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Abstract

Secondary sexual characteristics convey information about reproductive potential. In the same way that facial symmetry
and masculinity, and shoulder-to-hip ratio convey information about reproductive/genetic quality in males, waist-to-hip-
ratio (WHR) is a phenotypic cue to fertility, fecundity, neurodevelopmental resources in offspring, and overall health, and is
indicative of ‘‘good genes’’ in women. Here, using fMRI, we found that males show activation in brain reward centers in
response to naked female bodies when surgically altered to express an optimal (,0.7) WHR with redistributed body fat, but
relatively unaffected body mass index (BMI). Relative to presurgical bodies, brain activation to postsurgical bodies was
observed in bilateral orbital frontal cortex. While changes in BMI only revealed activation in visual brain substrates, changes
in WHR revealed activation in the anterior cingulate cortex, an area associated with reward processing and decision-making.
When regressing ratings of attractiveness on brain activation, we observed activation in forebrain substrates, notably the
nucleus accumbens, a forebrain nucleus highly involved in reward processes. These findings suggest that an hourglass
figure (i.e., an optimal WHR) activates brain centers that drive appetitive sociality/attention toward females that represent
the highest-quality reproductive partners. This is the first description of a neural correlate implicating WHR as a putative
honest biological signal of female reproductive viability and its effects on men’s neurological processing.
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Introduction

Variations in men’s facial (e.g., symmetry, masculinity) and

body (e.g., shoulder-to-hip ratio) morphology are related to

women’s ratings of attractiveness. Specifically, women tend to

rate more symmetrical and masculine faces, and higher SHR[1] as

attractive during fertile phases of their menstrual cycle and for

short-term mating partners[2,3,4,5,6,7,8]. Several recent find-

ings[9,10,11,12] demonstrate that faces that are rated as attractive

activate neural reward substrates in females, and that this neural

activation is partly modulated by hormonal status of women[11].

These findings support the hypothesis that men’s facial and body

morphology serves as an honest biosignal to genetic fitness.

Women have a larger proportion of fat stores in comparison to

non-human female primates and men[13]. Prior to puberty, a

sexual dimorphism in fat distribution is not apparent, however, in

post-menarche women estrogen inhibits storage of fat around

abdominal areas and fat is stored in the gluteofemoral (thighs and

buttock) region[14]. Women have a lower waist-to-hip ratio

(WHR) than men and men’s preference for lower WHR, or hour-

glass figures, appears to be cross-cultural[15,16]c.f.[17,18] and

adaptive because WHR is positively correlated with fecundity,

levels of the reproductive hormones estradiol and progester-

one[19], higher likelihood of conception[20], and availability of

neurodevelopmental resources for offspring[21], but negatively

correlated with lower likelihood of illnesses such as heart disease

and various cancers[15], and lower incidence of depression[22].

Differences in WHR can also be used to index pregnancy and the

capacity for unencumbered childbirth[1]. Consequently, it’s been

hypothesized that distribution of body fat represents a secondary

sexual characteristic that, in the same way variation in men’s facial

and body morphology does, can influence ratings of attraction and

fecundity (see also[23] for arguments regarding female BMI).

Methods

Participants
Here 14 men (Mage = 25.21, S.D. = 6.30) were scanned using

fMRI while making attractiveness ratings to randomly and

individually presented pictures (one from the rear and one from

an oblique rear position for each woman) of seven naked female

bodies prior to and after recovery from an elective cosmetic

surgical procedure to reconfigure and optimize WHR[14]. All

participants provided written informed consent and the study was

approved by the University of Liverpool School of Biological

Sciences committee on research ethics.

Stimuli
Stimuli were a sample of seven images taken from those used in

another study [14]. Images were presented in both the rear and

oblique rear position (see [14]). Images were presented 15 times for

1 second with a variable interstimulus (2–15 s) interval to
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maximize jittering using Neurobehavioral Systems Presentation.

Each participant saw each of the 14 different images in random

order. Participants were asked to respond to the attractiveness of

the images by using a 5 button fMRI-comaptible response pad

(MR technologies). Order of button anchor (most attractive/least

attractive) was randomized across subjects.

fMRI Procedures
Data were collected using a Siemens Trio 3T scanner using

gradient-echo T2*-weighted echo-planar images (EPI) to measure

blood-oxygen-level-dependent (BOLD) contrasts. For each partic-

ipant approximately 225 volumes were collected with an

interleaved acquisition, a slice thickness of 2 mm, at a TR of

2.75 s, TE of 30 ms, and a resolution of 3.563.5 mm for each

participant. Slices were tilted to 30 degrees from horizontal to

maximize image quality in areas near susceptibility field

gradients[24]. All participants also underwent high-resolution

structural scanning with a standard MP-RAGE sequence (176

1 mm voxel saggital slices, TR = 2040 ms, TE = 5.57 ms,

FoV = 256, flip angle = 8u). While being scanned participants

were asked to make explicit ratings of attractiveness to naked

female body images [14] presented for 1 second (ISI randomiza-

tion optimized for jitter 2–15 seconds). Ratings were made on a 5-

point scale from very unattractive to very attractive (counterbal-

anced for which finger anchored each end of the attractiveness

scale).

fMRI data were analyzed using general linear modeling and

mixed effects analysis implemented in FEAT-FSL[25]. We

hypothesized that if WHR represents a cue to genetic quality

then, similar to symmetry and masculinity in male faces, bodies

that represent optimal WHR would activate neural reward

substrates.

Results

In order to determine whether the WHR surgical procedure

had an effect on brain activation we first computed a contrast

between pre-surgical and post-surgical bodies. Relative to viewing

pre-surgical bodies, viewing post-surgical bodies revealed activa-

tion in right orbital frontal cortex (OFC) (Z = 4.11, p,.01 cluster

corrected), lateral occipital cortex (Z = 3.82, p,.01 cluster corrected),

and the anterior cingulate gyrus (Z = 3.71, p,.01) (Fig. 1a–b).

Because the OFC has been associated with reward evaluation we

created a bilateral OFC region of interest (ROI) mask to

investigate the extent of activation in this area specifically. This

analysis revealed that post-surgical images activated the left

(Z = 3.59, p,.01) and the right (Z = 3.77, p,.01) OFC, but pre-

surgical images did not (Fig. 2). An ROI of activation in bilateral

amygdala, another area often associated with reward process-

ing[26,27,28,29] and recently associated with implicit social

judgment making[30,31] revealed no voxels survived statistical

threshold for pre- or post-surgical bodies. This finding demon-

strates that changes associated with cosmetic surgery (aimed at

Figure 1. Activation associated with pre-surgical minus post-surgical contrast. (a) Statistical parametric map for contrast post-surgical
versus pre-surgical bodies showing activation in anterior cingulate cortex and (c) right orbital frontal cortex at cluster corrected threshold of 3.0,
p,.01.
doi:10.1371/journal.pone.0009042.g001

WHR Activates Reward Centers
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Figure 3. Activation associated with change in BMI and WHR, respectively. (a) Statistical parametric map showing activation in visual areas
to changes in BMI. (b) Activation to changes in WHR in the anterior paracingulate gyrus. (parametric analysis, p,.001 uncorrected).
doi:10.1371/journal.pone.0009042.g003

Figure 2. Statistical parametric map showing activation in bilateral OFC region of interest to post-surgical bodies.
doi:10.1371/journal.pone.0009042.g002

WHR Activates Reward Centers
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optimizing female WHR) have specific effects on men’s OFC, an

area of the brain that is associated with evaluations of rewards.

We then regressed each woman’s change in BMI and WHR

between pre-surgery and post-surgery onto the participants’ brain

activation to determine how changes in BMI and WHR

differentially affected the brains of men. While changes in BMI

only revealed activation in visual brain substrates (right lingual

gyrus Z = 2.72, p,.001 uncorrected; left fusiform gyrus Z = 2.25,

p,.001 uncorrected; and right lateral occipital cortex Z = 2.21,

p,.001 uncorrected) (Fig. 3a), changes in WHR revealed activation

in the right para-anterior cingulate gyrus (Z = 2.58, p,.001

uncorrected) (Fig. 3b). This finding suggests that changes in BMI

activate low-level visual areas that are tuned to noticing variations

in body configuration, but not involved in the aesthetic evaluation

of the body. On the other hand, changes in WHR activated the

anterior paracingulate gyrus, which has been associated with

reward processing[26,29], social evaluation and decision-mak-

ing[32,33], and responses under uncertainty and adaptive personal

significance[34].

Lastly, we regressed each participant’s idiosyncratic ratings of

attractiveness on their brain activation to post- minus pre-surgical

bodies to investigate how explicit ratings of body attractiveness

predict brain activation. This revealed activation in various

forebrain structures including the left (Z = 3.40, p,.001 uncorrected)

and right (Z = 4.30, p,.001 uncorrected) OFC, left putamen

(Z = 3.70, p,.001 uncorrected), left nucleus accumbens (Z = 4.22,

p,.001 uncorrected), left (Z = 4.93, p,.001 uncorrected), right

(Z = 3.90, p,.001 uncorrected) caudate, and right thalamus

(Z = 3.47, p,.001 uncorrected) (Fig. 4). This activation pattern,

particularly activation of the nucleus accumbens, suggests that

attractiveness ratings were associated with activation in neural

reward centers[9,10,26,27,28,35,36,37,38,39,40] that have also

been associated with drug/alcohol-induced rewardc.f.[41,42,43].

Discussion

Our observed activation patterns in the brain suggest that

female body configuration represents a salient stimulus to men and

that optimal female body configurations activate areas of men’s

brains that are associated with reward processing and appetitive

behaviors. This activation may represent the proximate neural

mechanism of attraction to females that express curvaceous body

types and also further account for cross-cultural findings showing

that optimal WHR (,.7) as being consistently rated as attractive.

Lastly, this finding may extend our understanding of some men’s

proclivity to develop a preoccupation with stimuli depicting

optimally designed women (e.g., pornography)[44,45]. Interest-

ingly, our findings did not demonstrate that BMI had a large effect

on brain activation except in areas associated with simple visual

evaluations of shape and size. This does not downplay the

importance of BMI in evaluations of female attractiveness, but

may suggest that BMI’s role in these evaluations is less the product

of evolved psychological mechanisms and more the part of

culturally driven, or societal based norms and perceptions.
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