally

by fMRS [10]. It was shown that neuronal activation begins (ends) with a rapid increase

(decrease) in lactate and a decrease (increase) in glucose in the human cortex. In order for

the model employed to reproduce this response of the concentrations, the parameters in the

model were properly adjusted in the periods of neural activation. In particular, the system was

allowed to rest on its baseline steady-state conditions for the first 1000 s and then the parame-

ters associated with lactate (glucose) utilization were adjusted in order to generate increased

(decreased) levels of lactate (glucose) during the first period of neuronal activation P1 (1020

s< t< 1240 s). These adjustments were removed at the end of P1 and the system was let to

evolve towards the next period, P2 (1320 s< t< 1540 s). As in P1, adjustments in the parame-

ters were introduced throughout P2 in order to produce decreased (increased) lactate (glucose)

levels. After the completion of P2, the adjustments were removed and the system was allowed

to reach steady state conditions. For a detailed explanation of the parameter adjustments dur-

ing P1 and P2 see Ref. [10].

Multi-scale character and modal decomposition. The multi-scale character of the model

is established by wide gaps among the fast and slow time scales τn and by the ensuing negligible

amplitude of the fast modes fn.

There are N = 10 variables in the model employed, so that according to Eq (2) there are 10

amplitudes, which are related to 10 time scales. Fig 2 displays the evolution of the N time scales

τn that characterise the dynamics of the metabolic network under consideration and the ampli-

tudes fn of the N CSP modes, for both ANLS (top) and NALS (bottom) cases. The period con-

sidered includes the periods P1 and P2 of neuronal activation, as indicated in the figure. The

rapid “step” deviations either in time scale or in amplitude evolution relate to the parameter

adjustments during P1 and P2. These adjustments have a negligible influence in the time scales,

but a significant one in the amplitudes.

In particular, in the left part of Fig 2 it is shown that in both the ANLS and NALS cases the

time scale spectrum extends from O(1) to O(103) s. These time scales are all dissipative (the

related eigenvalues are all real and negative), so they are generated by processes that tend to

drive the system towards a fixed point. There is a general agreement in the evolution of the

time scales in the ANLS and NALS cases. The largest deviations are recorded in the 5th and

8th time scales: τ5 is somewhat slower in the NALS case, while τ8 is much slower. The most

notable difference in the two cases is that the largest time scale gap is encountered between the

8th and the 9th scales in the ANLS case and between the 7th and the 8th scales in the NALS

case. This finding suggests that there is one more constraint established in the ANLS case.

The corresponding amplitudes fi of the CSP modes are displayed in the right part of Fig 2,

where the 5 first modes are denoted with dotted lines and the last 5 with solid ones. Before the

neuronal activation (t< 1020 s), where the system has already attained its steady state condi-

tions, the two largest amplitudes are O(10−23) and O(10−22) and relate to the slowest 9th and
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10th CSP modes respectively; indicating that all CSP modes have been exhausted (i.e., all 10

modes are inactive). As the neuronal activation manifests itself at t = 1020 s, all amplitudes

increase. The largest amplitudes during the neuronal activation periods P1 and P2 in both

ANLS and NALS cases are those of the two slowest 9th and 10th CSP modes, reaching O
(10−16), followed by the amplitude of the 8th mode. In the ANLS case, the amplitude of the 8th

CSP mode relaxes very quickly after its rapid increase at the start of neuronal activation. In

contrast, in the NALS case the amplitude of the 8th CSP mode attains a relatively large value

throughout the period of neuronal activation. This is in agreement to the finding that the larg-

est fast/slow time scale gap is encountered between the 8th and the 9th time scales in the ANLS

case and between the 7th and the 8th time scales in the ANLS case; i.e., Fig 2 shows that during

neuronal activation only the amplitudes of the slow modes are large. After the end of P2, all

amplitudes decay according to the related time scale as the system returns to its steady state;

the slowest decay exhibited by the amplitude of the slowest 10th mode.

Our study will focus on the periods P1 and P2 of neuronal activation, which are displayed

with dashed red arrows in both the left and right panels of Fig 2. Period P1 relates mostly to the

Fig 2. The timescales and the amplitudes. Evolution of the time scales τi (left) and the amplitudes fi (right) of the CSP modes during neuronal

activation, for the ANLS (top) and NALS (bottom) cases. P1 and P2 represent the periods of neuronal activation that are examined in detail. The dotted

and solid lines in the figures on the right denote the first 5 and the last 5 amplitudes fi, respectively.

https://doi.org/10.1371/journal.pone.0226094.g002
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glycolytic uptake in astrocytes, while period P2 relates to the Lac oxidation in both neurons

and astrocytes [10]. Both periods display quite similar dynamical behavior. In particular, in

both the ANLS and NALS cases the amplitudes of all modes grow at the start of the two activa-

tion periods, but the majority of them relax very quickly. In the ANLS case the number of

exhausted time scales is M = 8 for the largest part of P1 and P2. Therefore, the 9th and 10th

CSP modes are considered to be the slow ones (i.e., the ones that drive the system in P1 and

P2), while the 1st to the 8th are the exhausted fast ones (i.e., their negligible amplitudes define

the confines in which the system evolves). In contrast, in the NALS case, the number of

exhausted time scales is M = 7 for the same periods. Now, the 8th, 9th and 10th CSP modes are

considered slow, while the 1st to the 7th modes are fast.
In the following, the CSP diagnostic tools discussed previously are utilized in order to

acquire physical understanding and derive conclusions about the evolution of the system dur-

ing neuronal activation. Interested in the long-term evolution of the system, the analysis will

focus on the slow dynamics. However, in order to understand the influence of the surface of

equilibria, which is generated by the M constraints, on the behavior of the system, a brief pre-

sentation of the established constraints is presented first. These constraints involve the most

intense components of the system, the equilibration of which allows the less intense ones to

drive the system.

Fast dynamics and established constraints. The fast dynamics of the system is responsi-

ble for the constraints that are established when the fast CSP modes become exhausted (fr� 0,

r = 1, M). As previously stated, during neuronal activation, the number of exhausted modes is

identified to be M = 8 and M = 7 in the ANLS and NALS cases, respectively. These fastest CSP

modes were analysed with the CSP tools and the resulting diagnostics are displayed in Table 1

for the ANLS case and in Table 2 for the NALS case (the diagnostics of the non-exhausted 8th

mode in the NALS case are included in Table 2 for comparison with the exhausted 8th mode

in the ANLS case). The results displayed in the two Tables were computed at t = 1100 s, which

belongs to P1. These diagnostics are indicative of those throughout P1 and P2; only 1-2% differ-

ences in the CSP diagnostics are recorded. Along with the Pointer Po, the Amplitude Participa-

tion Index API and the Time scale Participation Index TPI, the product bm�Sk is displayed in

Tables 1 and 2. When bm
� Sk ¼ Oð1Þ, the stoichiometric vector of the k-th reaction has a sig-

nificant component along am. Since am is a fast CSP basis vector, bm
� Sk ¼ Oð1Þ indicates that

the k-th reaction is a fast one and can potentially contribute to the fast dynamics.

As stated previously, the m-th exhausted CSP mode is distinguished by (i) the reactions that

participate in the constraint expressed by the relation fm� 0 (identified by the API index, Eq

(4)), (ii) the reactions that generate the time scale τm that characterizes the formation of this

constraint (identified by the TPI index, Eq (5)) and (iii) the variables (concentrations) that

relate the most to this mode (identified by the Po index, Eq (6)). These CSP diagnostics for the

exhausted modes are displayed in Tables 1 and 2.

The main observation from Tables 1 and 2 is that among the eight fastest modes 4 relate to

the Glucose path and 4 relate to the Lactate path; i.e., the 1st, 4th, 5th and 8th modes relate to

variables and reactions along the Glucose path (Glc-path modes) and the 2nd, 3rd, 6th and 7th

ones relate to variables along the Lactate path (Lac-path modes). In particular,

1. The pointed by Po variables of the Glc-path modes (Lac-path modes), relate only to Glc
(Lac).

2. The reactants of the reactions identified by TPI to contribute to the development of the four

time scales τ1, τ4, τ5, τ8 that relate to the Glc-path modes (τ2, τ3, τ6, τ7 that relate to the Lac-

path modes), involve only Glc (Lac).
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Table 1. CSP diagnostic tools for the 8 exhausted modes in the ANLS case.

Mode Po API bm � Sk TPI

1 Glcbl 0.915 4f -30.5% -1.315 4f -68.7%

Glcint 0.057 4b 25.2% 1.315 2b -18.7%

2f 16.5% -1.392 4b -4.9%

2b -10.2% -1.392

2 Lacbl 0.890 14f 24.9% 1.510 14f -75.4%

Lacint 0.108 14b -24.5% -1.510 13f -10.5%

16f -15.0% -0.146 14b -7.6%

16b 14.5% 0.146

15f 5.6% 0.139

15b -5.1% -0.139

3 Lacint 0.697 16f 33.8% 0.694 15b -30.8%

Laca 0.113 16b -32.4% -0.694 16f -25.9%

Lacn 0.097 15f -14.1% -0.742 16b -21.2%

15b 12.7% 0.742 15f -8.8%

4 Glce 0.693 1f 18.9% 1.276 1b -34.5%

Glcint 0.275 1b -13.7% -1.276 2f -33.7%

2f -13.4% -1.243 6f -11.2%

6f 10.9% 0.340 4b -8.2%

6b -10.6% -0.340 5b -7.4%

2b 8.3% 1.243

4f -7.0% -0.328

5b 6.2% 0.348

4b 5.8% 0.328

5f -5.1% -0.348

5 Glcint 0.490 6f -19.4% -0.506 6f -26.4%

Glce 0.273 6b 19.0% 0.506 5b -18.2%

Glca 0.083 1f 14.7% 0.791 1b -16.8%

Glcn 0.082 5b -11.5% -0.542 6b -7.3%

Glcbl 0.072 1b -10.6% -0.791 4f -7.2%

5f 9.5% 0.542 5f -6.4%

4f -3.4% -0.129

4b 2.9% 0.129

6 Laca 0.573 16f 31.1% 0.547 16b -41.4%

Lacn 0.423 16b -29.9% -0.547 15f -25.4%

15f 14.5% 0.638 16f 22.0%

15b -13.1% -0.638 15b 4.9%

7 -3.3% -1.410

18 -1.6% -0.485

17 1.6% 0.700

7 Lace 0.992 16f -16.5% -0.010 11b -46.7%

16b 15.9% 0.010 12f -45.5%

12b 10.7% 0.974

11b -10.4% -0.999

12f -10.1% -0.974

11f 9.9% 0.999

(Continued)
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3. The reactants of the reactions identified by API to contribute to the constraints fm� 0, asso-

ciated to the four Glc-path modes, involve only Glc. To a large extent, a similar situation

arises in the four constraints that relate to the Lac-path modes; i.e., the reactants of almost

all contributing reactions involve Lac. The only exception in this case is that in the con-

straint related to the 6th Lac-path mode the Glc-consuming reaction 7 provides a small

contribution in the ANLS case, while the Glc-consuming reaction 9 provides a small contri-

bution in the NALS case.

Therefore, considering the couplings of the two paths in the expressions that approximate

the manifoldM :

1. the Lactate path couples to the Glucose path through the 6th mode; this coupling takes

place inside the astrocyte compartment in the ANLS case (reaction 7) and in the neuron

compartment in the NALS case (reaction 9) and

2. the Glucose path is decoupled from the Lactate path in both the ANLS and NALS cases.

The conclusion is that a perturbation in the reactions on the Lactate path will not alter the

Glucose-related constraints. On the other hand, a perturbation in the reactions on the Glucose

path will alter the Lactate constraints; as stated previously, this influence is exercised inside the

astrocyte compartment in the ANLS case and in the neuron compartment in the NALS case.

Let us now examine the four constraints that develop along the Glucose path, on the basis

of the CSP diagnostics displayed in Tables 1 and 2; i.e., those related to the 1st, 4th, 5th and 8th

modes in the ANLS case and those related to the 1st, 4th and 5th modes in the NALS case. The

1st (fastest) mode denotes in both ANLS and NALS cases an equilibration between the 2nd

and the 4th reactions:

� z1
4
ðR4f � R4bÞ þ z1

2
ðR2f � R2bÞ � 0 ð8Þ

where zmk ¼ jb
m
� Skj and the ordering of the reactions is on the basis of their API (largest APIs

first). This constraint refers to Glcbl, which is the pointed by Po variable and reactant of the

reactions that provide the largest contribution to τ1; i.e., reactions 4f and 2b, according to the

TPI values displayed in the first row of Tables 1 and 2. The next fastest mode along the Glucose

path is the 4th and, according to API data, in both ANLS and NALS cases this mode denotes

an equilibration among the 1st, 2nd, 4th, 5th and 6th reactions:

z4
1
ðR1f � R1bÞ � z4

2
ðR2f � R2bÞ þ z4

6
ðR6f � R6bÞ � z4

4
ðR4f � R4bÞ � z4

5
ðR5f � R5bÞ � 0 ð9Þ

According to Po, this mode mainly refers to Glce and secondarily to Glcint. Glce is reactant of

reactions 1b and 2f, which provide the largest contributions to τ4, while Glcint is reactant of

Table 1. (Continued)

Mode Po API bm � Sk TPI

8 Glca 0.623 6f 25.4% 0.639 5f -51.3%

Glcn 0.373 6b -24.8% -0.639 6b -34.5%

5b -19.7% -0.882 5b 6.2%

5f 16.2% 0.882 6f -1.9%

7 4.1% 0.962 2b -0.1%

1f 1.4% 0.073

1b -1.0% -0.073

ANLS: CSP diagnostic tools (Po, API, bm � Sk and TPI) for the 8 exhausted modes during neuronal activation; t = 1100 s. Only the largest contributions are presented.

https://doi.org/10.1371/journal.pone.0226094.t001
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Table 2. CSP diagnostic tools for the 7 exhausted and 1 active modes in the NALS case.

Mode Po API bm � Sk TPI

1 Glcbl 0.914 4f 33.1% 1.312 4f -72.0%

Glcint 0.056 4b -27.7% -1.312 2b -19.0%

2f -16.7% -1.053 4b -5.2%

2b 10.9% 1.053 .

2 Lacbl 0.887 14b -24.2% -1.326 14f -75.3%

Lacint 0.111 14f 24.0% 1.326 13f -10.3%

16b 16.4% 0.161 14b -7.7%

16f -16.1% -0.161

15b -5.0% -0.154

15f 4.8% 0.154

3 Lacint 0.700 16b 35.2% 0.588 15b -29.4%

Laca 0.109 16f -34.7% -0.588 16f -27.5%

Lacn 0.094 15b -12.1% -0.633 16b -20.6%

15f 11.6% 0.633 15f -8.8%

4 Glce 0.870 1f 23.4% 1.185 1b -42.2%

Glcint 0.115 1b -17.4% -1.185 2f -37.3%

2f -15.4% -1.322 4b -5.8%

2b 10.0% 1.322 6f -4.4%

4f -9.2% -0.297 5b -0.2%

6f 8.4% 0.187

4b 7.7% 0.297

6b -7.6% -0.187

5b 0.4% 0.163

5f -0.2% -0.163

5 Glcint 0.593 6f 36.7% 0.927 6f -53.6%

Glcn 0.249 6b -33.3% -0.927 6b -24.3%

Glce 0.093 1f -12.2% -0.703 1b -9.0%

Glcbl 0.064 1b 9.1% 0.703 4f -4.9%

Glca 0.001 4f 2.4% 0.009 5b -2.3%

4b -2.0% -0.009 5f -1.3%

5b 1.3% 0.684

5f -0.7% -0.684

6 Laca 0.604 16b 32.5% 0.426 16b -39.8%

Lacn 0.389 16f -32.0% -0.426 15f -27.4%

15b 13.2% 0.542 16f 20.4%

15f -12.7% -0.542 15b 5.8%

9 -2.0% -0.729

18 1.5% 0.365

17 -1.4% -0.604

7 0.9% 1.204

7 Lace 0.992 16b 18.1% 0.001 11b -46.7%

16f -17.8% -0.001 12f -45.4%

12b 10.2% 1.011

11b -10.0% -0.985

12f -9.8% -1.011

11f 9.7% 0.985

(Continued)
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reactions 6f, 4b and 5b, which provide the smaller contributions; see the diagnostics in the

second row of Tables 1 and 2. The third fastest mode along the Glucose path is the 5th and

denotes the equilibration among the 1st, 4th, 5th and 6th reactions:

� z5
6
ðR6f � R6bÞ þ z5

1
ðR1f � R1bÞ þ z5

5
ðR5f � R5bÞ � z5

4
ðR4f � R4bÞ � 0 ð10Þ

The largest contributions in the cancellations occurring in this constraint originate from the

two directions of the 6th reaction; this feature is more pronounced in the NALS case. The con-

tributions of the two directions of the 1st reaction are the next largest and are similar in both

cases. The smallest contributions originate from the 4th and 5th reactions; the ones of the 4th

reaction being similar in the two cases and those of the 5th reactions becoming negligible in

the NALS case. This is the first mode along the Glucose path in which notable differences are

encountered in the ANLS and NALS cases; i.e., a decreasing contribution of the 5th reaction

and an increasing one of the 6th reaction in the NALS case relative to the ANLS one. This fea-

ture, that emerges when switching from the ANLS to the NALS case, is accompanied by the

change in the way the Lactate path is coupled to the Glucose path. Specifically, in the ANLS

case this coupling takes place in the astrocytes (where the 5th reaction is active) via the 7th

reaction, while in the NALS case this coupling takes place in the neurons (where the 6th reac-

tion is active) via the 9th reaction. This mode (5th) refers mainly to Glcint and secondarily to

Glce in the ANLS case and to Glcn in the NALS case. Glcint is the reactant of reaction 6f that

provides the largest contributions to τ5 in both cases and of reaction 5b that provides a signifi-

cant contribution in the ANLS case. The last fast mode along the Glucose path is the 8th and

emerges only in the context of the ANLS case. This mode denotes the equilibration among the

5th, 6th and 7th reactions:

z8
6
ðR6f � R6bÞ þ z8

5
ðR5f � R5bÞ þ z8

7
R7 � 0 ð11Þ

and refers mainly to Glca and secondarily to Glcn. Glca is the reactant of reaction 5f that pro-

vides the largest contribution to τ8, while Glcn is the reactant of reaction 6b that provides the

next largest contribution. Table 2 shows that in the NALS case the 8th mode is not exhausted

(since no large cancellations among the APIs are evident). However, the pointed variables

and the reactions contributing to τ8 are the same. As Fig 2 shows, this mode is not exhausted

because τ8 is significantly slower in the NALS case, compared to the ANLS one.

Table 2. (Continued)

Mode Po API bm � Sk TPI

8 Glca 0.564 6f -13.2% -0.008 5f -27.3%

Glcn 0.337 1f -12.7% -0.167 6b -18.5%

6b 12.0% 0.008 6f 15.6%

5b 9.8% 1.159 5b -11.2%

1b 9.4% 0.167 4b -6.5%

2f -9.0% -0.494

9 7.2% 0.446

2b 5.9% 0.494

5f -5.4% -1.159

7 -3.6% -0.790

NALS: CSP diagnostic tools (Po, API, bm � Sk and TPI) for the 7 exhausted modes during neuronal activation; t = 1100 s. Only the largest contributions are presented.

The CSP data are also displayed for the non-exhausted 8th mode for comparison with the ANLS case.

https://doi.org/10.1371/journal.pone.0226094.t002
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A schematic representation of these constraints that develop along the Glucose path in the

ANLS and NALS cases is shown in Fig 3. Clearly, the Glc-related constraints involve all five

compartments along the Glucose path and all means of transport and diffusion among them,

with the contribution of the 3rd reaction being negligible, since its rate is sufficiently small; see

S1 Text.

The four constraints that develop along the Lactate path relate to the 2nd, 3rd, 6th and 7th

modes, for both the ANLS and NALS cases. On the basis of the CSP diagnostics displayed in

Tables 1 and 2, the following conclusions can be reached. The 2nd mode denotes mainly the

equilibration between the forward and backward directions of the 14th reaction, corrected by

the net contribution of the 16th and 15th reactions:

� z2
14
ðR14f � R14bÞ þ z2

16
ðR16f � R16bÞ � z2

15
ðR15f � R15bÞ � 0 ð12Þ

The mode refers to Lacbl, which is the pointed by Po species in both NALS and ANLS cases

and is reactant of the reactions that provide the largest contributions to τ2, 14f and 13f, accord-

ing to TPI. The less pointed Lacint is reactant of reaction 14b, which provides a small contribu-

tion to τ2. The 3rd mode expresses the equilibration of the 15th and 16th reactions:

z3
16
ðR16f � R16bÞ � z3

15
ðR15f � R15bÞ � 0 ð13Þ

which, according to Po, mainly refers to Lacint and secondarily to Laca and Lacn in both cases.

Lacint is reactant of reactions 16f and 15b, which provide the largest contributions to τ3, while

Laca and Lacn are reactants of reactions 15f and 16b, respectively, which provide smaller con-

tributions. The emergence of this constraint implies that the one established within the 2nd

mode simplifies to the equilibration of the two directions of the 14th reaction. The third fastest

mode along the Lactate path is the 6th and in the context of the ANLS case denotes the equili-

bration among the 16th, 15th and 7th reactions:

z6
16
ðR16f � R16bÞ þ z6

15
ðR15f � R15bÞ � z6

7
R7 � 0 ð14Þ

while in the context of the NALS case denotes the equilibration among the 16th, 15th and 9th

reactions:

z6
16
ðR16f � R16bÞ þ z6

15
ðR15f � R15bÞ � z6

9
R9 � 0 ð15Þ

This mode refers to Laca and Lacn. As a result, the Lacn-consuming reaction 16b and the Laca-
consuming reaction 15f provide the largest contributions to τ6, while their reverse rates tend to

diminish their influence; i.e., they tend to destroy this constraint. The slowest of the fast modes

along the Lactate path is the 7th, which in both the ANLS and NALS cases denotes the equili-

bration among the 11th, 12th and 16th reactions:

� ẑ4
16
ðR16f � R16bÞ þ ẑ4

12
ðR12f � R12bÞ þ ẑ4

11
ðR11f � R11bÞ � 0 ð16Þ

in which the net rate of reaction 16 provides a higher order correction. This mode refers

mainly to Lace, as indicated by the Po, which is reactant of reactions 11b and 12f that provide

the largest contributions to τ7.

A schematic representation of these constraints that develop along the Lactate path is

shown in Fig 3. As with the Glc-related constraints, the four Lac-related constraints involve

all five compartments along the Lactate path and all means of transport and diffusion among

them, with the contribution of the 13th reaction being negligible, since its influence is over-

shadowed by that of the 14th and 16th reactions; see S1 Text.
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The system evolves on a surface of equilibria, approximated by these constraints, on which

the slow dynamics become the characteristic ones. Having established, from the data displayed

in Tables 1 and 2, that the species related the most to the slow dynamics are Glca, Glcn, Laca

and Lacn (since they relate the least to the fast dynamics), we proceed forward by analyzing the

metabolic profiles of neurons and astrocytes.

Fig 3. The constraints along the glucose and lactate paths. The constraints that develop along the Glucose and

Lactate paths in the ANLS (top) and NALS (bottom) cases. Solid (dashed) arrows indicate reactions exhibiting large

(small) APIs. The reactions within these constraints that drive the system (exhibit large IIs) are indicated by bold; see

discussion of the slow model.

https://doi.org/10.1371/journal.pone.0226094.g003
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Slow dynamics

Interested in examining the dynamics of neurons and astrocytes interaction, the slow evolu-

tion of the system during neuronal activation is analyzed with the CSP tools. The capability to

algorithmically determine the underlying physics of the slowly evolving system, within the

constraints imposed by the exhausted modes, is demonstrated in this section.

Characteristic dynamics and driving reactions during the slow evolution. As stated in

the previous section, during neuronal activation (periods P1 and P2), only the 9th and 10th

modes are active in the ANLS case and only the 8th, 9th and 10th modes are active in the

NALS case. Given that τ9 < τ10 in the ANLS case, the slow evolution of the system is character-

ized by τ9. However, since τ8� τ9 < τ10 in the NALS case, the slow evolution of the system is

characterized by both τ8 and τ9. Tables 3 and 4 display CSP diagnostics (Po, TPI) of the slow

modes in the ANLS and NALS cases, respectively, computed at t = 1100 s.
It is shown in Table 3 that in the ANLS case the pointed variables and the reactions contrib-

uting to the related τi of the two slow modes refer to either the Lactate path (9th mode) or to

the Glucose path (10th mode). As it will be shown next, this feature is due to the fact that these

two modes are practically decoupled. Naturaly, the pointed variables in the two modes are the

ones related the least with the fast dynamics, as it is evident by the results displayed in Table 1.

Regarding the 9th mode, the Lacn-consuming reaction 18 and the Laca-consuming reaction

17, which represent the Lac oxidation in neurons and astrocytes, respectively, account for

more than 50% of the total contribution to the generation of τ9. On the basis of their negative

TPI, it is concluded that these reactions tend to drive the system to a fixed point. On the other

hand, the contributions to τ9 of the two directions of the 16th reaction, which represent the

transport of Lac from interstitium to neuron and vice versa, are of opposing nature; the Lacint-
consuming forward direction promoting the movement towards a fixed point and the back-

ward opposing it. Their contributions cancel each other, so that the net influence of the 16th

reaction is negligible. The dominance of the 17th and 18th reactions in the generation of τ9 is

reflected in the large Po value of their reactants Laca and Lacint. This dominance implies that

the duration of the neuronal activation is mainly controlled by these two reactions. For exam-

ple, a decrease of the Lac oxidation rate via reaction 18 will lead to the increase of τ9; i.e., it will

lead to a slower evolution of the process. This influence of the 18th reaction will be demon-

strated later by properly perturbing R18.

Table 3. CSP diagnostic tools for the 2 active modes in the ANLS case.

Mode λ [1/s] τ [s] Po TPI

9 -6.197E-03 1.614E+02 Lacn 0.472 18 -33.5%

Laca 0.314 17 -19.0%

Lacint 0.192 16f -17.9%

16b 17.7%

10 -1.880E-03 5.318E+02 Glcn 0.526 4b -17.1%

Glca 0.280 2b -16.8%

Glcint 0.177 4f 15.4%

6b -11.7%

6f 11.2%

1b -8.5%

2f 8.4%

5f -3.2%

The largest Po and TPI for the slow 9th and 10th modes during neuronal activation for the ANLS case; t = 1100 s.

https://doi.org/10.1371/journal.pone.0226094.t003
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The results displayed in Table 3 also show that in the context of the 10th mode in the ANLS

case, significant contributions to the generation of τ10 are provided by the Glcint-consuming

reaction 4b, the Glcn-consuming reaction 6b and the Glca-consuming reaction 5f. Other reac-

tions provide additional contributions, mainly via the already established constraints. Count-

ing the net contribution of each reaction (by adding the contributions of the forward and

backward direction), the most significant influence originates from the 1st reaction, followed

by the 2nd and then by the 4th.

Table 4 shows that, as in the ANLS case, the pointed variables and the reactions contribut-

ing to the related τi of the three slow modes in the NALS case refer to either the Lactate path

(9th mode) or to the Glucose path (8th and 10th mode). The dynamics of the two slowest

modes (9th and 10th) are similar to the equivalent modes in the ANLS case with small varia-

tions. However, in contrast to the ANLS case, in the NALS case the 8th mode is accounted in

the slow component of the vector field and its dynamics characterise the evolution of the sys-

tem, along with the dynamics of the 9th mode (since τ8� τ9). It is shown in Table 4 that the

largest net contribution in generating τ8 originates from the Glca-consuming 5th reaction,

while the net contributions of the 6th and 4th reactions are much smaller. In comparison to

the ANLS case, the dynamics of the slowest 10th mode in the NALS case mainly differs in that

Glca is more pointed and Glcn is less, while the differences in the 9th mode are minor.

Comparing the slow dynamics of the ANLS and NALS cases, Tables 3 and 4 show that the

slow dynamics along the Glc-path shifts from neurons towards astrocytes, as it is evident by

the sum of the CSP Pointer of Glcn and Glca due to the slow modes (D9þ10
Glcn = 0.526 and D9þ10

Glca ¼

0:280 in the ANLS case and D8þ9þ10
Glcn = 0.970 and D8þ9þ10

Glca ¼ 0:772 in the NALS case; i.e., a

84.5% and a 175.7% increase of the sum of slow Pointers of Glcn and Glca, respectively). This

shift of the slow dynamics along the Glc-path is accompanied by an opposite shift of the fast

Table 4. CSP diagnostic tools for the 3 active modes in the NALS case.

Mode λ [1/s] τ [s] Po TPI

8 -6.855E-03 1.458E+02 Glcn 0.564 5f -27.3%

Glca 0.337 6b -18.5%

Glcint 0.090 6f 15.6%

5b -11.2%

4b -6.5%

4f 5.7%

2b -5.3%

9 -5.694E-03 1.756E+02 Lacn 0.508 18 -35.3%

Laca 0.286 17 -21.4%

Lacint 0.185 16f -12.0%

16b 11.9%

10 -1.733E-03 5.770E+02 Glca 0.435 4b -17.0%

Glcn 0.406 2b -15.9%

Glcint 0.145 4f 15.2%

6b -9.2%

6f 8.9%

5f -8.3%

1b -8.1%

2f 8.0%

The largest Po and TPI for the slow 8th, 9th and 10th modes during neuronal activation for the NALS case; t = 1.100 s.

https://doi.org/10.1371/journal.pone.0226094.t004
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dynamics; i.e. from astrocytes towards neurons. This feature is clearly evident in Fig 3, by

the significantly reduced contribution of the Glca-related 5th reaction in the established con-

straints in the NALS case and the ensuing reduced influence of Glca in the fast dynamics. In

turn, as shown in Tables 1 and 2, this last feature results in a reduced involvement in the fast

dynamics of the Glca-consuming 7th reaction, that couples the Glc-path to the Lac-path.

The decoupling of the Po and TPI diagnostics along the Glc- and Lac-paths in the context of

the slow modes in the ANLS and NALS cases, as indicated by Tables 3 and 4, is reasonable for

the Glc-path, since the concentration of Glc in the various compartments is not dependent on

that of Lac, as shown in Fig 1. However, this is not that obvious for the Lac-path, since it is

influenced by the Glc-path via the 7th and 9th reactions. In order to investigate this issue fur-

ther, the reactions contributing the most to the evolution of Glca, Glcn, Laca and Lacn (thereaf-

ter, Glca,n and Laca,n) will be identified, with the use of the Importance Index II. The results

displayed in Table 5 identify (i) the reactions that influence most the evolution of Glca,n and

Laca,n and (ii) the corresponding values of II. The positive (negative) sign of the contribution

of a reaction displayed in Table 5, denotes its effect in producing (consuming) the related

species.

Table 5 shows that in the ANLS case the evolution of Glca,n is mainly determined by the R1f

(Glc transport from serum to endothelium), R1b (Glc transport from endothelium to serum)

and R2f (Glc transport from endothelium to basal lamina). Smaller influences of the rates R7

and R2b towards depleting Glca,n are also reported, while the even smaller influences of the two

rates R4f and R4b cancel each other. Regarding Laca,n, Table 5 shows that its evolution is mainly

determined by the rates R7 (glycolytic rate in astrocytes) and R18 and R17 (Lac oxidative rate in

neurons and astrocytes, respectively); the first tending to increase Laca,n, while the latter two to

decrease it. Smaller influences are reported by R6f and R6b, which cancel each other. Table 5

shows that R9 has a small influence in driving both Glca,n and Laca,n.

Regarding the reactions that drive Glca,n and Laca,n in the NALS case, the differences in the

results displayed in Table 5 relative to the ANLS case are mainly due to the decreased influence

Table 5. Contributions of the reactions controlling the slow evolution of Glca, Glcn, Laca and Lacn in the ANLS and NALS case.

Species Slow system (II identifications in decreasing order)

A
N
LS

Glca,n d½��
dt
� f ðþR1f ; � R1b;þR2f ; � R7; � R2b;þR4f ; � R4b; � R9Þ

þ0:209 � 0:151þ 0:149 � 0:107 � 0:092þ 0:069 � 0:057 � 0:029

Laca,n d½��
dt
� f ðþR7; � R18; � R17; � R16f ;þR16b;þR9Þ

þ0:295 � 0:207þ 0:143 � 0:081 � 0:078þ 0:078

N
A
LS

Glca d½��
dt
� f ðþR5b; � R6f ;þR6b; � R7; � R5f ;þR1f ;þR2f Þ

þ0:225 � 0:201þ 0:182 � 0:126 � 0:125þ 0:027þ 0:027

Glcn d½��
dt
� f ðþR1f ; � R1b;þR2f ;þR6f ; � R9; � R6b; � R2b;þR4f ; � R4bÞ

þ0:175 � 0:130þ 0:127þ 0:098 � 0:092 � 0:089 � 0:083þ 0:067 � 0:056

Laca,n d½��
dt
� f ðþR9; � R18; � R17;þR7; � R16f ;þR16bÞ

þ0:313 � 0:236 � 0:133þ 0:089 � 0:054þ 0:055

Identification of the reactions contributing the most to the slow evolution of the Glca, Glcn, Laca and Lacn by II, during the neuronal activation for the ANLS (top) and

the NALS (bottom) cases; t = 1100s. Reactions in bold denote contributions larger than 10%. Only the largest contributions are displayed. Numbers denote the

corresponding II value.

https://doi.org/10.1371/journal.pone.0226094.t005
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of fast dynamics on Glca. As it is shown in Table 5, the evolution of Glca is now mainly deter-

mined by reactions that either consume it or produce it (R5f, R5b, R7), while the recorded net

contributions by the 1st, 2nd and 6th reactions are smaller. The reactions that mainly deter-

mine the evolution of Glcn in the NALS case are similar to those identified in the ANLS case.

The main difference is the decreased influence of the 7th reaction and the increased one of the

9th. This is also the main difference in the reactions that drive Laca,n; apart from R18 and R17

that play a major role in the ANLS case, now R9 exhibits the strongest influence, while that of

R7 is significantly diminished.

From the ANLS to the NALS configuration. The differences between the ANLS and

NALS configurations lies in the different values of the parameters of reactions 3, 5, 7, 8, 9, 10,

17 and 18. In order to investigate the influence of these different values, each of the changes

in the value of the parameters, leading from the ANLS to the NALS configuration, was imple-

mented separately. It was shown that only the changes in the parameters of the reactions 5, 7,

8, 9 and 10 produce significant deviations from the solution obtained with the ANLS model.

The influence of these changes is demonstrated in Fig 4, where the evolution of the net rates

R15 = R15,f − R15,b and R16 = R16,f − R16,b is displayed. These two net rates relate to the Lac flow

from astrocytes to interstitium and from there to neurons, in the ANLS (A) and NALS (N)

cases. As shown in the figure, in the ANLS case R15 and R16 are positive, while in the NALS

case are negative. In addition, Fig 4 displays the evolution of these two rates in the case where

each of the changes in the parameters of the reactions that lead from the ANLS to the NALS

configuration is implemented separately; e.g., “R15 A + 7, 8” indicates the profile of R15 when

the ANLS configuration is considered with the exception of the parameter in the rate of reac-

tions 7 and 8 for which the change that leads to the NALS configuration is accounted for

(see S1 Text for a list of all changes in the parameters that lead from the ANLS to the NALS

configuration).

It is demonstrated in Fig 4 that the most influential change in the shift from the ANLS to

the NALS configuration is produced by the parameter that modifies R5, followed by the one

modifying R9 and R10. In contrast, the change in the parameter that modifies R7 and R8 shifts

the ANLS configuration away from the NALS one. This finding is in agreement with the sub-

stantially different influence of R5 in the fast dynamics of the ANLS and NALS cases, discussed

previously; i.e., in the ANLS case R5 is fast enough that allows the coupling of the Glc and Lac
pathways via the 7th reaction (so that the flow of Lac is directed from astrocytes to neurons),

while in the NALS case R5 is slow enough, so that the coupling between the two pathways is

mainly established via the 9th reaction (so that the flow of Lac is directed from neurons to

astrocytes).

Assessment of CSP diagnostics

The conclusions reached on the basis of the various CSP diagnostic tools will be assessed here,

by perturbing the rates of selected reaction rates. For simplicity, only the ANLS case will be

considered; similar conclusions are reached in the NALS case. In particular, consider the rate

R18, which does not contribute to the generation of the eight constraints, as shown in Table 1.

In addition, the TPI results in Table 3 suggested that the rate R18 has a significant contribution

to the generation of the characteristic time scale τ9. Finally, the II results in Table 5 suggested

that R18 tends to decrease Laca,n. Therefore, a decrease of the rate constant of R18 is expected to

increase τ9 and Laca,n. Indeed, as it is shown in the left part of Fig 5, a 20% decrease of R18

causes Lacn, Laca and Lacint to reach a constant value at t� 1805 s, while in the unperturbed

case this state is achieved faster, at t� 1235 s. In addition, the levels of Laca,n are higher in

the perturbed case, as expected. On the other hand, the increase of the rate R10 by 20% has
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negligible influence on the evolution of Laca,n, as shown at the right part of Fig 5. This is an

expected result, since R10 has a negligible contribution to the eight constraints, to τ9 and to the

slow evolution of the system; see Tables 1, 3 and 5.

A further demonstration of the usefulness of the CSP diagnostic tools emerges from the

physical interpretation of the II results displayed in Table 5. In particular, consider the

response of Laca,n and Glca,n when subjected to perturbations of R18, R9, R1f and R3f during

neuronal activation. Such perturbations might affect the M constraints or the reduced model;

see Eq (3). According to the API values in Table 1, R1f is the only rate from this set that influ-

ences the constraints, via the 4th and the 5th modes that relate to Glce and Glcint. According to

the II values in Table 5 that assesses the influence of the reactions in the sow model, (i) R18 has

the largest contribution towards decreasing Laca,n levels, while has negligible influence in the

Glca,n, (ii) R9 exhibits a small influence in increasing Laca,n levels and a smaller influence in

decreasing Glca,n levels, (iii) R1f is the major contributor towards increasing Glca,n, but has

Fig 4. Evolution of R15 and R16 rates when applying the modifications leading from ANLS to NALS case, separately. Evolution of the net rates R15

= R15,f − R15,b and R16 = R16,f − R16,b, related to the Lac flow from astrocytes to interstitium and from there to neurons, in the ANLS (A) and NALS (N)

cases. In the ANLS case R15 and R16 are positive, while in the NALS case are negative. The net rates R15 and R16 are also displayed in the case were each

of the modifications leading from the ANLS to the NALS configuration is implemented separately. These modifications relate to changes in the

parameters of reactions 3, 5, 7, 8, 9 and 10; the profiles related to the modification of reaction 3 are not shown, since the differences with the ANLS case

are negligible.

https://doi.org/10.1371/journal.pone.0226094.g004
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negligible influence in the evolution of Laca,n and (iv) R3f has a negligible contribution to the

evolution of all variables.

The predicted influence of perturbations of R18, R9, R1f and R3f is demonstrated in Figs 6

and 7. Specifically, in the left part of Fig 6 it is shown that the decrease of R18 leads to increased

Laca,n levels, but leaves Glca,n unaffected. On the right part of the same figure, it is shown that

the increase of R9 leads to increased Laca,n levels and decreased Glca,n levels. Note that the

response of Laca,n to a perturbation of R18 is more intense than that of Glca,n and Laca,n to a

similar perturbation of R9, in accordance to the related II results displayed in Table 5. Also,

in the left part of Fig 7 it is shown that the decrease of R1f leads to increased Glca,n levels, but

leaves Laca,n levels unaffected. Finally, in the right part of the same figure it is shown that an

increase of R3f has a negligible influence to both Glca,n and Laca,n, as predicted.

Fig 5. Response of Lacint,a,n in decrease/increase of R18/R10. Evolution of Lacint,a,n during neuronal activation. Comparison of the solution under

normal conditions (solid lines) with the one under perturbed rates conditions (dashed lines with circles). Left: Decrease of R18 by 20%. Right: Increase

of R10 by 20%.

https://doi.org/10.1371/journal.pone.0226094.g005

Fig 6. Response of Glca,n and Laca,n in decrease/increase of R18/R9. Evolution of Glca,n and Laca,n during neuronal activation. Comparison of the

solution under normal conditions (solid lines) with the one under perturbed rates conditions (dashed lines with circles). Left: Decrease of R18 by 20%.

Right: Increase of R9 by 20%.

https://doi.org/10.1371/journal.pone.0226094.g006
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Investigating an exercise scenario

It was shown previously that a decisive factor on whether the ANLS or NALS configuration

will develop is whether the 5th reaction contributes to the fast dynamics or not. In particular,

it was shown that in the context of the ANLS (NALS) configuration the 5th reaction contrib-

utes (does not contribute) to the fast dynamics, allowing thus the major coupling between the

Glc and the Lac paths to be established in astrocytes via the 7th reaction (in neurons via the 9th

reaction). As a result, the Lac flow is directed from astrocytes to neurons in the ANLS case and

in the opposite direction in the NALS case. These conclusions were reached for normal condi-

tions (NC); among others, low Lac concentration in serum (Lacs = 1 mM).

However, under exercise conditions (EC) the Lac concentration in the serum reaches large

values, about 15 − 25 mM (“all-out” maximal exertion) [123, 124]. A high Lac concentration in

serum will certainly influence the concentrations along the Lac-path. Nonetheless, this factor

will leave the concentrations of Glc unaffected, since the Glc-path is not coupled to the Lac-
path. As a result, it is not expected to influence the degree to which the 5th reaction contributes

to the fast dynamics; i.e., the conditions under which the Glc-path dynamics favor the develop-

ment of ANLS or NALS. The only feature that might be affected is the flow direction of Lac
between astrocytes and neurons, given the changes in the concentrations along the Lac-path

that result by the high Lac concentration in the serum. These issues will be examined next.

In the exercise scenario considered here, the serum Lac concentration was increased to

Lac = 20 mM (from Lac = 1 mM in NC). As expected, high serum Lac conditions, introduce

significant changes to all Laci, but leave unaffected those of all Glci in both ANLS and NALS

cases. This is displayed in the left panels of Fig 8, where the ratio of the concentrations com-

puted under exercise conditions (EC) and under normal conditions (NC), yi,EC/yi,NC, is dis-

played. This ratio equals unity for Glci in all the 5 compartments, while it is slightly larger

than unity for the Laci in all compartments, with the exception of the ratio for Lace which is

around 6.

The increased concentrations of Laci modify the flow of lactate between astrocytes and neu-

rons. As shown in the right panels of Fig 8, the high serum Lac concentration causes the rate

of Lac-transport from astrocytes to interstitium (R15 = R15,f − R15,b> 0) to decrease and from

interstitium to neurons (R16 = R16,f − R16,b> 0) to increase in the ANLS case. In contrast, in

Fig 7. Response of Glca,n and Laca,n in increase of R1f and R3f. Evolution of Glca,n and Laca,n during neuronal activation. Comparison of the solution

under normal conditions (solid lines) with the one under perturbed rates conditions (dashed lines with circles). Left: Increase of R1f by 20%, Right:

Increase of R3f by 20%.

https://doi.org/10.1371/journal.pone.0226094.g007
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the NALS case the Lac-transport from neurons to interstitium (-R16 > 0) decreases and from

interstitium to astrocytes (-R15 > 0) increases. Fig 8 shows that in both the ANLS and NALS

cases the flow of lactate from basal lamina to intertitium (R14) increases. While in the ANLS

case Lac flows from basal lamina to intertitium (R14 > 0) in both NC and EC, in the case of

NALS the minor flow from intertitium to basal lamina (R14 < 0) in NC is significantly reversed

in EC. A schematic presentation of the changes in the net rates R14, R15 and R16 is displayed in

Fig 9. Clearly, the increased values of R16 in the ANLS case and of −R15 in the NALS case are in

agreement with the nature of ANLS and NALS assumptions, respectively; since Lac is trans-

ported towards the neurons in the ANLS case and towards the astrocytes in the NALS case

increases. However, the decreased values of R15 in the ANLS case and of −R16 in the NALS

case are in disagreement; since the transport of Lac from astrocytes in the ANLS case and that

from neurons in the NALS case decreases. In fact, as shown by the profile of R16 in the NALS

case, at about t = 1300 s, Lac is transported to neurons (R16 > 0) and not from them, as the

NALS hypothesis dictates.

Fig 8. Comparison of the metabolites concentrations and the rates R14, R15 and R16 in moderate exercise conditions with the normal ones. Ratio

yi,EC/yi,NC of various concentrations under exercise (yi,EC) and normal (yi,NC) conditions (left) and profiles of the net reaction rates R14 = R14,f − R14,b, R15

= R15,f − R15,b and R16 = R16,f − R16,b (right), during neuronal activation for the ANLS (top) and NALS (bottom) cases, for the moderate exercise

scenario. In the figures on the right panels solid/dashed lines denote NC/EC, respectively.

https://doi.org/10.1371/journal.pone.0226094.g008
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In summary, it was shown that an increased serum Lac concentration resulted in an

increased transport of Lac to neurons in the ANLS case, mainly due to the increased diffusion

from basal lamina, accompanied by a decreased transport out of astrocytes. In contrast, an

increased transport of Lac to astrocytes was recorded in the ANLS case, also due to the

increased diffusion from basal lamina, accompanied by a decreased transport out of neurons.

It can be shown that these features are in full agreement with the equilibrations that develop

in the context of the 2nd and 3rd modes, as they are stated in Tables 1 and 2, which mainly

involve the rates R16, R15 and R14 and to a lesser degree R13 in normal and exercise conditions

and the rate R12 only in exercise conditions.

Discussion

Fast and slow dynamics influence the response of the system in both the ANLS and NALS

frameworks in two distinct manners. The fast dynamics are responsible for the constraints that

are established in phase space, within which the system evolves driven by processes responsible

for the slow dynamics.

Constraints develop along both the Glucose and Lactate paths. Only one of these con-

straints couples the two paths; i.e., the Lactate to the Glucose path, while the latter is uncoupled

to the former, see Fig 1. Along the Glucose path in both the ANLS and NALS cases the follow-

ing constraints related to Glc-transport develop:

1. from endothelium to basal lamina (R2f − R2b) and from there to interstitium (R4f − R4b),

2. from serum to endothelium (R1f − R1b) and from there to basal lamina (R2f − R2b), with the

contribution of a higher order correction from the Glc-transport in and out of the intersti-

tium (R4f − R4b, R5f − R5b, R6f − R6b); the latter contribution based on the previous establish-

ment of the constraint in (i),

3. from interstitium to neurons (R6f − R6b), from serum to endothelium (R1f − R1b) and only

in the NALS case from astrocyte to interstitium (R5f − R5b), with the contribution of a

higher order correction from the Glc-transport from basal lamina to interstitium (R4f − R4b)

due to the constraints established previously in (i) and (ii), and

4. only in the ANLS case, from astrocytes to interstitium (R5f − R5b) and from there to neu-

rons (R6f − R6b), with the glycolytic rate in astrocytes R7 contributing as a higher order

correction.

Fig 9. Schematic presentation of the changes in the rates R14, R15 and R16 in moderate exercise conditions

compared with the normal ones. A schematic presentation of the changes in the net rates R14, R15 and R16 caused by

the increased Lac concentration in serum in the ANLS (left) and NALS (right) cases at the moderate exercise scenario;

in comparison to the NC case, R14 increases in both ANLS and NALS, R15 decreases in the ANLS case and increases in

the NALS case, while R16 increases in the ANLS case and decreases in the NALS case.

https://doi.org/10.1371/journal.pone.0226094.g009
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As Fig 3 shows, these constraints involve all five compartments along the Glucose path.

Along the Lactate path in both the ANLS and NALS cases the following constraints related to

Lac-transport develop:

1. from basal lamina to interstitium (R14f − R14b), with the Lac-transport from interstitium via

reactions 15 (R15f − R15b) and 16 (R16f − R16b) providing a higher order correction,

2. from astrocytes to interstitium (R15f − R15b) and from there to neurons (R16f − R16b),

3. from astrocytes to interstitium (R15f − R15b) and from there neurons (R16f − R16b), with a

small contribution from reactions 7 and 9 from the Glucose path in the ANLS and NALS

cases, respectively, and

4. from serum to endothelium (R11f − R11b) and from there to basal lamina (R12f − R12b), with

only a small contribution from reaction 16 which is possible after the equilibria in (i), (ii)

and (iii) are established.

As with the constraints related to the Glucose path, Fig 3 shows that these constraints

involve all five compartments along the Lactate path.

Clearly, the major difference in the ANLS and NALS cases is the contribution to the fast

dynamics of Glc-transport from astrocytes to interstitium (R5f − R5b). In the ANLS case this

Glc-transport participates in both the fast dynamics and in the ensuing related constraints

(large TPI and API in the 4th, 5th and 8th modes; see Table 1). However, in the NALS case this

participation is greatly diminished (small TPI and API in the 4th and 5th modes, while the 8th

mode is now a slow one; see Table 2). These features suggest that the strong coupling ot the

Lac- to the Glc-path that is established in the ANLS case (mainly via the 7th reaction inside the

asrtocytes, in the context of the 6th and 8th modes) diminishes significantly in the NALS case

(where this coupling is now established mainly via the 9th reaction inside the neurons, in the

context of only the 6th mode).

The finding that—due to the behavior of R5—the Lac- to the Glc-path coupling is mainly

established inside the astrocytes in the ANLS case and inside the neurons in the NALS case

determines the conditions promoting the ANLS or NALS development. In the ANLS case R5

participates in the equilibria of the 4th and 5th modes, which allow the Glc concentrations in

both the astrocytes and neurons to be coupled directly with that in the serum. The formation

of Lac from Glc is more intense in astrocytes (R7) than in neurons (R9), so that the typical for

the ANLS case flow of Lac from astrocytes to neurons is generated. In the NALS case the par-

ticipation of R5 to the equilibria of the 4th and 5th modes is significantly reduced, so that only

the Glc concentration in neurons is coupled directly with that in the serum. Therefore, the for-

mation of Lac from Glc in neurons (R9) dominates, so that the typical for the NALS case flow

of Lac from neurons to astrocytes is generated.

The influence of the fast dynamics in determining the development of ANLS or NALS is

fully reflected in the slow dynamics that characterize the evolution of the system within the

established constraints. In particular, as shown in Table 5, in the ANLS case the Glca,n level

is mainly determined by the rate of reactions in the first half of the Glc-path (R1, R2) and the

glycolytic rates in astrocytes (R7), while the Laca,n level is mainly determined by rates in the

second half of the Lac-path (R17 and R18) and by the rate R7. In essence, the glycolytic rate in

astrocytes (R7) couples the Lac oxidative rates in astrocytes and neurons (R17 and R18) with

the Lac inflow rate from the serum, via reactions at the start of the Glc-path (R1, R2). As a

result, the flow along the Lac pathway in the ANLS case is directed from astrocytes to inter-

stitium (R15 = R15,f − R15,b> 0) and from there to neurons (R16 = R16,f − R16,b > 0). In con-

trast, Table 5 shows that in the NALS case the same coupling is now established mainly via
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the glycolytic rate in neurons (R9), while the glycolytic rate in astrocytes (R7) exhibits a

smaller influence. In this case the flow along the Lac pathway is directed from neurons to

interstitium (R16 = R16,f − R16,b < 0) and from there to astrocytes (R15 = R15,f − R15,b < 0). In

both cases, the direct coupling of the Lac oxidative rates in astrocytes and neurons (R17 and

R18) with the Lac inflow rate from the serum via the reactions in the first of the Lac-path

(R12 and R13) has no significant influence. Finally, in agreement to the model depicted sche-

matically in Fig 1, Table 5 shows that in both the ANLS and NALS cases Glca,n is indepen-

dent from Laca,n.

It was shown that the shift in the Glc to Lac activity along the Glc-path from the astrocytes

to neurons, in the NALS case relative to the ANLS case is reflected in both the fast and slow

dynamics. This shift is accompanied by a weakening of the Glca-consuming/producing reac-

tions 3f, 3b, 5f, 5b, 7 and 8 and a strengthening of the Glcn-consuming reactions 9 and 10, as

shown in Fig 10. In the same figure it is shown that in the NALS case the glycolytic rate in astro-

cytes (R7) decreases and the glycolytic rate in neurons (R9) increases, relative to the ANLS case,

supporting the findings reported previously on the influence of these reactions in coupling the

oxidative rates in astrocytes and neurons (R17 and R18) with the Lac inflow rate in the serum.

The large Lac concentrations in the serum considered in the context of the exercise condi-

tions, were shown to affect the flow of Lac, but left unaffected the conditions under which the

Glc concentrations in astrocytes and neurons are coupled directly with that in the serum, since

the Glc-path is decoupled from the Lac-path in the model considered. In particular, it was

shown that under exercise conditions the increased rate of Lac diffusion from basal lamina to

interstitium modified the rate of Lac transport between astrocytes and neurons; i.e., in the

ANLS case contributed to the increased transport to neurons and the decreased transport

from the astrocytes and in the NALS case contributed to the increased transport to astrocytes

and the decreased transport from neurons. It is noted here that although there were significant

changes in the initial conditions and the values of some parameters in the cases of normal and

exercise conditions, the basic dynamical features were not altered. Specifically, there were

not changes recorded in the reactions contributing to the time scales and the emerging con-

straints, the variables related to the modes and the number of exhausted modes. Only moder-

ate changes were noticed on the degree to which some reactions contributed to the constraints

and to the evolution of the system within these constraints.

Fig 10. The rates related to the consumption/production of Glca and Glcn. Evolution of the rates related to the consumption/production of Glca (left)

and Glcn (right) in the ANLS (solid) and NALS (dotted) cases.

https://doi.org/10.1371/journal.pone.0226094.g010
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The findings reported here are supported by experimental results in the literature. The high

glycolytic rate of astrocytes (R7) in the ANLS case has been detected experimentally [4, 16, 69,

135, 136], since neurons cannot afford to sustain high glycolytic rate (R9) [6, 16]. In addition,

the dominance of the glycolytic uptake in neurons (R9) has also been detected in the NALS

case during neuronal activation [13–15]. Here, the dominance of R7 over R9 in the ANLS case

and of R9 over R7 in the NALS case, was identified both in the fast dynamics (i.e., in the gener-

ated constraints) and the slow dynamics (i.e., in the reactions that drive the system within

these constraints).

The results reported in Tables 3, 4 and 5, regarding the TPI and II indices, show that the

Lac oxidative metabolism in neurons (R18) has a larger impact than the oxidative metabolism

in astrocytes (R17) in both the ANLS and NALS cases. This is consistent with the experimental

finding that the Lac oxidative metabolism in neurons is more important than the respective

metabolism in astrocytes [77, 135]. In addition, the identifications reported here in Table 5,

show that the concentration of Laca,n is, among others, determined by the rates R7 and R9,

which act towards increasing the rate of change of Laca,n. These rates have been reported to

increase during neuronal activation in both ANLS (only R7) [16–18] and NALS (both R7 and

R9) [19–21] cases, resulting in increasing Laca,n concentrations. This result is agreement with

the elevated lactate levels that have been reported during neuronal activation [35, 137]. This

feature has also been characterised as a moderate to slow process [12], which is also in agree-

ment with our results, due to the aforementioned identifications in the slow modes of the

system.

At this point it must be emphasized that the model employed here neglects metabolic pro-

cesses which are currently considered important. Among them are (i) formation of pyruvate

from glucose, (ii) oxidative phosphorylation in mitochondria, (iii) TCA cycle and (iv) con-

sumption/production of ATP and NADH [8, 22, 88]. Clearly, it is possible that consideration

of these processes might modify (i) the processes that are mainly responsible for the generation

of the fast and slow dynamics and (ii) the conditions for which ANLS or NALS manifest. The

degree to which these additional processes influence the response of the system, as it was

examined here by analyzing algorithmically the fast and slow dynamics, is currently under

investigation.

Finally, the ease by which the CSP tools lead to the determination of the factors that pro-

mote the development of ANLS or NALS must be highlighted. CSP allowed for these identifi-

cations by identifying the components of the model that are responsible for the fast and the

slow dynamics, which are responsible for the development of the constraints in phase space

(the fast) and for driving the system within these constraints (the slow).

Conclusions

A computational model describing the evolution of the brain lactate metabolism under

neuronal activation was investigated using algorithmic tools of asymptotic analysis. The model

introduced in Simpson et al. [9] and modified by Mangia et al. [10] was considered, which con-

forms to both the ANLS and NALS hypotheses. The analysis was carried out using the CSP

method, which provides algorithmic tools for the analysis of multi-scale systems, so it is not

hindered by the complexity and/or the size of the system under investigation and its tools can

deliver systems-level understanding. CSP was employed in order to: (i) investigate the fast/

slow dynamics of the system and the metabolic profiles of neurons and astrocytes during neu-

ronal activation and (ii) compare the dynamics of the ANLS and NALS hypotheses, under nor-

mal and exercise conditions.
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It was shown that the ANLS or NALS configuration develops depending on whether the

Glc rate of transport from astrocytes to interstitium (R5) contributes or not to the generated

constraints and the fast dynamics. In the ANLS case R5 participates in the equilibria of the 4th

and 5th modes, which allow Glc in the astrocytes and neurons to be coupled directly with that

in the serum. Lac formation from Glc is more intense in astrocytes (R7) than in neurons (R9),

so that the typical for the ANLS case flow of Lac from astrocytes to neurons is generated. In

the NALS case the participation of R5 to the equilibria of the 4th and 5th modes is significantly

diminished, so that only Glc in neurons is coupled directly with that in the serum. Therefore,

Lac formation from Glc is mainly taking place in neurons (R9), so that the typical for the NALS

case flow of Lac from neurons to astrocytes is generated.

As demonstrated, CSP is not hindered by the size or the complexity of the mechanism

under investigation, therefore more complicated and larger models of brain metabolism can

be considered. In many Central Nervous System pathogenies (like Parkinson’s and Alzheimer’s

diseases) or in metabolism-related diseases (e.g., diabetes), where the degeneration of the brain

structures causes abnormalities in brain function, glucose and lactate metabolism is altered;

see for example [7, 138, 139]. CSP could be effectively employed in order to identify optimal

strategies for the control of the system towards desired outcomes, contributing thus to the

development of therapeutic treatments.
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