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Abstract. Alzheimer's disease (AD) is a chronic neurological 
disease characterized by memory loss and progressive cogni‑
tive impairment. The characteristic AD pathologies include 
extracellular senile plaques formed by β‑amyloid protein 
deposition, neurofibrillary tangles formed by hyper‑phos‑
phorylation of τ protein and neuronal loss caused by glial cell 
proliferation. However, the pathogenesis of AD is still unclear. 
Dysregulation of RNA methylation is associated with biological 
processes, including neurodevelopment and neurodegenerative 
disease. N6‑methyladenosine (m6A) is the main modification 
in eukaryotic RNA and may be associated with the patho‑
physiology of AD. Circular RNA (circRNA) is a new type 
of evolutionarily conserved non‑coding RNA without 5'‑cap 
and 3'‑polyadenylic acid tail. circRNA undergoes m6A RNA 
methylation and may be involved in the pathogenesis of AD. In 
the present study, high‑throughput sequencing was performed 
to assess the degree of circRNA m6A methylation in APP/PS1 
AD and C57BL/6 mice. These results suggested that circRNA 
m6A methylation in AD mice was markedly altered compared 
to the control group. Furthermore, Gene Ontology and Kyoto 
Encyclopedia of Genes and Genomes pathway analysis was 
used to predict associated pathways; genes with different 
circRNA m6A methylation in AD mice were associated with 
‘axon guidance’, ‘long‑term potentiation’, ‘glutamatergic 
synapse’, ‘cholinergic synapse’, ‘GABAergic synapse’ and 
‘long‑term depression’. Methylated RNA immunoprecipita‑
tion reverse transcription‑quantitative PCR demonstrated that 
among the eight selected circRNA m6A genes, there were five 
genes that demonstrated significantly increased methylation 
and three demonstrated significantly decreased methylation. 

In summary, the present study indicated that circRNA m6A 
methylation may be associated with pathogenesis of AD.

Introduction

Alzheimer's disease (AD) is a chronic neurodegenerative 
disease characterized by memory loss and progressive cogni‑
tive decline, which results from neuronal death in numerous 
brain regions, including the hippocampus, entorhinal areas, 
temporal and parietal lobes and restricted regions within the 
frontal cortex and cingulate gyrus (1). According to a previous 
study, there were 50 million patients with AD worldwide in 
2020 and this number is projected to reach 152 million by 
2050 (2). AD pathology is characterized by extracellular 
plaques formed by β‑amyloid protein deposition, neurofibril‑
lary tangles formed by τ hyperphosphorylation and neuronal 
loss caused by proliferation of glial cells (3). Numerous factors 
may influence the incidence of AD, including aging, genetic 
and environmental factors (4). However, the pathogenesis of 
AD is still unclear. Previous studies have reported that aging 
and environmental factors can affect the incidence of AD via 
epigenetic modification and evidence suggests that epigenetic 
mechanisms, including DNA methylation and histone modifi‑
cations, could serve an important role in the pathogenesis of 
AD (5‑8).

RNA modification is a form of post‑transcriptional 
regulation and methylation is the primary form of this 
modification (9). m6A is the most common type of RNA 
modification of mRNA and is involved in the regulation of 
numerous important biological processes, such as RNA degra‑
dation, translation, RNA splicing and nuclear export (10). In 
the nervous system, m6A methylation affects neuronal func‑
tion, neurogenesis and neuronal differentiation via regulation 
of mRNA splicing (11) and participates in the regulation of the 
transcription of genes associated with brain disease risk (12). 
Increasing studies have reported that m6A serves an impor‑
tant regulatory role in brain development, synaptic plasticity, 
learning and memory (13,14). According to a previous report, 
specific m6A methylation exists in the mouse cerebral cortex 
and cerebellum tissue (15). A previous study reported that 
protein expression levels of METTL3, which encodes the m6A 
methyltransferase, is downregulated in the hippocampus (16). 
The accumulation of METTL3 has been reported to be 
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positively correlated with levels of insoluble τ protein in post‑
mortem human AD samples (16). Furthermore, overexpression 
of METTL3 has been reported to have rescued β‑amyloid 
(Aβ)‑induced synaptic damage and cognitive impairment 
in vivo (17). Our previous study reported that total methylation 
level of m6A RNA in the hippocampus of AD mouse model is 
significantly higher compared with that of the control group, 
which indicates that m6A methylation of RNA promotes the 
development of AD (18).

Circular (circ)RNAs are evolutionarily conserved 
non‑coding RNAs without 5'caps and 3'polyadenylation 
tails (19). circRNAs have been reported to serve a role in 
the regulation of neurodegenerative disease through their 
interaction with disease‑related miRNAs in numerous 
studies (20,21). circRNAs have received growing attention 
for their involvement in the pathogenesis of AD (22,23). A 
circRNA microarray study reported that AD mouse models 
had abnormal circRNA in the hippocampus (24,25). m6A 
RNA methylation has also been reported in circRNAs (26). 
A review by Li and Jin (27) reported that circRNAs serve 
an important role in the production and clearance of Aβ, AD 
neuroinflammation, oxidative stress and autophagy, and that 
circRNAs are widely involved in regulation of AD physi‑
ological and pathophysiological processes and may have the 
potential to be new biomarkers and novel therapeutic targets. 
Furthermore, circRNA ciRS‑7 has been reported to act as an 
endogenous, anticomplementary microRNA (miRNA or miR) 
‘sponge’ to adsorb and affect normal miRNA‑7 function (28). 
Downregulation of ciRS‑7 might increase endogenous 
miRNA‑7 levels in AD. Due to inhibition by the ‘sponging’ 
effects of ciRS‑7, expression of AD‑associated targets, such 
as ubiquitin protein ligase UBE2A, an autophagic, phagocytic 
protein essential in the clearance of amyloid peptides in the 
AD brain, may be downregulated (28).

In the present study, high‑throughput sequencing was 
used to assess dysregulation of the circRNA m6A profile in 
the brains of APP/PS1 and control mice, and evaluate the 
differences. Furthermore, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis was 
used to evaluate the biological roles and signaling pathways of 
these differentially modified circRNA m6A. The methylation 
degree of circRNA m6A was detected using methylated RNA 
immunoprecipitation reverse transcription‑quantitative PCR 
(MeRIP‑RT‑qPCR).

Materials and methods

Mouse model. APP/PS1 double‑transgenic male mice (age, 
9 months) were used as AD models (10 per group) and 
age‑matched C57BL/6 wild‑type mice (9 months old; n=20) 
were used as the control group. All 20 mice were purchased 
from Beijing Huafukang Biotechnology Co., Ltd. All mice 
were housed at a controlled room temperature (25±2˚C), in 
50‑60% humidity, with 12‑h light and dark cycles, and free 
access to water and food for 2 weeks. The mice were sacrificed 
using cervical dislocation; lack of breathing and cardiac arrest 
were considered to confirm death. The cortex, hippocampus 
and cerebellum of mice were dissected and immediately frozen 
using liquid nitrogen before being stored at ‑80˚C for use in 
future experiments. All procedures were performed according 

to the guidelines of the Ethical Committee for Animal 
Experiments of Shandong University (Jinan, Shandong, China) 
and the study protocol was approved by the Ethical Committee 
for Animal Experiments of Shandong University [approval no. 
KYLL‑2020(KJ)A‑0098].

All of the 20 mice were eventually euthanized. The humane 
endpoints used in the present study were as follows: Labored 
breathing, nasal discharge, lethargy or persistent recumbency, 
difficulty with ambulation or inability to obtain food or water.

RNA extraction. Total RNA was isolated from frozen 
mouse brain samples using TRIzol® reagent (Thermo Fisher 
Scientific, Inc.). A DeNovix spectrophotometer (DS‑11) was 
used to determine RNA quality. Samples with an A260/A280 
ratio 1.9‑2.2 were used for further experiments.

MeRIP high‑throughput sequencing. circRNA m6A 
high‑throughput sequencing (circRNA m6A‑seq) was 
performed by Cloudseq Biotech, Inc. High‑throughput 
sequencing of circRNA m6A methylation was performed on 
hippocampal samples from APP/PS1 and C57BL/6 control 
mice (3 per group). All the following steps were performed by 
Cloudseq Biotech Inc. Briefly, RNA fragments were treated 
with anti‑m6A polyclonal antibody (cat. no. 202003; Synaptic 
Systems GmbH) in immunoprecipitation (IP) buffer [150 mM 
NaCl, 0.1% NP‑40 and 10 mM Tris‑HCl (pH 7.4)] for 2 h at 4˚C. 
After that, the mixture was immunoprecipitated by incubating 
it for 2 h at 4˚C with 50 µl protein A beads (Thermo Fisher 
Scientific, Inc.). The bound RNA was eluted from the beads 
using m6A (Berry & Associates; Biosearch Technologies) in 
IP buffer and extracted using TRIzol reagent (Thermo Fisher 
Scientific, Inc.). The NEBNext® Ultra II Directional RNA 
Library Prep kit (cat. no. NEB#E7760; New England Biolabs, 
Inc.) was used to obtain purified RNA for the creation of an 
RNA‑seq library. RNA quantification and quality assurance 
with the NanoDrop ND‑1000 (Thermo). The concentration of 
the control group was 561.6 ng/µl and the concentration of the 
experimental group was 1,240.23 ng/µl. GenSeq® m6A MeRIP 
kit (GS‑ET‑001) via Illumina HiSeq 4000 sequencer was used 
for 150‑bp paired‑end sequencing of input samples without IP 
and the m6A IP samples with 6 ng of total RNA input. The 
differentially expressed genes of circRNA m6A methylation 
of the samples from the two groups were then examined. 
Methylated sites were identified by MACS2 (1.4.2) software. 
Differentially methylated sites were identified by diffReps 
(1.55.6). The distinct physiological activities of these genes 
were analyzed using GO and KEGG pathway analysis, where 
P<0.05 was considered to indicate a statistically significant 
difference. The generated data are available under accession 
number GSE216901 from the Gene Expression Omnibus data‑
base (https://www.ncbi.nlm.nih.gov/geo/).

MeRIP‑RT‑qPCR. Total RNA (1 µg) was extracted from 
mouse hippocampal samples and cDNA was synthesized 
using the PrimeScript First Strand cDNA Synthesis Kit (cat. 
no. RR047A; Takara Bio, Inc.) according to the manufacturer's 
instructions. RT‑qPCR was performed using the SYBR‑Green 
assay (cat. no. RR041A; Takara Bio, Inc.) and a StepOnePlus 
Real‑Time PCR system (Mastercycler; Eppendorf) in order to 
determine the relative RNA levels of target genes. RT‑qPCR 
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using gene‑specific primers was performed on the input 
control and the m6A‑IP samples. The thermocycling condi‑
tions were as follows: 40 cycles of 95˚C for 30 sec, 95˚C for 
15 sec and 55˚C for 15 sec. The primers used for RT‑qPCR are 
presented in Table I.

Statistical analysis. Data are presented as the mean ± SEM of 
at least three independent experiments. Unpaired student's t‑test 
was used to assess statistical differences between groups. P<0.05 
was considered to indicate a statistically significant difference. 
SPSS 17.0 software (SPSS Inc.) was used for data analysis.

Results

Differential expression between APP/PS1 and wild‑type mice. 
Compared with the control group, high‑throughput sequencing 
demonstrated that certain circRNA m6A genes were methyl‑
ated at higher or lower levels in APP/PS1 AD mice. A total 
of 537 genes demonstrated an increase in methylation in the 
AD group; however, a decrease in methylation was demon‑
strated in 1,359 genes. The results demonstrated that there 
was a total of 4,918 methylation sites; upregulated genes 
accounted for 10.92% of possible sites and the downregulated 
genes accounted for 27.63% of possible sites. A total of 50 
upregulated and 50 downregulated genes (ranked according to 
fold‑change) are presented in Table SI.

GO and KEGG pathway analysis of differentially methylated 
circRNA m6A genes. To evaluate the biological role of circRNA 
m6A methylation in AD mice, the genes containing significantly 
altered m6A peaks, which indicated differentially methylated 
genes (DMGs), were analyzed using GO and KEGG pathway 
analysis. There was a marked difference in degree of methyla‑
tion between the AD and control groups. The three parts of GO 

analysis (Fig. 1) are biological process (BP), cell component 
(CC) and molecular function (MF). BP analysis demonstrated 
that the genes with lower circRNA m6A methylation in the AD 
group were significantly linked with ‘synaptic vesicle clustering’, 
‘astral microtubule organization’, ‘neurotransmitter‑gated ion 
channel clustering’, ‘positive regulation of synaptic vesicle 
recycling’, ‘postsynapse assembly’ and ‘cerebellar Purkinje 
cell differentiation’. Significant GO CC terms for differentially 
modified RNAs demonstrated that these circRNAs were associ‑
ated with ‘cell’, ‘intracellular’, ‘organelle’ and ‘cytoplasm’. For 
MF, these circRNAs were associated with ‘cytoskeletal protein 
binding’, ‘enzyme binding’, ‘metal ion binding’, ‘cation binding’ 
and ‘anion binding’.

The significant enrichment pathways with the top 10 enrich‑
ment scores [log10(P‑value)] were assessed using the KEGG 
pathway dot‑plot. The KEGG pathway for BP was associated 
with ‘synaptic vesicle clustering’, ‘postsynapse assembly’, 
‘neurotransmitter‑gated ion channel clustering’, ‘cerebellar 
Purkinje cell layer formation’, ‘cerebellar Purkinje cell differ‑
entiation’ and ‘astral microtubule organization’ (Fig. 2A). 
For CC, the KEGG pathway was associated with ‘organelle’, 
‘intracellular part’, ‘intracellular organelle’, ‘cytoplasm’ and 
‘cell part’ (Fig. 2B). In MR, the KEGG pathways were enriched 
for ‘metal ion binding’, ‘enzyme binding’, ‘cation binding’ 
and ‘anion binding’ (Fig. 2C). Furthermore, the six primary 
pathways were associated with ‘axon guidance’, ‘long‑term 
potentiation’, ‘glutamatergic synapse, ‘cholinergic synapse’, 
‘GABAergic synapse’ and ‘long‑term depression’ (Fig. 3).

circRNA m6A methylation of gene expression is different. The 
results of high‑throughput sequencing analysis demonstrated 
that the degree of methylation in the AD group was different 
from that in the control group. Eight differentially expressed 
genes were selected and methylation levels were assessed 

Table I. Sequences of primers used for reverse transcription‑quantitative PCR.

Target Sequence (5'‑3')

chr16:85056324‑85120697‑ F: TTAGTGAATGCCGGTGATGC
 R: ACCACAACCACCACTGAGTC
chr16:85013627‑85030365+ F: AAATGGGCATGCTCGTTCTC
 R: TGTGTGTGTGTGTGTGTTGG
chr12:16977542‑16978102+ F: CGACAGCTTGCTCCAAACAA
 R: TTTAATGTGGCACCTACGGC
chr16:8708859‑8716619‑ F: CCTCTTCTGCGTTGCTGTG
 R: GCGCCCCATTACATTTTGAAG
chr11:108923152‑108931579+ F: ACTGACCGACGATTCCATGT
 R: AGGAGAGTCACTAACACGGC
chrX:143709648‑143744001+ F: TCAGGAAGCATTGTGAGTGT
 R: AGTGAATTCCCCGGTGACTG
chr5:137291102‑137291478+ F: TTTCTTCCTCCACGCCTTGT
 R: AGGACGGATGAAACCCAGAA
chr1:68305845‑68396315‑ F: ATGAACCATGACACACAGGC
 R: AGATGGACTCCTCACATGCC

F, forward; R, reverse.
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using RT‑qPCR. Compared with the control group, among 
the eight selected genes, 5 demonstrated significantly higher 
methylation levels, and the remaining three demonstrated 
significantly lower methylation levels (Fig. 4). Combined 

with the aforementioned high‑throughput sequencing results, 
these results suggested that circRNA m6A methylation was 
different in the brain of the AD mice compared with the 
normal mice.

Figure 1. Methylation of m6A RNA is associated with specific functions in AD, according to GO analysis. The genes in the AD group with decreased m6A 
RNA methylation expression are presented for (A) biological process, (B) cell component, (C) molecular function. Fold enrichment of (D) biological process, 
(E) cell component and (F) molecular function terms. GO, Gene Ontology; AD, Alzheimer's disease; m6A, N6‑methyladenosine. 

Figure 2. Analysis of pathways affected by circRNA m6A in AD brain samples using Kyoto Encyclopedia of Genes and Genomes demonstrated the top 10 
genes with differential circRNA m6A methylation. Analysis predicted the pathways affected by circRNA m6A in AD brain samples. (A) Biological process. 
(B) Cell component. (C) Molecular function. The enrichment score was calculated as‑log10(P‑value). circRNA, circular RNA; AD, Alzheimer's disease; m6A, 
N6‑methyladenosine; GO, Gene Ontology.



MOLECULAR MEDICINE REPORTS  27:  55,  2023 5

Discussion

A perfect mouse model of AD would develop neuropathology 
as well as behavioral changes associated with AD (29). Double 
transgenic mice (APP/PS1) have been widely used to study the 

pathogenesis of AD and assess the effectiveness of AD treat‑
ments (30‑32). The APP/PS1 mouse model of AD demonstrates 
a significant increase in β‑amyloid production associated 
with certain behavioral abnormalities. Behavioral tests have 
previously demonstrated that compared with wild‑type mice, 

Figure 3. Pathways associated with synaptic function from which genes to be studied were selected. (A) ‘Axon guidance’. (B) ‘Long‑term potentiation’. 
(C) ‘Glutamatergic synapse’. (D) ‘Cholinergic synapse’. (E) ‘GABAergic synapse’. (F) ‘Long‑term depression’. Green, organism‑specific pathway; yellow, 
significantly downregulated circular RNA coding genes. The original source for parts A, B and C in Fig. 3 was the previously published article ‘Abnormality 
of m6A mRNA Methylation Is Involved in Alzheimer's Disease' (18) and written permission from the copyright owner of article was obtained and submitted. 

Figure 4. Methylated RNA immunoprecipitation reverse transcription‑quantitative PCR of eight genes selected from high‑throughput sequencing. C3 represents 
the control group and A6 represents the APP/PS1 mouse group. (A) chr16:85056324‑85120697‑. (B) chr16:85013627‑85030365+. (C) chr12:16977542‑16978102+. 
(D) chr16:8708859‑8716619‑. (E) chr11:108923152‑108931579+. (F) chrX:143709648‑143744001+. (G) chr5:137291102‑137291478+. 
(H) chr1:68305845‑68396315‑. **P<0.005, ***P<0.001 and ****P<0.0001.
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transgenic APP/PS1 mice have significant memory deficits 
at 6 months of age and that this deficit is exacerbated and 
more errors occurred at 12 months of age. Cognitive deficits 
and reference memory impairments of APP/PS1 mouse 
appear before 6 months of age and lasted for the rest of the 
life (30,33,34). Deficits in associative learning have also been 
described in the fear conditioning task at 6‑8 months of age 
and passive avoidance deficits were demonstrated at 12 months 
of age (35). In the present study, the APP/PS1 mouse was used 
as an animal model of AD.

In eukaryotes, m6A is the most prevalent internal RNA 
modification and regulates all aspects of RNA metabolism (16). 
m6A has been associated with neurogenesis (36), learning and 
memory (37), brain development (12,38‑40) and axon regen‑
eration (41) in previous studies. The presence of specific m6A 
methylation in mouse cerebral cortex and cerebellum tissue 
was also reported in a previous study (38). In our previous 
study, it was reported that the methylation genes in the AD 
group were associated with presynaptic membranes, postsyn‑
aptic membranes and synaptic growth, which suggested that 
m6A was likely involved in AD (18). All these results indicated 
that m6A is associated with AD.

circRNAs are a type of RNA made through reverse 
splicing, in which the 3' and 5' ends of a transcript are chemi‑
cally spliced together to form a continuous loop. In eukaryotes, 
many circRNAs have been reported and the nervous system 
and synapses are reported to be particularly rich in these 
circRNAs (42). A recent study reported aberrant regulation 
of circRNAs in AD and three circRNAs that may provide 
clinical insight into AD risk and progression (43). circRNAs 
have been reported to demonstrate the same m6A modification 
as mRNAs but are frequently found in distinct places; the m6A 
readers YTHDF1 and YTHDF2 interact with m6A circRNAs, 
while the m6A writer METTL3 regulates m6A levels (44).

In the present study, high‑throughput sequencing on the 
degree of circRNA m6A methylation in the hippocampus, 
cortex and cerebellum in APP/PS1 and normal mice as 
controls was performed. In comparison to control mice, AD 
animals demonstrated significantly different levels of m6A 
methylation of certain circRNAs.

In patients with AD, synapse loss and damage are the 
most likely causes of cognitive decline (45,46). Furthermore, 
previous studies have reported that m6A is linked to synaptic 
plasticity (47,48). According to a recent study, a novel circRNA 
is linked to psychiatric disorder and regulates synaptic gene 
expression and cognitive flexibility (49). In the present study, 
the KEGG pathway results demonstrated that circRNA m6A 
methylation alteration was associated with glutamatergic, 
cholinergic and GABAergic synapses. These results indicated 
that circRNA m6A methylation may have been involved in AD 
pathogenesis.

To evaluate the aforementioned results, 8 differentially 
expressed genes were selected from the high‑throughput 
sequencing data and MeRIP‑RT‑qPCR was performed. These 
genes were associated with AD. chr16:85056324‑85120697‑ and 
chr16:85013627‑85030365+ are part of the amyloid‑β precursor 
protein (APP) gene and mutations in this gene are linked to 
the development of early onset (familial) AD (50). chr12: 
16977542‑16978102+ is a fragment of the Rock2 gene, which 
has been reported to be correlated with Aβ production (51). 

ch16:8708859‑8716619‑ is associated with the ubiquitin specific 
peptidase 7 gene and has an anti‑neuroinflammatory effect (52). 
chr11:108923152‑108931579+ is part of the Axin2 gene, which 
serves an important role in the Wnt/β‑catenin signaling 
pathway, which inhibits Aβ production and τ protein hyper‑
phosphorylation in the brain (53). chrX:143709648‑143744001+ 
is part of the p21 activated kinase gene, which regulates DNA 
synthesis and neuronal apoptosis caused by familial AD 
mutants of APP (54). chr5:137291102‑137291478+, part of 
the acetylcholinesterase gene, has been reported to be linked 
to pathogenesis either by increasing cholinergic deficit or 
exacerbating Aβ fibril formation and toxicity in AD (55). 
Furthermore, chr1:68305845‑68396315‑ is reported to be 
associated with Erbb4, which mediates amyloid β‑induced 
neurotoxicity via JNK/τ signaling pathway activation (56). The 
results demonstrated that compared with the control group, 
AD mouse brain samples demonstrated increased methylation 
levels of five circRNAs and decreased methylation levels of 
three circRNAs. This suggested that there were differences 
in levels of methylation in AD mice and that circRNA m6A 
methylation was related to AD.

In summary, the present study demonstrated that compared 
with the control group, AD mouse brain samples had different 
levels of circRNA m6A methylation. MeRIP‑RT‑qPCR 
supported these data and indicated that circRNA m6A methyla‑
tion may have been involved in AD pathogenesis. However, the 
specific molecular mechanism of the differentially expressed 
circRNA m6A genes in AD was not thoroughly studied and 
the potential binding miRNAs were not elucidated. These data 
suggested that circRNA m6A methylation was associated with 
AD but more research is needed to confirm this association. In 
the future, the circRNA of the APP gene associated with Aβ 
production should be evaluated (chr16:85056324‑85120697‑) 
and MeRIP‑RT‑qPCR verification of methylation level of 
circAPP m6A in the hippocampus of APP/PS1 mice should be 
performed. APP/PS1 cells could be used to study the specific 
regulation mechanism of circAPP m6A on Aβ production in 
an AD cell model via regulation of APP.
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