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a b s t r a c t

The newly discovered coronavirus (COVID-19) pneumonia is providing major challenges to research in
terms of diagnosis and disease quantification. Deep-learning (DL) techniques allow extremely precise
image segmentation; yet, they necessitate huge volumes of manually labeled data to be trained
in a supervised manner. Few-Shot Learning (FSL) paradigms tackle this issue by learning a novel
category from a small number of annotated instances. We present an innovative semi-supervised
few-shot segmentation (FSS) approach for efficient segmentation of 2019-nCov infection (FSS-2019-
nCov) from only a few amounts of annotated lung CT scans. The key challenge of this study is to
provide accurate segmentation of COVID-19 infection from a limited number of annotated instances.
For that purpose, we propose a novel dual-path deep-learning architecture for FSS. Every path contains
encoder–decoder (E-D) architecture to extract high-level information while maintaining the channel
information of COVID-19 CT slices. The E-D architecture primarily consists of three main modules: a
feature encoder module, a context enrichment (CE) module, and a feature decoder module. We utilize
the pre-trained ResNet34 as an encoder backbone for feature extraction. The CE module is designated
by a newly introduced proposed Smoothed Atrous Convolution (SAC) block and Multi-scale Pyramid
Pooling (MPP) block. The conditioner path takes the pairs of CT images and their labels as input and
produces a relevant knowledge representation that is transferred to the segmentation path to be used
to segment the new images. To enable effective collaboration between both paths, we propose an
adaptive recombination and recalibration (RR) module that permits intensive knowledge exchange
between paths with a trivial increase in computational complexity. The model is extended to multi-
class labeling for various types of lung infections. This contribution overcomes the limitation of the
lack of large numbers of COVID-19 CT scans. It also provides a general framework for lung disease
diagnosis in limited data situations.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In December 2019, a global health crisis began with the spread
f the novel Coronaviridae species called severe acute respiratory
yndrome coronavirus 2 (SARS-COV-2)—specifically, the novel
oronavirus Disease (COVID-19) [1]. Over the last few months,
he CSSE at Johns Hopkins University has reported 4,733,349
nfections and 313,384 deaths in 180 countries around the world1

online access: 17 May). The reverse-transcription polymerase
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chain reaction (RT-PCR) is regarded as the major means for in-
specting COVID-19 infection. However, the lack of equipment and
the restrictions of appropriate testing settings limit rapid and
precise screening. Additionally, the RT-PCR test has also been
shown to have high false-negative rates [2]. Radiological imaging
methods (such as X-ray and computed tomography (CT)) provide
a significant supplement to RT-PCR tests and have shown their
efficiency in lung disease diagnosis and quantification [3]. More-
over, several studies show that chest CT analysis results in higher
performance (greater sensitivity) in COVID-19 detection com-
pared to RT-PCR [4]. In comparison to X-rays, CT screening has the
advantages of a three-dimensional representation of the patient’s
lung. Recent studies [5] indicate that the distinctive infection
indication of ground-glass opacity (GGO) and consolidation could
be detected from CT scans. The GGO was defined as hazy growing
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ung attenuation with the conservation of bronchial and vas-
ular margins. In contrast, the consolidation was identified as
pacification with obscuration boundaries of bowls and airway
alls [6]. Therefore, the qualitative assessment of contagion and

ongitudinal variations in CT images could provide beneficial and
ubstantial information about COVID-19. However, the manual
rojection of lung infections is laborious and time-consuming
nd the accuracy of infection annotation depends heavily on the
nowledge and experience of the radiologist. There is, therefore,
need for automatic and accurate segmentation techniques that
nable rapid screening of COVID-19.
Recently, a wide variety of deep-learning approaches has been

sed for semantic image segmentation. Among them, fully convo-
utional neural networks (F-CNNs) have shown superior perfor-
ance on both traditional and medical images [7–13]. Notwith-
tanding their great success in image segmentation, F-CNNs re-
uire thousands of labeled images for training and their perfor-
ance degrades when only a small number of annotated images
re available [14]. Consequently, an improved mechanism is re-
uired for F-CNN training that enables the segmentation of a new
emantic class based on a limited number of labeled images [15].
uch approaches frequently use transfer learning (TL) to transfer
he knowledge from pre-trained models to offer an initializa-
ion that is later enhanced with the new data to adapt to the
nderlying problem. Yet, the pre-trained model improvement is
till subject to the overfitting problem and requires a reasonable
umber of labeled images (at least in the order of hundreds) [16].
n situations where there is very little data (such as with COVID-
9), the new class has a limited number of annotated images,
o such enhancement based TL usually result in overfitting [17].
ew-shot learning (FSL) is an artificial intelligence technique that
ffectively enables the model to generalize to an anonymous
emantic class with a few instances. The primary notion of few-
hot learning is driven by an aspect of human learning in which
apid learning of new semantics is possible from a few remarks,
xploiting the knowledge acquired from prior experience. Few-
hot learning has been extensively studied for object detection
nd image classification, and lately, used for medical image seg-
entation. It is shown to be an extremely challenging task to
erform pixel-wise predictions in such an extremely low-data
egime since it conducts learning from rarely labeled instances
ince medical experts are required to label images [18] manually.
n this paper, we introduce a novel semi-supervised few-shot
egmentation (FSS) approach designed specifically for segmenting
olumetric COVID-19 CT scans. The key to attain this objective
s the combination of the recently proposed recombination and
ecalibration module within the construction of the proposed
rchitecture.

.1. Few-shot segmentation

FSL techniques for image segmentation aim to generalize a
odel to a new observed image with limited annotation us-

ng the learned knowledge from various annotated images. The
SL network architecture for image segmentation usually com-
rises three portions: the conditioner path, segmentation path
nd the interaction blocks. Throughout the inference procedure,
he model is supplied with a pair of images called the support set
Is, Ls(σ )) that contains a group of images Is belonging to the se-
antic class coupled with their corresponding mask called Ls(σ ).
imultaneously, a group of unlabeled query images Iq is passed
nto the model to be segmented. Specifically, the support set is
orward fed into the conditioner to produce several feature maps
ithin the middle layers of the conditioner path. These maps are
eclared as the knowledge representation since they encompass
he critical information essential to performing segmentation. The
2

enerated knowledge representation is captured via interaction
locks, primarily responsible for passing the pertinent informa-
ion to the corresponding layers within the segmentation path.
eanwhile, the input query image Iq is fed into the segmentation
ath that makes use of the transferred knowledge information to
roduce a segmentation mask Mq. Consequently, the major role
f interaction blocks is to communicate the learned knowledge
rom the conditioner to the segmented and build a powerful
rchitecture for semantic image segmentation. However, most of
he present methods [19–21] utilize weak interactions between
aths, such as one interaction module at the end layer of the
etwork [16,17].

.2. Semantic segmentation

Swift advances in medical imaging equipment such as scan-
ers necessitate efficient lesion segmentation techniques that
re capable of segmenting the entire infection region and dis-
riminate between relevant interior diseased lesions. Specifically,
his necessitates that segmentation approaches must be able to
earn more thorough features of various types of infection lesions,
hich are usually only minor portions of CT images, having an ir-
egular appearance and comparable concentration as the normal
reas.
Even though a variety of DL models have offered good solu-

ions for automated lesion segmentation, their lesion segmen-
ation performance requires two crucial enhancements: (1) ex-
anding the receptive field to learn extra features by stacking
everal convolutions and pooling operations must not result in
decrease in the resolution of feature maps layer-by-layer and
ence result in the loss of fractional and small features of the
esion; and (2) owing to the diverse sizes of COVID-19 lesions in
he CT images, the DL technique must be able to segment lesions
t a range of scales.
In order to address these issues, dilated convolutions (atrous

onvolution) has been recently employed for capturing multi-
cale information in segmentation networks using atrous spatial
yramid pooling (ASPP) [22]. This primarily has two motives.
irst, it is eminent that the atrous-convolution sample the incom-
ng input data immutably to calculate the output feature map.
econd, nearby contexts could be a beneficial type of supplemen-
ary statistics to differentiate diverse tissues, counting both the
nfected and uninfected regions. Despite the efficiency of atrous
onvolution in capturing multi-scale semantic representation, us-
ng it into a segmentation model has two drawbacks degrading
he segmentation performance [23,24]: (1) local information loss,
ince its kernel just performs partial sampling on the nine points
f pixels and neglects the pixel values at the in-between sites;
nd (2) the gridding artifacts problem [25].

.3. Challenges and goals

The current computer vision literature for few-shot segmen-
ation (FSS) employs TL from the pre-trained models in both
aths to effectively segment RGB images [26]. TL models enable
ffective exploitation of preceding knowledge with informative
eatures from the beginning of training. Accordingly, adopting
weak interaction module between the conditioner and the

egmentation path (i.e., at earlier or later layer) is adequate to
rain the model efficiently. However, extending such a learning
echnique to medical images did not realize satisfactory perfor-
ance due to the absence of the DL model pre-trained on medical
ata. This limits performance gains realized by TL in medical
omains. Hence, we introduce a robust interaction module that
nables knowledge communication at several intermediate lo-
ations between the paths while simplifying the gradient flow
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hrough the two paths. In view of this, we propose the RR module
o communicate the learned representation between the two
aths of the FSS network. The module particularly receives the
xtracted conditioner feature maps as input and performs con-
urrent spatial and channel squeezing to learn the feature maps
rom the conditioner path. This is used to accomplish excitation
n the corresponding feature map of the segmentation path.
A mutual shortcoming of the most U-Net alike networks is that

he strided-convolutions and successive pooling layers gradually
ecrease the representational resolution to learn the compressed
eature representations. Although this behavior is valuable for
bject detection or classification procedures, it always hinders
he segmentation task that necessitates comprehensive spatial
epresentation. Instinctively, maintaining high-resolution feature
aps at the intermediate phases can enhance the performance
f the segmentation model. Nevertheless, it raises the dimension
f feature maps, which is infeasible for accelerating the training
peration and facilitate the optimization process. Hence, there is
trade-off between the high resolution and the training speed.

n general, the U-Net is shaped with an ED structure. Where the
ncoder seeks to minimize the spatial size of feature maps pro-
ressively and acquire extra complex semantic representations.
he decoder seeks to retrieve both the details of the segmentation
arget (i.e., lesion) and the spatial size. Thus, it is necessary to
earn more advanced representations in the encoder and maintain
ore spatial representation in the decoder to ensure optimal
egmentation performance.
Inspired by the debates mentioned above and the Inception-

et [27], the network gets deeper and wider, we propose a novel
moothed atrous convolution (SAC) module. Unlike traditional
-Net architectures that are limited in learning multi-scale rep-
esentations via 3 × 3 convolutions and pooling layers through
he encoding processes, the proposed SAC can learn and extract
deeper and wider range of semantic representations using four
arallel paths of multi-scale smoothed atrous convolutions, while
he residual links are employed to avoid gradient vanishing is-
ues. Additionally, we introduce a multi-scale pyramid pooling
MPP) module stimulated by spatial pyramid pooling [28]. The
PP module further learns multi-scale contextual representa-

ions of the SAC module entity by employing pooling layers with
aried sizes, without requiring any additional learning param-
ters. Integrating these two modules in the middle of the E-D
rchitecture can help gain greater improvement and reserve extra
patial representation to enhance segmentation performance. The
enerated E-D architecture is used to build the segmentation and
onditioner path.
Furthermore, to avoid the overfitting problem and gain better

eneralization, we train our model using SSL by incorporating
nlabeled CT slices during training. Although most current studies
n FSS concentrate on volumetric images with multiple annotated
lices, we focus on axial scans of COVID-19. It is time-consuming
o manually annotate the lung nodules or infection regions on all
lices of CT images of COVID-19 patients. Therefore, we introduce
novel technique, called FSS-2019-nCov, which is able to accu-
ately pair a limited number of COVID-19 slices of the support
lices with all the slices of the query set.

.4. Contributions

The primary contributions of our paper are:

• A novel COVID-19 segmentation technique is based on FSS
to enable better generalization from a small number of
annotated CT slices in both binary and multi-class scenario.

• We introduce a SAC block and MPP block for efficient ex-
ploitation of high-level contextual and spatial information
and to assist in overcoming the problem of infection size
variation.
3

• Both the SAC block and MPP block are integrated within the
encoder–decoder architecture that is adapted to form the
conditioner and segmentation path.

• Adaptive feature recombination and recalibration (RR) mod-
ules are included to effectuate knowledge representation
interaction between the two paths.

• There is a resultant increase in generalization performance
using semi-supervised training for the proposed FSS-2019-
nCov.

1.5. Paper organization

The remainder of the paper is structured as follows. Sec-
tion 2 reviews the current related studies. Detailed explanations
and information corresponding to our proposed frameworks and
principles incorporated are presented in Section 3. Proposed ex-
perimental conditions, comparison studies, and comprehensive
analysis are provided in Section 4. Finally, the conclusions and
intended future directions are explained in Section 5.

2. Related work

In this section, three kinds of studies related to our work are
discussed: chest CT segmentation, semi-supervised learning, and
COVID-19 segmentation.

2.1. Chest CT segmentation

The CT scan is a prevalent diagnostic tool for lung diseases [6].
Practically, segmenting a variety of lesions from chest CT images
supplies clinicians with substantial information on lung disease
diagnosis and quantification [29]. Several studies achieve chest
nodules segmentation using a feature extractor accompanied by
a classifier. For instance, Kumar et al. [30] introduced a new
supervised CNN to fuse complementary multi-modality informa-
tion from lung cancer scans. Ozdemir et al. [31] addressed lung
cancer diagnosis using a 3D probabilistic DL approach for nodule
segmentation and diagnosis while presenting model uncertainty.
Gerard et al. [32] proposed a coarse-to-fine cascade of two CNN to
reduce the impact of thin structure on the segmentation network.
Jiang et al. [33] developed two residual networks to concurrently
syndicate features across several resolutions and levels to detect
lung tumors. Additionally, Cheplygina et al. [34] reviewed the
recent studies of semi-supervised techniques for medical imaging
tasks. However, these studies are extremely successful in data-
intensive problems but are often obstructed for very small data
sets. Such approaches also suffer from low generalization capabil-
ity, making them inefficient for the underlying task of COVID-19
segmentation. To tackle these issues, we propose an FSL-based
approach to enable learning from limited data.

2.2. Few-shot segmentation (FSS)

Recently, many studies have explored FSS with deep learn-
ing. Caelles et al. [19] performed video segmentation using the
first frame annotation based on the notion of tuning pre-trained
architectures. Even though their model operates effectively in
this scenario, it is subject to overfitting and necessitates re-
training to adopt a new class, which hampers the swiftness of
adaptation. Shaban et al. [16] introduced a two-step approach,
where the first step processes the new image-label pair to infer
the classification parameter for the other step, which receives a
query image and predicts the corresponding segmentation. Dong
et al. [20] improved this approach to address numerous unidenti-
fied classes to perform multi-class segmentation simultaneously.
Rakelly et al. [21] applied the approach in a very difficult scenario
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nd they chose a tiny set of landmarks to induce the supervision
f the support set, rather than using a compactly annotated bi-
ary mask. The training process in the before-mentioned studies
elies on TL models. Despite the effectiveness of TL in many
omputer vision studies, there are no pre-trained architectures
n medical imaging.

In the medical imaging domain, FSS was first proposed in [35].
he authors used adversarial learning for brain image segmenta-
ion depending on one or two annotated labeled brain images,
nthused by the previous achievement of SSL. Zhao et al. [36]
xploited the captured transformation to extremely augment a
ully labeled volume for one-shot segmentation. Roy et al. [18]
ntroduced the two-stage model and applied the recently pro-
osed squeeze and excite modules to empower the knowledge
xchange between both arms and smooth the gradient flow.
owever, these studies suffer from a number of shortcomings.
irst, the approaches in these papers rely on the assumption that
very shot is a complete 3D image that comprises many 2D slices.
econd, they construct huge architectures without analyzing the
ffectiveness of every building block, which results in compos-
te and potentially inconsistent models. Finally, they considered
either contextual information nor multi-scale features.
Motivated by this, our study investigates the role of unsuper-

ised data in the process of segmenting COVID-19 CT scans in
n FSL scenario. Predominantly, we make use of the successful
chievement of FSS studies in normal images. To further boost
he performance of the proposed FSS-2019-nCov, we leverage
nannotated axial CT slices as a supervisory signal. Incorporating
nannotated slices into auxiliary tasks has been used to improve
he generalization capabilities of deep learning approaches in
any studies.

.3. Semi-supervised learning

While owing to the challenge in finding entirely annotated
ata, semi-supervised learning (SSL) has been attracting much
ttention to enhance the network performance using a small
mount of annotated data and a very large amount of unlabeled
ata [34]. SSL has been widely adopted for training deep models,
hich always seek to optimize the supervised and unsupervised

oss on labeled and unlabeled data, respectively. [37,38]. Fan
t al. [39] proposed using weighted Intersection-over-Union (IoU)
oss for edge supervision and cross-entropy loss for segmentation
upervision. In a nutshell, the current deep SSL models regulate
he network by imposing fine-grained and reliable classification
oundaries, which are vigorous to a random disturbance. Other
pproaches enhance the supervision signals by investigating the
cquired knowledge, such as pseudo labels and temporal en-
emble dependency [40]. Inspired by the recent success of SSL
rchitectures in the studies mentioned above, we propose to
dopt SSL in model training to attain better generalization and
void overfitting effects that may be incurred with pre-trained
odels.

.4. COVID-19 segmentation

Recently, artificial intelligence has been widely adopted in
ultiple applications applied to COVID-19 detection [41]. These
pplications could be categorized into three groups [42]: patient-
evel, concerned with medical images analysis tasks (e.g., segmen-
ation, classification, and quantification, etc.); molecular appli-
ations dedicated to protein structure (e.g., protein interactions,
rug repurposing, etc.); and societal applications concentrated on
pidemiology related tasks. In this paper, we focus on patient-
elevant applications, specifically for those depend on CT scans.

or example, Wang et al. [43] introduced an adapted inception c

4

network to classify COVID-19 patients from normal cases by
training the network on the ROIs defined with two experienced
radiologists according to the characteristics of pneumonia. Chen
et al. [44] accumulated 46,096 slices of CT volumes from con-
firmed COVID-19 cases and other disease cases. The collected CT
slices were used to train a U-Net++ [12] to identify COVID-19
cases. Their results demonstrate that the model diagnoses COVID-
19 as well as radiologists. Additionally, other models proposed
to act as AI-assisted systems for COVID-19 diagnosis, including
ResNet [45,46], and U-Net [39,43]. Moreover, deep learning has
been utilized for infection segmentation in lung CT scans and the
obtained quantitative outcomes can be exploited to assess disease
severity [47], quantify infection [3], screen infection at a large-
scale [48]. All of the studies mentioned above assumed utilizing
a large amount of data to train their models in a supervised
manner, but the lack of annotated CT scans for COVID-19 means
that such approaches lack utility. Fan et al. [39] were first to tackle
this problem using a semi-supervised learning scheme, yet they
first segment infection regions to use them to guide the multi-
class segmentation, which results in suboptimal performance.
This motivates us to use FSS to enable better generalization
from small data samples using newly proposed context encoder–
decoder architecture, efficiently exchanging this knowledge with
segmentation path using the proposed smoothed RR module. We
also boost the model generalization by semi-supervised training
incorporating unlabeled CT slice.

3. Proposed approach

In this section, we present a detailed explanation of the pro-
posed FSS-2019-nCov in terms of network architecture, network
building blocks, and cost function. Then, we introduce the semi-
supervised variant of FSS-2019-nCov and clarify how to use an
SSL paradigm to increase the number of training instances to
improve the segmentation performance. In addition, we extend
our model for the multi-label classification for a variety of lung
infections. Finally, we indicate the details of the implementation.

3.1. Problem formulation for FSS

In the infection segmentation scenario, the training data for
FSS-2019-nCov DTrain =

{
(I iT , L

i
T (∝))

}N
i=1contains N couples of CT

axial scan and its respective annotation map LT (∝). In the multi-
lass scenario, every semantic label ∝∈ LTrain have an annotation
ap LiT (∝) ∈ DTrain where LTrain = {1,2,. . . ,K}, where k is the
umber of training classes. (e.g., in multi-class COVID-19 seg-
entation, the 1, 2, and 3 represent the GGO, consolidation, and
ackground). The FSS-2019-nCov learns on DTrain with objective
unction F (·) such that having a support set (Is, Ls(∝̂)) /∈ DTrain
or a new semantic label ∝̂ ∈ Ltest (Ltest is the number of testing
lass) and a query slice Iq, the COVID-19 infection segmentation
q(∝̂) of the query is predicted. There is no intersection between
emantic labels of training and testing data. The most remarkable
spect of FSS is that test classes Ltest exist in the training data as
he background class. This possibly could be exploited as a form
f past knowledge during testing in cases where scarce instances
re provided with the infection annotated.

.2. FSS-2019-nCov architecture

As previously stated, the architecture of FSS-2019-nCov com-
rises three modules: the conditioner path, the adaptive inter-
ction module, and the segmentation path. The conditioner path
earns the visual information of the support set to infer infection
n the query slice. The adaptive interaction module effectively

onveys the learned representation in terms of feature maps to
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Fig. 1. The architecture of the proposed FSS-2019-nCov. It consists of two identical paths with the encoder–decoder structure, namely the conditioner path (upper)
and the segmentation path (top). The recombination and recalibration (RR) blocks (see Fig. 4) are introduced to effectuate knowledge interaction between two paths.
The axial CT images are passed through a feature encoder blocks (E) module that is implemented with the pre-trained ResNet-34 blocks. The context enrichment
module is then introduced to generate an improved semantic representation using SAC and MPP modules. Finally, the acquired representations passed into the
feature decoder blocks (D).
the segmentation path. The segmentation path makes use of the
acquired representation to segment the query slice. Fig. 1 shows
the detailed architecture of the proposed FSS-2019-nCov, which is
further described in the following subsections. In FSS-2019-nCov,
both the conditioner and the segmentation have an identical
layout. In this way, feature maps in each path have the symmetric
spatial resolution, which facilitates and empowers the interaction
between corresponding blocks and eases gradient flow.

3.2.1. E-D architecture of conditioner and segmentation paths
The architecture of the conditioner path has an encoder–

ecoder based architecture consisting of four encoder blocks
ased on pre-trained Res2Net [49], four decoder blocks, and a
ontext enrichment (CE) module—see Fig. 1.

eature encoding: Recently, the Res2Net [49] architecture has
hown great success in many computer vision tasks and has vali-
ated its effectiveness overall residual architectures owing to the
ulti-scale feature extraction capability that enables fine-grained

evel representations for every network layer. Motivated by this,
e propose to implement the encoder path using Res2Net-50
s a backbone architecture. The structure of the encoder (or
es2Net) module is presented in Fig. 2(a) the multi-scale pro-
essing enables learning more representative information from
he input CT images. The residual linking facilitates the network
onvergence and evade the gradient vanishing problem. From the
nput image, the E blocks acquire the global representation of
he target entity (i.e., lesions) and relevant parts class property
f the target [38,44]. Nevertheless, these kinds of representation
ight gradually debilitate at the time they transmitted to deeper

evels [34]. Thus, we introduce the CE module to tackle this issue,
s presented in Fig. 1.

ontext Enrichment: The CE is introduced to learn semantic con-
ext representation and hence provide more informative feature
aps, and it contains two blocks: the smoothed atrous convo-

ution (SAC) block and the multi-scale pyramid pooling (MPP)
lock.
Smoothed Atrous convolution: The typical convolutional layer

s widely adopted feature extraction in many semantic segmen-
ation tasks [22]. Nevertheless, it still suffers from semantic in-

ormation loss caused by pooling layers. In order to tackle this

5

Fig. 2. Illustration of the encoder and decoder modules used in the pro-
posed FSS-2019-nCov: (a) the encoder module implemented using Res2Net
module [49]; and (b) the architecture of the decoder module.

shortcoming, atrous convolution has been used in many seg-
mentation tasks [50]. However, atrous convolution (with dilation
larger than 1) still suffering from the gridding artifacts prob-
lem [25], which means that the calculation of neighboring is
based on dispersed sets of input units, which causes local in-
formation discrepancy and degrades the network performance.
This issue has been tackled with the recently proposed separable
and shared convolution (SS-Conv) [25]. In an attempt to capture
multi-level information learned through an encoder, we propose
the SAC block presented in Fig. 3. in which we stack the SS-Conv
layers in the form of four cascade tracks with a receptive field of 3,
7, 9, 19 causes a gradual increase in the number of SS-Conv from 1
to 1, 3, and 5. Inspired by the inception module [51], we attach SS-
Conv 1 × 1 with Relu activation at the end of each track. Finally,
we concatenate the output of four tracks with the original feature
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Fig. 3. The architecture of the proposed SAC module consisting of four parallel
paths. Each path from left to right contains 1, 2, 3, and 4 separable and shared
convolutions, respectively.

Fig. 4. The architecture of the proposed MPP module containing five parallel
paths for changing input resolution. Convolution layers are employed to capture
different resolution information. The global average pooling (GAP) layer is
employed to implement the residual connection.

maps as the output of the SAC block. The SS-Conv with a large
reception field effectively captures and produces more detailed
information for large infection areas. In contrast, the SS-Conv
with a small reception field is better for small infection areas. By
integrating the atrous SS-Conv of various atrous rates, the SAC
enables efficient feature extraction for infections of various sizes.

Multi-scale pyramid pooling: The most challenging issue in
nfection segmentation is the wide variety of infection sizes in
edical scans. For instance, the size of GGO in the middle or

ate stage can be much larger than that in the early stage of
OVID-19 infection [5,6]. To tackle this problem, we propose
ulti-scale pooling layers that depend on several operative fields
f view to distinguish infection of various sizes, as shown in Fig. 4.
nlike [28], MPP takes the incoming feature maps and passes
hem to the four paths to alert their resolution using the pooling
ayer (i.e. average or max), hence the resolution at each path gets
ecreased to 1/2, 1/4, or 1/8 of the corresponding input. Then,
6

a 3 × 3 convolution is employed to extract and learn multi-
scale contextual representations. Additionally, we redesign the
residual connection [28] to be implemented with global average
pooling (GAP). Unlike [28], the MPP module can capture extra
contextual information from the received input due to the nature
of the average pooling operation that processes input maps at the
regional level instead of point level. For example, given an input
map 64 × 64, decreasing the input map resolution to 1/8 creates
the new map of 16 (i.e., 4 × 4) points, so that 3 × 3 convolutions
could capture information of nine of them, which means increas-
ing the information consumption ratio. Thus, applying such a
pooling layer enables the utmost input map values to contribute
to the output map of the MPP module. Additionally, reducing the
input map resolution often decreases the computation burden
and logically increases the time efficiency compared with [28].
Further, the proposed non-dilated convolution usage in the MPP
module also helps avoid the gridding artifacts problem [25]. After
the convolution layer, the low-dimension feature map is up-
sampled using bilinear interpolation to obtain the feature map
with the same size as the input feature map. Furthermore, similar
to SAC, the up-sampled feature maps are concatenated with the
input feature map. Finally, the concatenated map is passed into
then 1 × 1 convolution to generate the final output of the MPP
module. Optimal parameter grid search showed that the size of
stride should be to 2, 4, 6, and 8, which corresponds to kernel
dimensions of 2, 4, 6, and 8, respectively.

Feature Decoding: For restoring powerful resolution feature rep-
resentations rapidly and professionally, four simple D blocks are
employed to form the decoder path. The main purpose of the de-
coder is to reinstate the spatial representation with sophisticated
features engendered from the CE module and progressively fuses
the global contextual information. The architecture of decoder
blocks presented in Fig. 2(b) contains 3 × 3 de-convolution,
followed by a sampling layer for reducing the number of network
parameters. The output of a D block is attained after 1 × 1
convolution. The generated map of the last D block is directly up-
sampled to the same dimension of the original image. Therefore,
the D blocks have the following number of filters 64, 128, 256,
and 512 sequentially.

3.2.2. Conditioner path
The main job of ask of the conditioner path is to take as an

input the support set with a slice Is and mask Ls, which is later
passed to the proposed encoder–decoder architecture to learn
the visual representation that is used to generate informative
task-specific feature maps and enable detecting the area to be
segmented in the query slice Iq in the segmentation path. In this
paper, the feature maps of the middle layers of the conditioner
path are referred to as the knowledge representation. The con-
ditioner path has a two-channel input formed by stacking Is and
Ls(∝).

3.2.3. Adaptive interaction module
The interaction module plays an essential role in the proposed

for FSS-2019-nCov. It consists of multiple interaction blocks that
take the generated knowledge representation of the conditioner
path as input and transfer it to the segmentation path to conduct
the query slice segmentation. The most essential characteris-
tics of these blocks are (1) a slight increase in the computa-
tional complexity of the model; (2) improved gradient flow and
hence facilitated model training, and (3) adaptive exploitation
of channel-wise relationships. For this purpose, we introduce a
modified version of the recently proposed feature recalibration
block (SegSE) and combine it with the feature recombination
block [52] to obtain the recalibration and recombination (RR)

module presented in Fig. 5(c). SegSE blocks are computational
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Fig. 5. The architecture of the RR module: (a) illustration of the recalibration
block implemented using separable and shareable convolution; (b) illustration
of the recombination block; and (c) integration of both recalibration and
recombination in a single module.

blocks to achieve adaptive recalibration of feature maps that
act as a channel-wise attention mechanism that improves the
discriminative power of generated feature maps, with a marginal
increase in model complexity.

Recalibration Module: Since there is a spatial correspondence
etween the segmentation pixels/voxels and the units of feature
aps, applying channel squeeze and excite (SE) operation [53]
otentially suppresses the entire feature maps that could encom-
ass significant regions. To address this, we propose to use a
patially adaptive variant of SE (SegSE) that enables concurrent
patial and channel SE, which is more appropriate for COVID-
9 semantic segmentation. The architecture of the SegSE block
s presented in Fig. 5(a). The spatial structure and the correspon-
ence of the feature maps are preserved by replacing the global
verage pooling in the SE block with SS Conv (3 × 3) layer to

capture large-scale contextual information through dilated ker-
nel operating over adjacent voxels to obtain Z SegSE , but without
ncreasing those kernels’ parameters. Assuming that the convolu-
ion layer performs the transformation function F that maps the
nput X to the output U where XϵRH ′

×W ′
×C ′

, UϵRH×W×C ; H ′,W ′

represents the height and width of the input feature map; H,W
represents the height and width of the output feature map and
C, C ′ denote the count of feature maps such that X = {x1, . . . , xC ′}

and U = {u1, . . . , uC }. Then, we obtain a feature map ZSegSE using
Eqs. (1)–(2).

Z SegSE
= γ

(
F conv (

X; ksegSE, d, nsegSE)) (1)

nsegSE
=

C ′

r
(2)

where γ denotes the batch-normalization tailed with the ReLU
activation function, k is the kernel size, d represents the dilation
rate that is determined based on the scale of the layer, n is the
number of kernels, and r denotes the reduction factor. Hence,
increasing the number of conv layers increases the field of view,
which means that the units of the feature maps represent a wider
area of the input space. After that, to obtain the recalibration
output feature maps, a convolutional layer with kernels 1 × 1
operates on Z SegSE , and its output is fed into the sigmoid function
as formulated in Eq. (3).

S = σ
(
F conv (

Z SegSE
; k, d, n

))
(3)
7

where k = 1, d = 1, and n = C ′. Thus, we integrate the squeeze
and excitation operation since the dilated conv layer decreases
the number of feature maps, presenting a bottleneck. Finally,
element-wise multiplication ⊙ is applied to input S to obtain
the recalibrated feature maps. So, the recalibration of the given
feature map c is calculated with Eq. (4).

uc = xc ⊙ sc (4)

So, the overall operation of the SegSE block could be expressed
as F segSE : X → U segSE

Recombination Module: The main purpose of recombination is
to empower the representativeness of the features by linearly
combining them (see Fig. 5(b)). Accordingly, we utilize a convo-
lutional layer with a kernel size of 1 × 1. The features map F exp

is expanded with factor m and then recompressed again to the
original number size F comp. Thus, recombination operation could
be expressed as F recomb: X → U recomb where U recomb

∈ RH ′
×W ′

×C ′

is mathematically formulated in Eq. (5).

F recomb
= F comp (

F exp (
X,mC ′

)
, C ′

)
= F comp (

F exp (
X, 1, 1,mC ′

)
, 1, 1, C ′

)
(5)

3.2.4. Segmentation path
The main target of the segmentation path is to segment the

input query slice Iq utilizing the knowledge representation ac-
quired from the conditioner path, which contains a high-level
informative feature about the formerly unseen query slice. The
SegSE blocks within the interaction modules compress the feature
maps of intermediate layers of conditioner. They then perform
cross-channel feature recalibration on the feature maps of the
segmentation path. The architecture of the segmentation path is
symmetric to the conditioner with just two main variations: (1)
unlike the segmentation path, there are no interaction blocks pre-
sented after encoding and decoding modules of the conditioner
path.; and (2) in the segmentation path, we final classification
block with Conv(1×1) layer that produces the output segmenta-
tion maps that followingly fed into Softmax function to infer the
infection segmentation in query slice.

3.3. Semi-supervised training

Currently, there are only a small amount of annotated CT
images for COVID-19 patients. The manual segmentation of lung
area and COVID-19 lesions is laborious and time-consuming, and
most studies focus on studying the virus itself and finding the
best inhibitor. To tackle this data limitation problem, we propose
to train the FSS-nCoV-Net in a semi-supervised manner, in which
the widely available unannotated CT image set is exploited for
augmenting the training data, motivated by recent studies in [39,
54,55], in which a random sampling mechanism for gradually
expanding the CT training data using unannotated CT images.
Algorithm 1 is employed unambiguously to estimate and generate
the pseudo labels corresponding to the unannotated CT images.
The follow-on CT scans, along with the corresponding pseudo la-
bels, are subsequently exploited to train the proposed FSS-2019-
nCov. In view of this, semi-supervised training of the proposed
FSS-201-nCov has several benefits summarized as follows. First,
the training and assortment technique is straightforward and not
difficult to implement. Second, it is threshold-free and also does
not necessitate measures to evaluate the forecast annotation.
Third, it helps avoid the overfitting issue, which can provide
more robust performance than other semi-supervised training
approaches demonstrated by recently published studies [39,54,

55].
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able 1
odel training parameters.
Methods DSC

Learning Rate 0.001
Weight decay constant 0.0001
Momentum 0.9
No. of epochs 50
Iterations per epoch 300
Optimizer SGD
Balance factor 0.5

3.4. Model training methodology

We train our model using the training mechanism adopted
n [16,18], where a batch sampler is used to randomly select
mini-batch that is subsequently used for model training. As
pposed to traditional supervised training, we implement the
ollowing steps for picking samples from a mini-batch in every
teration. First, a label ∝∈ LTrain is randomly selected. Second, two
T slice and their corresponding labels are randomly sampled,
uch that they contain a semantic label ∝. Third, binarization of
the label map to set label ∝ at the foreground and to make the re-
maining areas the background. Fourth, the two pairs respectively
establish the support set (Is, Ls(∝)) and the query set (Iq, Lq(∝)),
here Lq (∝) is the GT for calculating the loss. To sum up, the

FSS-2019-nCov takes the two pairs as a training batch, where the
support pair (Is, Ls(∝)) is combined to form two-channeled input
to the conditioner path. Meanwhile, the query slice Iq is used as
he segmentation path input. Both inputs pass through the two
aths of the model in a feed-forward manner seeking to predict
he segmentation Mq(∝) for the query slice Iq for label ∝. Dice
oss [56] calculated between Mq(∝) and Lq (∝) using Eq. (6) is:

Dice = 1 −
2
∑

x Mq(∝)Lq (∝)∑
x Mq(∝) +

∑
x Lq (∝)

(6)

where x represents the pixels of the prediction map. In order to
reduce the LDice, the batch sampler offers different instances be-
longing to diverse ∝, and the loss is calculated for that particular
8

∝ and subsequently, the weights are modified, continuous alter-
ing of the inputs at each iteration, makes the model converges.
Therefore, it could be said that the prediction turns out to be
agnostic to the selected ∝.

We train FSS-2019 to minimize the LDice loss for segmenta-
ion from annotated slices only. Simultaneously, to leverage the
nannotated CT slices data, we employ an auxiliary manifold
mbedding loss LE on the dormant feature representations h(·) of
oth labeled and unlabeled samples to diminish the discrepancy
etween similar inputs in the latent space [57]. Thus, similar-
ty among h(·) of unlabeled CT slices is specified by preceding
nowledge. The final objective function could be formulated using
agrangian multipliers, as shown in Eq. (7).

total = LDice +

∑
x

Rl · LEl (7)

here Rl represent regularization parameter for the embedding
oss El at hidden layer l. Naturally, this loss function seeks to min-
mize the distance between concealed representations of analo-
ous hl(xi) and hl(xj) of adjacent data samples and, if not, attempt
o push them away from each other. Furthermore, through exten-
ive experiments, we tried different model training parameters to
ind out the most optimal configuration for our model and got the
ighest performance using the parameter shown in Table 1.

. Experiments and results

.1. Dataset

Two annotated CT datasets are employed for model evaluation,
ublicly published by the Italian Society of Medical and Interven-
ional Radiology [58]. The first dataset (CT-1) comprises 110 axial
T slices belonging to 60 patients that are positively confirmed to
ave Covid-19. The CT slices were grayscaled, resized, and com-
iled into a NIFTI-file. The size of each slice was set to 512 × 512
ixels. An experienced radiologist annotated the CT slices using
hree-class labels, namely pleural effusion, GGO, and consolida-
ion. We eliminated two images because of their low resolution.
e split the CT-1 data into a training set of 38 CT images, a valida-

ion set of 20 images, and a test set of 50 images. Additionally, the
econd dataset (CT-2) comprised nine CT volumes consisting of
29 slices. Among them, there were 373 annotated axial CT slices
hat were positively confirmed as a COVID-19. 638 axial slices
i.e. 285 lesion-free slices and 353 infected slices) were selected
or model evaluation. The annotated CT slice was resized from
30 × 630 resolution to 512 × 512 resolution as with CT-1 data.
or semi-supervised training, a total of 1600 unannotated axial
T images were collected from the COVID-19 CT dataset [59],
omprising 20 CT volumes from distinct COVID-19 patients. Then,
he data was prepared by eliminating non-lung regions to form
n unlabeled training set. All slices were preprocessed using an
ntensity normalization procedure for all input data.

.2. Comparative studies

aseline architectures. In the experiment relevant infection re-
ion segmentation scenario, we compare our model with ro-
ust semantic segmentation models including UNet [9]1 and
-DenseUNet [11]2, U-Net++ [12]3, SegNet [13]4, FCN8s [7]5,

1 https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/.
2 https://github.com/xmengli999/H-DenseUNet.
3 https://github.com/MrGiovanni/UNetPlusPlus.
4 https://github.com/alexgkendall/caffe-segnet.
5 https://github.com/BVLC/caffe/wiki/Model-Zoo#fcn.

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://github.com/xmengli999/H-DenseUNet
https://github.com/MrGiovanni/UNetPlusPlus
https://github.com/alexgkendall/caffe-segnet
https://github.com/BVLC/caffe/wiki/Model-Zoo#fcn
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eepLabV3+ [14]6, SE-Net [18]7 Inf-Net [39] as a baseline ar-
chitecture, and compare the proposed approach against the re-
cently proposed Inf-Net for COVID-19 segmentation [39]. In the
multi-class scenario, we compare the proposed FSS-2019-nCov
against the before mentioned, including DepLabV3+ [14] with
different stride values, FCN8s [7], and Semi-Inf-Net-U-Net [9],
Semi-Inf-Net-FCN8s [39], Semi-Inf-Net, and MC [39].

4.3. Evaluation metrics

In this study, we choose three broadly adopted metrics for
performance evaluation namely Sensitivity(Sen.) = TP/(TP+FN),
pecificity (Spec.) = TN/(FP + TN) and Dice similarity coefficient
DSC).

In order to measure the overlap between the segmentation
utcomes represented with set S and the ground-truth repre-
ented with set G, the DSC is calculated as formulated in Eq. (8).

SC =
2 |S ∩ G|

|S| |G|
(8)

where |.| denote the set size, and S ∩ G denotes the intersec-
tion of both sets. The generated score always exists between
0 and 1; achieving high DSC reflects the greater segmentation
performance.

Also, following [39], we adopt three additional object detec-
tion metrics as follows.

(1) The structural similarity between a calculated map and the GT
mask is measured with Structure Measure (Sα) with balance factor
α between object-aware resemblance (So) and object region-
aware resemblance (Sr ) according to Eq. (9).

Sα = (1 − α) ∗ So
(
Sp,GT

)
+ α ∗ Sr

(
Sp,GT

)
(9)

Here, we choose α = 0.5, as recommended by the original
study [60] and some other recent studies either for COVID-19
segmentation [39], semantic segmentation [61], or object detec-
tion [62].
(2) The recently proposed Enhanced-alignment Measure (Emean

φ ) to
measure similarity (local and global) between two maps based
on Eq. (10).

Eφ =
1

w × h

w∑
x

h∑
y

φ(Sp (x, y) ,GT (x, y)) (10)

where w and h respectively represent the width and height of GT,
the (x, y) is the pixel position in GT, and φ denote the boosted
alignment matrix. The value of Eφ calculated transforming the
prediction Sp into a binary mask with a threshold value in the
range [0,255] as introduced in [63]. We provide the average of Eφ

calculated from overall thresholds.
(3) Mean Absolute Error (MAE): used to compute the error between
Sp and GT at the pixel level as formulated in Eq. (11).

MAE =
1

w × h

w∑
x

h∑
y

⏐⏐Sp (x, y) ,GT (x, y)
⏐⏐ (11)

4.4. Results and discussion

4.4.1. Whole lung infection segmentation
In Table 2, we present the obtained results of the proposed

FSS-2019-nCov on the five before-mentioned metrics. It could

6 https://github.com/tensorflow/models/tree/master/research/deeplab.
7 https://github.com/abhi4ssj/few-shot-segmentation.
9

be observed that our model performs COVID-19 infection seg-
mentation with DSC of 0.789, the sensitivity of 0.803, Specificity
of 0.986, Sα of 0.834, Eφ of 0.908, and MAE of 0.065, which
outperforms the cutting-edge studies on the first four metrics.
Also, it could be observed that the SSL based architectures (i.e. Inf-
Net [39], Semi-Inf-Net [39], and the FSS-2019-nCov) have the
highest performance on all metrics compared to the supervised
models that require a large number of samples to learn. This sup-
ports our choice for training FSS-2019-nCov in a semi-supervised
manner. In addition, the FSS-2019-nCov achieved 4%, 5%, 2%,
and 2% improvement respectively on DSC, Sens, Spec, and Sα

ver the recently proposed Semi-Inf-Net, which validates the
ffectiveness of FSS for tackling problems with low volumes of
ata. Besides, that Semi-Inf-Net still shows the lowest MAE. This
ight be explained by the negative impact of eliminating the skip
onnection in our E-D architecture, which also demonstrates the
ffectiveness of GT guidance presented in [39].
In addition, we can further confirm the effectiveness of semi-

upervised FSS-2019-nCov by providing a visual comparison of
he output of different models, as presented in Fig. 6.

.4.2. Multi-class scenario
In addition to whole lung segmentation, we seek to provide

ore informative segmentation of different classes of lung infec-
ions, namely GGO, which is represented as a hazy gray shade,
nd consolidation is represented as opacification with obscura-
ion of margins. Thus, we evaluate the proposed FSS-2019-nCov
n the context of multi-class lung infection to validate the ef-
iciency of the model in providing clinicians with fine-grained
nformation for COVID-19 diagnosis and quantification. Table 3
resents the quantitative results of the multi-class FSS-2019-
Cov on GGO class compared with state-of-the-art approaches.
or GGO lesion, the FSS-2019-nCov achieved 0.679 of DSC, 0.768
f Sens, 0.980 of Spec, 0.735 of Sα, 0.894 of Eφ , and 0.061 of
AE. It could be noted that the supervised models (i.e., FCN8
nd DeepLab V3+) with pre-trained backbones show unaccept-
ble performance owing to the data-hungry nature of super-
ised learning. Among them, a multi-class version of U-Net [9]
hows comparatively higher results on several metrics. Addition-
lly, few-shot-based SE-Net [18] has shown 3% improvements on
he DSC measure though in the absence of a pre-trained back-
one, which explains the superiority of few-shot learning limited
ata scenarios. Moreover, the semi-supervised approaches (either
emi-Inf-Net-FCN8s or Semi-Inf-Net MC) shows better perfor-
ance than supervised models or few-shot based SE-Net [18].
his explains the effect of incorporating unlabeled samples in
raining to improve model classification performance and im-
rove generalization performance. Furthermore, we also note
hat FSS-2019-nCov obtains 2.2%, 3.7%, and 1.7% improvements
n DSC, Sensitivity and Sα respectively over the best result in
ach measure. On the other hand, for consolidation lesion, the
SS-2019-nCov achieved 0.529 of DSC, 0.534 of Sens, 0.983 of
pec, 0.661 of Sα, 0.797 of Eφ , and 0.045 of MAE. It is observed
hat the model has similar behavior in segmenting this lesion,
s noted from results in Table 3 where we attain 5%, 1%, 1%,
nd 5% improvement on DSC, Sensitivity, Specificity, and Sα,
espectively. However, Semi-Inf-Net-FCN8s obtained a slight im-
rovement over our model for the MEA measure, which could
esult from the effectiveness of parallel partial decoders in pix-
lwise error between the segmentation result and GT even if
hey increase computation burden. The above discussion further
alidates that integrating TL, SSL, FSL in a single segmentation
ramework extensively improves the segmentation performance
s scarce annotation scenarios.

https://github.com/tensorflow/models/tree/master/research/deeplab
https://github.com/abhi4ssj/few-shot-segmentation
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Table 2
Model comparison for COVID-19 infection segmentation.
Methods Pre-trained architecture DSC↑ Sens↑ Spec↑ Sα ↑ Eφ ↑ MAE↓

U-Net [9] VGG16 0.459 0.568 0.881 0.639 0.651 0.196
H-DenseUNet [11] DenseNet-101 0.537 0.611 0.870 0.663 0.683 0.189
U-Net++ [12] VGG16 0.607 0.701 0.932 0.739 0.751 0.139
SegNet [13] VGG16 0.657 0.728 0.941 0.744 0.750 0.129
Inf-Net [39] Res2Net 0.705 0.746 0.966 0.798 0.851 0.086
SE-Net [18] – 0.621 0.719 0.949 0.751 0.801 0.142
Semi-Inf-Net [39] Res2Net 0.752 0.757 0.965 0.818 0.902 0.061
*FSS-2019-nCov Res2Net 0.798 0.803 0.986 0.834 0.908 0.065

↑ denote ‘higher is better’, ↓ denote ‘lower is better’.
Fig. 6. Lung infection segmentation using proposed FSS-2019-nCov. The first row represents the original CT image from the test set. The corresponding segmentation
outcome from the U-Netv [9], U-Net++ [12], Inf-Net [39], Semi-Inf-Net [39], SE-Net [18] are presented in the second, third, fourth, fifth, sixth row respectively. The
segmentation results of the proposed FSS-2019-nCov is presented in the seventh row. The corresponding ground truth label for every image is presented at the
bottom of the last row of images.
10
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odel comparison for GGO segmentation.
Methods Pre-trained architecture GGO segmentation Consolidation segmentation

DSC↑ Sens↑ Spec↑ Sα ↑ Eφ ↑ MAE↓ DSC↑ Sens↑ Spec↑ Sα ↑ Eφ ↑ MAE↓

FCN8s [7] VGG16 0.482 0.552 0.917 0.591 0.788 0.098 0.289 0.281 0.728 0.573 0.581 0.058
DeepLabV3+ (s=8) [14] ResNet101 0.402 0.501 0.871 0.553 0.682 0.121 0.157 0.173 0.744 0.511 0.556 0.065
DeepLabV3+ (s=16) [14] ResNet101 0.457 0.728 0.845 0.559 0.673 0.149 0.245 0.322 0.721 0.526 0.619 0.079
U-Net [9] VGG16 0.462 0.374 0.988 0.564 0.731 0.079 0.421 0.427 0.978 0.581 0.781 0.053
SE-Net [18] – 0.508 0.415 0.889 0.541 0.751 0.075 0.449 0.467 0.958 0.554 0.797 0.051
Semi-Inf-Net-FCN8s [39] Res2Net + VGG16 0.657 0.731 0.954 0.722 0.884 0.073 0.318 0.251 0.819 0.582 0.588 0.043
Semi-Inf-Net & MC [39] VGG16 + Res2Net 0.639 0.631 0.973 0.715 0.904 0.070 0.471 0.527 0.979 0.618 0.781 0.045
*FSS-2019-nCov Res2Net 0.679 0.768 0.980 0.739 0.894 0.061 0.529 0.534 0.983 0.661 0.797 0.045

↑ denote ‘higher is better’, ↓ denote ‘lower is better’.
able 4
he results of evaluating different comparative models on the CT-2 dataset.
Methods DSC↑ Sens↑ Spec↑ Sα ↑ Eφ ↑ MAE↓

U-Net [9] 0.337 0.682 0.841 0.523 0.649 0.221
H-DenseUNet [11] 0.419 0.635 0.964 0.547 0.561 0.167
U-Net++ [12] 0.462 0.881 0.937 0.589 0.614 0.115
SegNet [13] 0.453 0.844 0.932 0.624 0.6330 0.107
Inf-Net [39] 0.579 0.870 0.974 0.651 0.742 0.054
SE-Net [18] 0.555 0.837 0.924 0.673 0.713 0.054
Semi-Inf-Net [39] 0.597 0.865 0.977 0.723 0.792 0.037
*FSS-2019-nCov 0.632 0.892 0.975 0.764 0.824 0.031

↑ denote ‘higher is better’, ↓ denote ‘lower is better’.

.5. Generalization analysis

The generalization capability of any segmentation model is an
mportant aspect to demonstrate its effectiveness in real-world
cenarios. In view of this, to understand and analyze the general-
zation capability of the proposed FSS-2019-nCov, we propose to
valuate it against previously mentioned comparative studies on
he CT-2 data and present the corresponding results presented
n Table 4. It can be noted that the proposed FSS-2019-nCov
as a robust generalization performance overcoming all other
pproaches on all measures even though the data comprises
xial slices with no lesions (i.e., lesion-free slice). This might be
easoned by utilizing two datasets during training, i.e., CT-1 data
nd unannotated CT slice extracted from 20 CT volumes. Further,
he unannotated data comprises many lesion-free slices with no
esion to assure that FSS-2019-nCov can efficiently handle deal
ith lesion-free slices. Therefore, we can conclude that FSS-2019-
Cov is a general lesion segmentation technique that can be
pplied to a variety of diseases.

.6. Ablation experiment

.6.1. Impact of RR module
In this part, we inspect the ideal positions of RR blocks for

moothing knowledge interactions between the conditioner path
nd the segmentation path and also compare the FSS-2019-nCov
erformance when using recombination block only, recalibration
lock, and both blocks together (RR). Meanwhile, this experiment
eeks to find the position and the type of interaction blocks—here,
e fix all the network parameters and they later analyzed in sub-
equent sections. With two types of interaction blocks (i.e., SegSE,
nd recombination) and four possible positions for interaction
lock, there are twelve model variants termed as BLK-1, BLK-
.etc. In Table 5, we provide the segmentation DSC performance
n terms of whole lung scenario and multi-class scenario for
very configuration in these twelve model variants. It could be
oted that BLK-3, 6, 9, 12 with Recombination and Recalibration
RR) blocks (the ones that have ✓ under the R (SegSE), and R
olumn) yield the highest DSC score, which demonstrates the
11
Table 5
Comparison between a different variant of the model to investigate the optimal
position and kind of interaction blocks.

Position of RR Block Interaction block DSC

Enc CE Dec R (SegSE) R Infection GGO Cons

BLK-1 ✓ ✗ ✗ ✓ ✗ 0.661 0.475 0.405
BLK-2 ✓ ✗ ✗ ✗ ✓ 0.414 0.274 0.314
BLK-3 ✓ ✗ ✗ ✓ ✓ 0.698 0.513 0.426
BLK-4 ✗ ✓ ✗ ✓ ✗ 0.571 0.369 0.321
BLK-5 ✗ ✓ ✗ ✗ ✓ 0.327 0.221 0.221
BLK-6 ✗ ✓ ✗ ✓ ✓ 0.545 0.373 0.395
BLK-7 ✗ ✗ ✓ ✓ ✗ 0.623 0.441 0.234
BLK-8 ✗ ✗ ✓ ✗ ✓ 0.421 0.239 0.326
BLK-9 ✗ ✗ ✓ ✓ ✓ 0.644 0.455 0.361
BLK-10 ✓ ✓ ✓ ✓ ✗ 0.733 0.669 0.511
BLK-11 ✓ ✓ ✓ ✗ ✓ 0.77 0.632 0.514
BLK12 ✓ ✓ ✓ ✓ ✓ 0.798 0.679 0.529

R (SegSE) represent recalibration block, R represent recombination block.

efficiency of RR interaction modules in effectuating the inter-
actions between two paths of FSS-2019-nCov architecture. This
network behavior could be explained due to concurrent spatial
and channel squeezing using Conv 1 × 1 to reduce the number
of feature maps and increase their number later hence empower
their representational power to convey the relevant information
from the conditioner path to the segmentation path. Additionally,
we could observe that the BLK-12 with RR blocks between all en-
coder, CE, and decoder blocks, BLK-12 attained the maximum DSC
since it achieved a 3% improvement for infection segmentation
over the best DSC obtained by other variants that correspond to
BLK-11. In the multi-class scenario, BLK-12 attained 1% and 2%
improvements over GGO and consolidation correspondingly. This
improvement is potentially associated with the complexity and
size of each class. In other words, the size and contrast of the
GGO facilitate its segmentation in comparison to consolidation.
Also, BLk-1: BLK-9 show poor performance in comparison to
BLK-10: BLK-12. This shows that extra interactions enable better
learning. It is obviously notable that model variants with encoder
interactions (i.e., BLK-1, 2, 3) show higher performance compared
to model variants with decoder interactions (i.e., BLK-7: BLK-9).
This shows that encoder interactions are much representative and
influential than CE or decoder interactions. Nevertheless, as BLK-
12 yielded better performance than other model configurations.
This could be explained by the encoder and decoder interac-
tions generating complementary knowledge representation to the
segmentation path to enable more enhanced segmentation of
the query slices. From these discussions, it could be deduced
that applying RR blocks at Encoder, CE, decoder leads to better
performance than applying them to any single position.

4.6.2. Impact of skip connection
The connections have been regarded as a principle design

choice in most F-CNN. It enables the concatenation of encoder
output map and input feature maps of the decoder block with
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able 6
xperimental results for analyzing the impact of using sip connection in E-D
rchitecture.
Skip Connections DSC

Conditioner path Segmentation path Infection GGO Cons

✓ ✗ 0.749 0.573 0.485
✓ ✓ 0.752 0.644 0.506
✗ ✗ 0.798 0.679 0.529
✗ ✓ 0.415 0.256 0.201

Table 7
Ablation experiments on the proposed FSS-2019-nCov on CT-1 dataset.
Methods DSC↑ Sens↑ Spec↑ Sα ↑ Eφ ↑ MAE↓

Baseline w/o pretraining 0.643 0.681 0.834 0.721 0.719 0.278
Baseline w/ pre-training 0.665 0.718 0.881 0.741 0.735 0.181
Backbone + SAC (atrous) 0.701 0.737 0.929 0.769 0.815 0.166
Backbone + SAC (SS-Conv) 0.731 0.748 0.956 0.781 0.863 0.105
Backbone + MPP 0.715 0.712 0.941 0.749 0.841 0.119
*FSS-2019-nCov 0.798 0.803 0.986 0.834 0.908 0.065

the same spatial resolution. This connection helps the decoder
in capturing the contextual information and hence smooths the
flow of gradient. In light of this, we start building our model
by applying skip connections in both the conditioner path and
segmentation path, and the result show copy over effect [18]. This
means that the prediction on the query slice is almost symmetric
to the support mask despite the difference between the support
and query slice. Therefore, we conducted several experiments
to investigate the impact of using skip connection on model
performance in terms of DSC and hence on the copy over effect.
In this experiment, we fixed all network parameters used in BLK-
12 and just try different skip connection configurations. Thus, the
performance of FSS-2019-nCov with and without skip connec-
tions is presented in Table 6. It could be noted that the DSC of
whole infection segmentation decreased by 4% and also decreased
by 3% in the case of GGO and Consolidation when applying
skip connections in the two paths of the network (i.e., condi-
tioner and segmentation paths). Also, applying skip connection
on only the segmentation path obviously yields unsatisfactory re-
sults. Moreover, including the skip connections in the conditioner
path results in a 5% decrease in DSC in different segmentation
scenarios.

4.6.3. Impact of pre-training
In this experiment, we choose U-Net with a non-pre-trained

ncoder as a baseline architecture for both segmentation and
onditioner paths. Then we replace the baseline encoder with
pre-trained one to obtain enhanced performance. The archi-

ecture with a pre-trained residual encoder is called the ‘Back-
one’. The result with and without pre-training compared and it
ould be noted that using pre-trained Res2Net clearly improves
erformance as depicted in Table 7.

.6.4. Impact of SAC module
The proposed SAC block utilizes a variety of SS-Conv organized

n the form of an Inception module to extract high-level spatial
epresentation. Thus, to investigate the effectiveness of SS-Conv,
e used atrous convolution to replace the SS-Conv in the SAC
lock (denoted Backbone + SAC (atrous)). Table 7 shows that
he proposed SAC block achieves 3% DSC improvement over the
raditional atrous block (Backbone + SAC (atrous)) and reduces
he MAE with 0.061 in whole infection segmentation to achieve a
imilar improvement in other metrics. This, in turn, demonstrates
hat SS-Conv effectively enables improved feature fusion to ex-
ract high-level multi-scale contextual feature maps with high
esolution and hence improve segmentation performance.
12
Table 8
The results of evaluating the proposed FSS-2019-nCov on CT-1 using different
learning paradigms.
Methods Semi-supervised learning Supervised learning

DSC↑ 0.798 0.679
Sens↑ 0.803 0.744
Spec↑ 0.986 0.959
Sα ↑ 0.834 0.774
Eφ ↑ 0.908 0.803
MAE↓ 0.065 0.105

↑ denote ‘higher is better’, ↓ denote ‘lower is better’.

4.6.5. Impact of MPP
In an attempt to validate the usefulness of the proposed MPP

block, we experiment with our Backbone architecture with and
without MPP blocks for infection segmentation, as presented in
Table 7. It is obviously noted that the MPP block boosts the model
performance. The ‘Backbone + MPP’ achieved a 5% improvement
on DSC, and reduced the MEA with 0.057. This indicates MPP
block could effectively encode the local contextual representation
from the encoder generated maps feature maps.

4.6.6. Impact of semi-supervised training
In order to demonstrate the efficiency of semi-supervised

training of the proposed FSS-2019-nCov, we compare perfor-
mance when trained in a supervised and semi-supervised man-
ner, and we report the corresponding results in Table 8. It can
be noted that semi-supervised training shows significant perfor-
mance improvements in segmenting infection lesion (i.e. DSC of
0.119, Sensitivity of 0.059, Specificity of 0.027, Sα of 0.06, Eφ of
0.105, andMAE of 0.040. This observation provides clear evidence
regarding the effectiveness of incorporating unannotated CT data
for training FSS-2019-nCov.

5. Managerial implications

COVID-19 segmentation is the task of determining the infec-
tion area within lung CT scans. This task could be addressed as
a binary classification problem or a multi-classification problem.
In binary classification scenarios, we aim to distinguish between
infected and uninfected areas. In a multi-class scenario, we aim
to distinguish between different types of infection. The key chal-
lenge of this study is the limited amount of labeled CT scans. We
propose a novel architecture that integrates pre-trained encoder,
FSS, and SSL to overcome this limitation. The Res2Net50-based
encoder enables improved network convergence. The FSS archi-
tecture enables learning from limited support samples and better
generalization of query samples. We introduce adaptive recom-
bination and recalibration module between the correspondence
positions in the conditioner and segmentation path to facilitate
knowledge representation exchange. This is established by our
experiments since it can be safely claimed that RR significantly
finetune knowledge interaction and hence improve the perfor-
mance. Meanwhile, the CE module enables capturing contextual
information of infection at different scales, facilitating the detec-
tion of different sizes of infections. Comprehensive experiments
confirmed the effectiveness of each block. As a direct implication,
the proposed FSS-2019-nCov in study work can be utilized to
develop an automated lung infection segmentation system with
scarcely annotated data.

6. Shortcomings and possible remedies

Extra deep learning improvement will be addressed by fu-
ture work in terms of performance improvement and computa-
tional complexity reduction. We aim to investigate three crucial
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hallenges that we regard as specifically related to the medical
mage analysis community. (1) The training configuration of FSS-
019-nCov denotes a challenging task since it still necessitates
comprehensive parameter improving to attain the highest re-
ults. An automatized tuning tool can be used for this. (2) The
redictions usually lack laborious uncertainty quantification. We
im to develop Bayesian variants or fuzzified variants of pro-
osed FSS-2019-nCov that could enable estimating uncertainty in
rediction. (3) Although extensive analysis has provided us with
great understanding of the behavior of FSL and FSS, account-
bility and interpretability are considered as a downside of our
SS-2019-nCov and an attention technique could mitigate this.

. Conclusion and future work

In this paper, we proposed a novel semi-supervised few-shot
egmentation model for COVID-19 segmentation from axial CT
cans using dual-path architecture. The two paths had a sym-
etric structure and comprise an encoder–decoder architecture
ith a smoothed context fusion module. The encoder architec-
ure was based on pre-trained ResNet34 architecture to facilitate
he learning process. We proposed to merge recombination and
ecalibration to transfer learned knowledge from the support set
o be used for query slices segmentation. The model trained in
emi-supervised strategy by incorporating unlabeled CT slices
nd labeling one during training, improving generalization per-
ormance. We investigated the proposed FSS-2019-nCov and nu-
erous baselines on publicly available COVID-19 CT scans. The

esults showed that our model could outperform all approaches
o multiple evaluation metrics. We also introduced comprehen-
ive experiments for architectural selection concerning RR blocks,
kip connections, and the proposed building blocks. However, the
egmentation performance of the proposed FSS-2019-nCov was
nable to achieve a very precise segmentation due to limited
upervision, which could be handled with a generative learn-
ng schema. An additional limitation was a lack of volumetric
ata representation, which could be alleviated by expanding our
odel to 3D CT volumes of COVID-19. Consequently, we aim to

nvestigate the segmentation of COVID-19 using a large amount
f volumetric 3D data in the near future.

RediT authorship contribution statement

Mohamed Abdel-Basset: Investigation, Methodology,
esources, Visualization, Software, Writing - original draft, Writ-
ng - review & editing. Victor Chang: Conceptualization, Formal
nalysis, Project administration, Validation, Writing - review &
diting. Hossam Hawash: Investigation, Methodology, Resources,

Visualization, Software, Writing - original draft, Writing - review
& editing. Ripon K. Chakrabortty: Conceptualization, Method-
logy, Writing -review & editing. Michael Ryan: Investigation,

Validation, Supervision, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Funding

This work is partly supported by VC Research, UK (VCR
0000088).
13
Ethical approval

This article does not contain any studies with human partici-
pants or animals performed by any of the authors.

References

[1] C.A. Devaux, J.-M. Rolain, P. Colson, D. Raoult, New insights on the antiviral
effects of chloroquine against coronavirus: what to expect for COVID-19?,
Int. J. Antimicrob. Ag. (2020) 105938.

[2] F. Song, N. Shi, F. Shan, Z. Zhang, J. Shen, H. Lu, et al., Emerging 2019
novel coronavirus (2019-nCoV) pneumonia, Radiology 295 (2020) (2019)
210–217.

[3] F. Shan+, Y. Gao+, J. Wang, W. Shi, N. Shi, M. Han, et al., Lung infection
quantification of covid-19 in ct images with deep learning, 2020, arXiv
preprint arXiv:2003.04655.

[4] Y. Fang, H. Zhang, J. Xie, M. Lin, L. Ying, P. Pang, et al., Sensitivity of chest
CT for COVID-19: comparison to RT-PCR, Radiology (2020) 200432.

[5] A. Bernheim, X. Mei, M. Huang, Y. Yang, Z.A. Fayad, N. Zhang, et al., Chest
CT findings in coronavirus disease-19 (COVID-19): relationship to duration
of infection, Radiology (2020) 200463.

[6] D. Caruso, M. Zerunian, M. Polici, F. Pucciarelli, T. Polidori, C. Rucci, et al.,
Chest CT features of COVID-19 in rome, Italy, Radiology (2020) 201237.

[7] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic
segmentation, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 3431–3440.

[8] O. Oktay, J. Schlemper, L.L. Folgoc, M. Lee, M. Heinrich, K. Misawa, et
al., Attention u-net: Learning where to look for the pancreas, 2018, arXiv
preprint arXiv:1804.03999.

[9] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for
biomedical image segmentation, in: International Conference on Medical
Image Computing and Computer-Assisted Intervention, 2015, pp. 234–241.

[10] J. Schlemper, O. Oktay, M. Schaap, M. Heinrich, B. Kainz, B. Glocker, et al.,
Attention gated networks: Learning to leverage salient regions in medical
images, Med. Image Anal. 53 (2019) 197–207.

[11] X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, P.-A. Heng, H-DenseUNet: hy-
brid densely connected UNet for liver and tumor segmentation from CT
volumes, IEEE Trans. Med. Imaging 37 (2018) 2663–2674.

[12] Z. Zhou, M.M.R. Siddiquee, N. Tajbakhsh, J. Liang, UNet++: Redesigning skip
connections to exploit multi-scale features in image segmentation, IEEE
Trans. Med. Imaging (2019).

[13] V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: A deep convolutional
encoder–decoder architecture for image segmentation, IEEE Trans. Pattern
Anal. Mach. Intell. 39 (2017) 2481–2495.

[14] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder–decoder
with atrous separable convolution for semantic image segmentation, in:
Proceedings of the European Conference on Computer Vision (ECCV), 2018,
pp. 801–818.

[15] J. Guan, Z. Lu, T. Xiang, A. Li, A. Zhao, J.-R. Wen, Zero and few shot
learning with semantic feature synthesis and competitive learning, IEEE
Trans. Pattern Anal. Mach. Intell. (2020).

[16] A. Shaban, S. Bansal, Z. Liu, I. Essa, B. Boots, One-shot learning for semantic
segmentation, 2017, arXiv preprint arXiv:1709.03410.

[17] K. Rakelly, E. Shelhamer, T. Darrell, A.A. Efros, S. Levine, Few-shot seg-
mentation propagation with guided networks, 2018, arXiv preprint arXiv:
1806.07373.

[18] A.G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, C. Wachinger, ‘Squeeze & excite’
guided few-shot segmentation of volumetric images, Med. Image Anal. 59
(2020) 101587.

[19] S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé, D. Cremers, L.
Van Gool, One-shot video object segmentation, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.
221–230.

[20] N. Dong, E. Xing, Few-shot semantic segmentation with prototype learning,
in: BMVC, 2018.

[21] K. Rakelly, E. Shelhamer, T. Darrell, A.A. Efros, S. Levine, Few-shot seg-
mentation propagation with guided networks, 2018, arXiv preprint arXiv:
1806.07373.

[22] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, Deeplab:
Semantic image segmentation with deep convolutional nets, atrous con-
volution, and fully connected crfs, IEEE Trans. Pattern Anal. Mach. Intell.
40 (2017) 834–848.

[23] Z. Zhou, Z. He, Y. Jia, AFPNet: A 3D fully convolutional neural network with
atrous-convolution feature pyramid for brain tumor segmentation via MRI
images, Neurocomputing (2020).

[24] X. Lian, Y. Pang, J. Han, J. Pan, Cascaded hierarchical atrous spatial pyramid
pooling module for semantic segmentation, Pattern Recognit. 110 (2020)
107622.

http://refhub.elsevier.com/S0950-7051(20)30776-0/sb1
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb1
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb1
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb1
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb1
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb2
http://arxiv.org/abs/2003.04655
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb4
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb4
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb4
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb6
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb6
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb6
http://arxiv.org/abs/1804.03999
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb10
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb10
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb10
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb10
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb10
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb11
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb11
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb11
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb11
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb11
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb12
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb12
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb12
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb12
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb12
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb13
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb13
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb13
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb13
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb13
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb15
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb15
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb15
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb15
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb15
http://arxiv.org/abs/1709.03410
http://arxiv.org/abs/1806.07373
http://arxiv.org/abs/1806.07373
http://arxiv.org/abs/1806.07373
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb18
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb18
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb18
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb18
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb18
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb20
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb20
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb20
http://arxiv.org/abs/1806.07373
http://arxiv.org/abs/1806.07373
http://arxiv.org/abs/1806.07373
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb22
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb22
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb22
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb22
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb22
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb22
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb22
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb23
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb23
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb23
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb23
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb23
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb24
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb24
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb24
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb24
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb24


M. Abdel-Basset, V. Chang, H. Hawash et al. Knowledge-Based Systems 212 (2021) 106647
[25] Z. Wang, S. Ji, Smoothed dilated convolutions for improved dense
prediction, 2018, arXiv preprint arXiv:1808.08931.

[26] Z. Cao, T. Zhang, W. Diao, Y. Zhang, X. Lyu, K. Fu, et al., Meta-seg: A
generalized meta-learning framework for multi-class few-shot semantic
segmentation, IEEE Access 7 (2019) 166109-166121.

[27] C. Szegedy, S. Ioffe, V. Vanhoucke, A.A. Alemi, Inception-v4, inception-
resnet and the impact of residual connections on learning, in: AAAI, Vol.
4, 2017, p. 12.

[28] H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, 2881–2890.

[29] Y. Tong, J.K. Udupa, D. Odhner, C. Wu, S.J. Schuster, D.A. Torigian, Disease
quantification on PET/CT images without explicit object delineation, Med.
Image Anal. 51 (2019) 169–183.

[30] A. Kumar, M. Fulham, D. Feng, J. Kim, Co-learning feature fusion maps
from PET-CT images of lung cancer, IEEE Trans. Med. Imaging 39 (2019)
204–217.

[31] O. Ozdemir, R.L. Russell, A.A. Berlin, A 3D probabilistic deep learning
system for detection and diagnosis of lung cancer using low-dose CT scans,
IEEE Trans. Med. Imaging 39 (5) (2020) 1419–1429, http://dx.doi.org/10.
1109/TMI.2019.2947595.

[32] S. Gerard, T. Patton, G. Christensen, J. Bayouth, J. Reinhardt, Fissurenet: A
deep learning approach for pulmonary fissure detection in CT images, IEEE
Trans. Med. Imaging 38 (2019) 156–166.

[33] J. Jiang, Y. Hu, C. Liu, D. Halpenny, M. Hellmann, J. Deasy, et al., Mul-
tiple resolution residually connected feature streams for automatic lung
tumor segmentation from CT images, IEEE Trans. Med. Imaging 38 (2019)
134–144.

[34] V. Cheplygina, M. de Bruijne, J.P. Pluim, Not-so-supervised: a survey of
semi-supervised, multi-instance, and transfer learning in medical image
analysis, Med. Image Anal. 54 (2019) 280–296.

[35] A.K. Mondal, J. Dolz, C. Desrosiers, Few-shot 3d multi-modal medical image
segmentation using generative adversarial learning, 2018, arXiv preprint
arXiv:1810.12241.

[36] A. Zhao, G. Balakrishnan, F. Durand, J.V. Guttag, A.V. Dalca, Data augmen-
tation using learned transforms for one-shot medical image segmentation,
2019, arXiv preprint arXiv:1902.09383.

[37] N. Kumar, et al., Hyperspectral tissue image segmentation using semi-
supervised NMF and hierarchical clustering, IEEE Trans. Med. Imaging 38
(5) (2019) 1304–1313, http://dx.doi.org/10.1109/TMI.2018.2883301.

[38] S.Y. Shin, S. Lee, I.D. Yun, S.M. Kim, K.M. Lee, Joint weakly and semi-
supervised deep learning for localization and classification of masses in
breast ultrasound images, IEEE Trans. Med. Imaging 38 (3) (2019) 762–774,
http://dx.doi.org/10.1109/TMI.2018.2872031.

[39] D.-P. Fan, T. Zhou, G.-P. Ji, Y. Zhou, G. Chen, H. Fu, et al., Inf-net: Automatic
COVID-19 lung infection segmentation from CT scans, 2020, arXiv preprint
arXiv:2004.14133.

[40] J. Liang, R. He, Z. Sun, T. Tan, Exploring uncertainty in pseudo-label guided
unsupervised domain adaptation, Pattern Recognit. 96 (2019) 106996.

[41] F. Shi, J. Wang, J. Shi, Z. Wu, Q. Wang, Z. Tang, et al., Review of artificial
intelligence techniques in imaging data acquisition, segmentation and
diagnosis for covid-19, IEEE Rev. Biomed. Eng. (2020).

[42] V. Rajinikanth, N. Dey, A.N.J. Raj, A.E. Hassanien, K. Santosh, N. Raja,
Harmony-search and otsu based system for coronavirus disease (COVID-
19) detection using lung CT scan images, 2020, arXiv preprint arXiv:
2004.03431.

[43] S. Wang, B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, et al., A deep learning
algorithm using CT images to screen for corona virus disease (COVID-19),
MedRxiv (2020).
14
[44] J. Chen, L. Wu, J. Zhang, L. Zhang, D. Gong, Y. Zhao, et al., Deep
learning-based model for detecting 2019 novel coronavirus pneumonia
on high-resolution computed tomography: a prospective study, medRxiv
(2020).

[45] A. Narin, C. Kaya, Z. Pamuk, Automatic detection of coronavirus disease
(COVID-19) using X-ray images and deep convolutional neural networks,
2020, arXiv preprint arXiv:2003.10849.

[46] Y. Song, S. Zheng, L. Li, X. Zhang, X. Zhang, Z. Huang, et al., Deep
learning enables accurate diagnosis of novel coronavirus (COVID-19) with
CT images, medRxiv (2020).

[47] W. Shi, X. Peng, T. Liu, Z. Cheng, H. Lu, S. Yang, et al., Deep learning-based
quantitative computed tomography model in predicting the severity of
COVID-19: A retrospective study in 196 patients, 2020.

[48] F. Shi, L. Xia, F. Shan, D. Wu, Y. Wei, H. Yuan, et al., Large-scale screening of
covid-19 from community acquired pneumonia using infection size-aware
classification, 2020, arXiv preprint arXiv:2003.09860.

[49] S. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, P.H. Torr, Res2net:
A new multi-scale backbone architecture, IEEE Trans. Pattern Anal. Mach.
Intell. (2019).

[50] Z. Gu, J. Cheng, H. Fu, K. Zhou, H. Hao, Y. Zhao, et al., CE-net: context
encoder network for 2D medical image segmentation, IEEE Trans. Med.
Imaging 38 (2019) 2281–2292.

[51] S. Yang, G. Lin, Q. Jiang, W. Lin, A dilated inception network for visual
saliency prediction, IEEE Trans. Multimed. (2019).

[52] A.-M. Rickmann, A.G. Roy, I. Sarasua, C. Wachinger, Recalibrating 3D
convnets with project & excite, IEEE Trans. Med. Imaging (2020).

[53] S. Pereira, A. Pinto, J. Amorim, A. Ribeiro, V. Alves, C.A. Silva, Adaptive fea-
ture recombination and recalibration for semantic segmentation with fully
convolutional networks, IEEE Trans. Med. Imaging 38 (2019) 2914–2925.

[54] S. Mittal, M. Tatarchenko, Ö. Çiçek, T. Brox, Parting with illusions about
deep active learning, 2019, arXiv preprint arXiv:1912.05361.

[55] X. Wang, et al., A weakly-supervised framework for COVID-19 classification
and lesion localization from chest CT, IEEE Trans. Med. Imaging 39 (8)
(2020) 2615–2625, http://dx.doi.org/10.1109/TMI.2020.2995965.

[56] F. Milletari, N. Navab, S.-A. Ahmadi, V-net: Fully convolutional neural
networks for volumetric medical image segmentation, in: 2016 Fourth
International Conference on 3D Vision (3DV), 2016, pp. 565–571.

[57] C. Baur, S. Albarqouni, N. Navab, Auxiliary manifold embedding for fully
convolutional networks, 2017, arXiv preprint arXiv:1703.06000.

[58] COVID-19 CT segmentation dataset, https://medicalsegmentation.com/
covid19/, (Accessed: 2020-04-11).

[59] J. Ma, Y. Wang, X. An, C. Ge, Z. Yu, J. Chen, et al., Towards efficient COVID-
19 CT annotation: A benchmark for lung and infection segmentation, 2020,
arXiv preprint arXiv:2004.12537.

[60] D.-P. Fan, M.-M. Cheng, Y. Liu, T. Li, A. Borji, Structure-measure: A new
way to evaluate foreground maps, in: ICCV, 2017, pp. 4548–4557.

[61] D.-P. Fan, Z. Lin, Z. Zhang, M. Zhu, M.-M. Cheng, Rethinking RGB-d salient
object detection: Models, data sets, and large-scale benchmarks, IEEE
Trans. Neural Netw. Learn. Syst. (2020).

[62] X. Qin, Z. Zhang, C. Huang, M. Dehghan, O.R. Zaiane, M. Jagersand, U2-Net:
Going deeper with nested U-structure for salient object detection, Pattern
Recognit. 106 (2020) 107404.

[63] D.-P. Fan, W. Wang, M.-M. Cheng, J. Shen, Shifting more attention to video
salient object detection, in: 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 8546–8556.

http://arxiv.org/abs/1808.08931
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb26
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb26
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb26
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb26
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb26
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb27
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb27
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb27
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb27
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb27
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb29
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb29
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb29
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb29
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb29
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb30
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb30
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb30
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb30
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb30
http://dx.doi.org/10.1109/TMI.2019.2947595
http://dx.doi.org/10.1109/TMI.2019.2947595
http://dx.doi.org/10.1109/TMI.2019.2947595
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb32
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb32
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb32
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb32
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb32
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb33
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb33
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb33
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb33
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb33
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb33
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb33
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb34
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb34
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb34
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb34
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb34
http://arxiv.org/abs/1810.12241
http://arxiv.org/abs/1902.09383
http://dx.doi.org/10.1109/TMI.2018.2883301
http://dx.doi.org/10.1109/TMI.2018.2872031
http://arxiv.org/abs/2004.14133
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb40
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb40
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb40
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb41
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb41
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb41
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb41
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb41
http://arxiv.org/abs/2004.03431
http://arxiv.org/abs/2004.03431
http://arxiv.org/abs/2004.03431
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb43
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb43
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb43
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb43
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb43
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb44
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb44
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb44
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb44
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb44
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb44
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb44
http://arxiv.org/abs/2003.10849
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb46
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb46
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb46
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb46
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb46
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb47
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb47
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb47
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb47
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb47
http://arxiv.org/abs/2003.09860
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb49
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb49
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb49
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb49
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb49
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb50
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb50
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb50
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb50
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb50
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb51
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb51
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb51
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb52
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb52
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb52
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb53
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb53
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb53
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb53
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb53
http://arxiv.org/abs/1912.05361
http://dx.doi.org/10.1109/TMI.2020.2995965
http://arxiv.org/abs/1703.06000
https://medicalsegmentation.com/covid19/
https://medicalsegmentation.com/covid19/
https://medicalsegmentation.com/covid19/
http://arxiv.org/abs/2004.12537
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb60
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb60
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb60
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb61
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb61
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb61
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb61
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb61
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb62
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb62
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb62
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb62
http://refhub.elsevier.com/S0950-7051(20)30776-0/sb62

