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Abstract 

Multifunctional magnetic nanoparticles and derivative nanocomposites have aroused great concern for 
multimode imaging and cancer synergistic therapies in recent years. Among the rest, functional magnetic 
iron oxide nanoparticles (Fe3O4 NPs) have shown great potential as an advanced platform because of 
their inherent magnetic resonance imaging (MRI), biocatalytic activity (nanozyme), magnetic 
hyperthermia treatment (MHT), photo-responsive therapy and drug delivery for chemotherapy and gene 
therapy. Magnetic Fe3O4 NPs can be synthesized through several methods and easily surface modified 
with biocompatible materials or active targeting moieties. The MRI capacity could be appropriately 
modulated to induce response between T1 and T2 modes by controlling the size distribution of Fe3O4 NPs. 
Besides, small-size nanoparticles are also desired due to the enhanced permeation and retention (EPR) 
effect, thus the imaging and therapeutic efficiency of Fe3O4 NP-based platforms can be further improved. 
Here, we firstly retrospect the typical synthesis and surface modification methods of magnetic Fe3O4 NPs. 
Then, the latest biomedical application including responsive MRI, multimodal imaging, nanozyme, MHT, 
photo-responsive therapy and drug delivery, the mechanism of corresponding treatments and 
cooperation therapeutics of multifunctional Fe3O4 NPs are also be explained. Finally, we also outline a 
brief discussion and perspective on the possibility of further clinical translations of these multifunctional 
nanomaterials. This review would provide a comprehensive reference for readers to understand the 
multifunctional Fe3O4 NPs in cancer diagnosis and treatment. 

Key words: magnetic iron oxide nanoparticles, multifunctional nanoplatform, multimodal imaging, drug 
delivery, cancer diagnosis and treatment 

Introduction 
Cancer is a class of diseases marked by the 

malignant proliferation of tumor cells. Despite of the 
huge advancements achieved during the past 
decades, cancer still a serious public health issue, 
which leading the main deaths around the world 
every year [1]. With the development of 
nanotechnology, multifunctional nanoparticle-based 
systems have been emerged as a new approach for 
efficient cancer diagnosis and treatment due to their 
inherent advantages in overcoming the deficiencies 
compared to the traditional cancer diagnostic and 

therapeutic techniques, such as low efficacy, drug 
resistance or other side effects [2-5]. Currently, 
various multifunctional nanoparticle-based systems 
integrating nanotechnology and molecular biology 
together have been developed as powerful tools for 
cancer early-stage diagnosis, real-time imaging and 
precise therapy [6-10]. The integration of single 
functional component within a multifunctional 
therapeutic system has been demonstrated as one 
effective treatment approach for fighting the cancer 
[11-13]. The ideal nanoparticle-based diagnosis and 
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treatment systems should not only contain the unique 
physical, chemical and medical properties of 
nanoparticles, but also be smart carriers to effectively 
deliver anticancer agents, thus realizing multi-modal 
imaging and combined therapeutic effects [14-17]. 
Moreover, the diverse nanostructures and surface 
modification of nanomaterials should endow 
themselves with the tumor-targeting ability by EPR 
effect or other interactions affiliated to the features of 
tumor tissues [18-21]. 

Magnetic iron oxide nanoparticles (Fe3O4 NPs) 
are one representative candidate of multifunctional 
nanomaterials with increasing utilization in many 
biomedical fields, including magnetic resonance 
imaging (MRI), biological catalysis, magnetic 
hyperthermia, magnetic targeting, magnetic 
separation, photo-responsive therapy and 
drug-delivery, and currently have been widely used 
in tumor diagnosis and treatment [22-28]. Meanwhile, 
according to the specific treatment demand and 
characteristics of the tumor microenvironment, 
decoration of the Fe3O4 NPs with different 
functionalization factors can form the multifunctional 
iron oxide nanoparticles to achieve better therapeutic 
effects [29-31]. Compared to other imaging modalities 
in clinic, MRI exhibits high spatial resolution with 
rapid in vivo image acquisition [32, 33]. To improve its 
sensitivity, MRI contrast agents are usually used, 
which can be divided into two types, namely T1 and 
T2 agents depending on their unique effects to alter 
the longitudinal or transverse relaxation time of water 
protons [34-36]. Compared to the widely used 
T1-weighted MRI agents of gadolinium (Gd)-based 
contrast agents with shortcoming of unpredictable 
renal toxicity and blood circulation time, Fe3O4 NPs 
are contrast agents that can be used for either T1 or 
T2-weighted imaging with better biosecurity [13, 
37-39]. In particular, Fe3O4 NPs is a typical T2 contrast 
agent, when the size of Fe3O4 less than 5 nm, the 
decreased magnetic moment will strongly suppressed 
T2 effect, thus they can also be used for T1-weighted 
MRI imaging, which provides a possibility to prepare 
responsive T2-T1 switching MRI contrast agents [40, 
41]. Due to the excellent thermal effect under the 
oscillating magnetic field, magnetic Fe3O4 NPs are 
widely used in the field of magnetic hyperthermia 
treatment of tumors [42]. Besides, Fe3O4 NPs also 
show catalytic activity analogous peroxidase and 
considered as mimic enzyme for cancer therapy 
through the well-known Fenton reactions, which 
could catalyst endogenous hydrogen peroxide (H2O2) 
into the hydroxyl radical (•OH) with high cytotoxicity 
and cause the death of tumor cells [43, 44]. This newly 
defined chemodynamic therapy (CDT) based on the 
Fenton reaction is a rapidly developing research topic 

in cancer treatment these years and have endowed 
magnetic Fe3O4 NPs with a brand-new life [45].  

The modification of functional components onto 
Fe3O4 NPs can also bring photo-responsive therapy, 
namely photothermal therapy or photodynamic 
therapy, and makes Fe3O4 NPs functionalize as 
advanced nanoplatforms for oncotherapy [46]. For 
example, the modification of magnetic Fe3O4 NPs 
with the classic photothermal treatment agent of Au 
NPs can bring additional photothermal therapeutic 
capability besides to the MRI and magnetic targeting 
functionality, thus improving the accuracy of 
diagnosis and treatment of tumor using Fe3O4 NPs 
[47]. Similar, Fe3O4 NPs also have other advantages, 
such as prolonged blood circulation, fast clearance, 
low side-effects, excellent imaging and therapeutic 
efficiency. Therefore, several types of magnetic 
Fe3O4-based NPs systems have been approved to 
translate from experimental stages to clinical 
applications by the food and drug administration 
(FDA), some of them have reached the market for 
clinic (Table 1) [48, 49]. For example, the contrast 
agent AMI-25 (Ferumoxide, Feridex IV, Endorem) 
consists of the dextran coated Fe3O4 nanocrystal has 
been used in clinic, this agent could rapidly 
agglomeration in liver and spleen after injection 1 h, 
and the optimal imaging effects will appear in liver 
and spleen after injection 2 h and 4 h, respectively.  

To improve the efficacy of Fe3O4 NPs in tumor 
imaging and therapeutic, as well as other inorganic 
nanomaterials, a maximum tumor accumulation is 
highly desired [50, 51]. Besides to the passive EPR 
effect [52, 53], the more positive method to increase 
tumor accumulation of nanomaterials is to 
conjugation tumor-homing or tumor 
microenvironment (TME) responsive ligands onto the 
Fe3O4 NPs to purposively improve their final amount 
in tumor tissues through the selective recognition and 
internalization by tumor cells [54-57]. Synthesized 
Fe3O4 NPs through common chemical methods are 
usually coated with the hydrophobic alkyl ligands on 
the outer surface. Surface modification and further 
functionalization are necessary to convert them into 
hydrophilic, improve their biocompatibility and 
blood circulation time for enhancing tumor 
accumulation [13, 58], which are also beneficial to 
reduce the unexpected damage to normal tissues.  

Smart drug-delivery systems based on 
nanoparticles is another vital way to combine 
chemotherapy with nanotheranostics [59, 60]. Fe3O4 
NPs can easily be functionalized into a 
multifunctional platform by modifying with various 
therapeutic agents, and the common functional 
components for surface modification can be classified 
as: (1) small molecule (e.g., carboxylates, oleic acid) 
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[61, 62]; (2) biomolecules (nucleic acids (siRNA), 
peptides and proteins) [63-65]; (3) inorganic materials 
(e.g., Au, Ag, MoS2) [25, 66, 67]; (4) mesoporous 
materials (e.g., mesoporous silica, metal-organic 
frameworks) [68, 69]; (5) polymers (e.g., 
polyvinylpyrrolidone (PVP), polyethylene glycol 
(PEG), polyethyleneimine (PEI)) [70-72]. Surface 
modification with these components of nanoparticles 
usually have a low cytotoxicity, hydrophilic, large 
pore volume, high surface area, adjustable pore size, 
in consequence provides the nanoparticles with better 
biocompatible and biodegradable [73, 74]. Based on 
these, through surface modification and 
functionalization increases the ability of Fe3O4 NPs in 
tumor targeting and responsiveness that further 
enhance their therapeutic effect [75].  

This review aims to summarize the recent 
progress to provide a clear explanation for the rational 
design, construction and applications of Fe3O4 

NPs-based multifunctional platform. Firstly, we 
introduce the common synthesis methods. Secondly, 
the surface modification and targeting ligand 
conjugation of Fe3O4 NPs are described. Finally, we 
will focus on the recent development of 
multifunctional Fe3O4 platforms for cancer diagnosis 
and treatment, including responsive imaging, 
nanozyme, CDT, magnetic hyperthermia (MHT), 
photothermal therapy (PTT), photodynamic therapy 

(PDT) and drug/gene delivery. We believe the 
summary of recent development will provide a 
comprehensive understanding of the applications of 
Fe3O4-based NPs multifunctional systems in 
biomedical research studies and clinic uses. 

Synthesis of magnetic Fe3O4 NPs 
The properties of magnetic Fe3O4 NPs are 

initially determined by their size and morphology. 
Thus, the selection of suitable synthesis method is 
important. Fe3O4 NPs can be synthesized by physical, 
biosynthetic and chemical methods [76-78]. Generally, 
the physical synthesis methods, mainly including the 
ball grinding method, electron beam lithography, 
aerosol and gas phase deposition, fail to regulate the 
size into the nanoscale [79-81]. Biosynthetic methods 
to synthesize magnetic nanoparticles is an emerging 
technology, which generates magnetosomes through 
the regulation of biological macromolecules and iron 
element by magnetotactic bacteria or cells [82, 83]. 
However, these methods are always accompanied 
with the disadvantages of long synthesis time, low 
yield and broad size distributions. In comparison, the 
chemical synthesis methods are relatively common 
because of the advantages of simple operation, low 
cost and huge production yields. Therefore, we will 
only focus on the chemical methods in the main text. 

 
 

Table 1. Applications of magnetic Fe3O4 NPs in clinic.  
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Figure 1. Typical synthesis methods of magnetic Fe3O4 NPs and their applications in cancer diagnosis and treatment.  

 
In general, the key to synthesize monodisperse 

Fe3O4 NPs in solution is to control the processes of 
nucleation and growth [84, 85]. Different synthetic 
strategies produce Fe3O4 NPs usual with different 
morphology, sizes, crystallinity and surface proper-
ties [86, 87]. The common chemical synthesis methods 
include thermal decomposition [88, 89], solvothermal 
reaction [90], polyol synthesis [91], hydrothermal 
reaction [92], coprecipitation synthesis [93, 94], 
microemulsion synthesis [95], sol-gel synthesis [96], 
and template synthesis [97] (Figure 1). Here we will 
detailly introduce the recent advances using the above 
methods for the synthesis of Fe3O4 NPs (Table 2).  

Thermal decomposition 
Thermal decomposition of organometallic 

precursors into metal oxides or metal elements at high 
temperature is a classic method to synthesize 
monodisperse nanocrystals [79, 88, 89]. Due to the 
presence of organic ligands, the aggregation and 
overgrowth of nanoparticles are restricted and the  
diameter of nanoparticles is closely related to the 
reaction time and the boiling point of organic solvent 
[98]. Generally, the metal complex precursors are 
rapidly injected into hot organic solvents or directly 
heated up with the solvents [99, 100]. In the hot 
injection process, after the metal precursors solution is 

rapidly injected into the solvents at the reaction 
temperature, an instant nucleation immediately 
happens with a controlled growth process. In the 
heating-up procedure, the nucleation increases 
gradually with the raise of the reaction temperatures 
[101-103]. Oleic acid (OA), oleylamine (OAm) and 
1-octadecene (ODE) are the commonly used solvents 
as well as surfactants to stabilize nanoparticles and 
control their sizes and morphologies [104]. It is worth 
mentioning that the surface of nanoparticles prepared 
by this method is hydrophobic, and subsequent 
surface modification is needed to improve the 
hydrophilicity for the utilization in biological 
environment [105]. Hyeon et al. first prepared uniform 
and small-sized monodisperse Fe3O4 nanocrystals 
(4-12 nm) through this method [88, 89]. The size of the 
Fe3O4 nanocrystals were controlled by the boiling 
points (b.p.) of the organic solvent. As shown in 
Figure 2A, the size of Fe3O4 nanocrystals increases 
with the rise of solvent boiling point. This method has 
been widely used for synthesis uniform small-size 
Fe3O4 NPs with good crystallinity and be widely used 
in the application of MRI contrast agent, drug carrier, 
further assembly forms cluster structure use for 
photothermal or magnetic hyperthermia treatment of 
tumors, which shows great significance to the 
biological application of Fe3O4. 
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Figure 2. (A) TEM images of monodisperse Fe3O4 nanocrystals synthesized by the thermal decomposition in solvent with an increasing boiling point: (a) 5 nm, 1-hexadecene (b.p. 
274 °C); (b) 9 nm, octyl ether (b.p. 287 °C); (c) 12 nm, 1-octadecene (b.p. 314 °C); (d) 16 nm, 1-eicosene (b.p. 330 °C) and (e) 22 nm, trioctylamine (b.p. 365 °C). Adapted with 
permission from [88], copyright 2004 Nature Materials. (B) SEM images of Fe3O4 NPs synthesized by solvothermal reaction. Adapted with permission from [90], copyright 2005 
Angewandte Chemie. (C) TEM images of Fe3O4 NPs synthesized by hydrothermal reaction. Adapted with permission from [92], copyright 2013 Biomaterials. (D) TEM images of 
Fe3O4 NPs synthesized by microemulsion synthesis. Adapted with permission from [95], copyright 2006 Advanced Functional Materials. (E) TEM images of mesoporous Fe3O4 
NPs synthesis by hard templates. Adapted with permission from [97], copyright 2008 Advanced Materials. 

 

Table 2. Comparison of the different chemical synthesis methods of Fe3O4 NPs. 

 
 

Solvothermal reaction/Polyol method  
In order to prevent the self-aggregation and 

over-growth of monodisperse Fe3O4 nanocrystalline 
during the synthesis process, the decomposition of 
metal salts in organic solution-phase have been 
widely used [88, 89]. Based on this principle, the 
solvothermal method is extensively used to 
synthesize Fe3O4 NPs with low cost, simple operation, 
and excellent crystallinity. Li et al. [90] reported the 
method for the synthesis of hydrophilic, 
monodisperse, and single-crystalline magnetic ferrite 
(MFe2O4; M=Fe, Mn, Zn, or Co) microspheres by a 

solvothermal reduction method, and the 
monodispersed ferrite spheres were controlled with 
the diameters from 200 to 800 nm (Figure 2B). This 
solvothermal method provides an important method 
to get monodisperse nanostructures without 
demanding a narrow size distribution. However, the 
final nanocrystals from oleic acid/amine during the 
solvothermal reaction usually coated with long alkyl 
chain oleic acids or amines with hydrophobic surface 
properties, which greatly inhibits their applications in 
biotechnological areas and others. In order to receive 
monodisperse and hydrophilic nanocrystals, ethylene 
glycol could be used as the solvent in the 
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solvothermal synthesis of magnetic ferrite 
nanocrystals with hexanediamine or polyethylene 
glycol as protecting reagents. 

The polyol method is similarly developed to 
fabricated Fe3O4 NPs by using polyols (such as, 
diethylene glycol, ethylene glycol and triethylene 
glycol) to reduce the metal compounds to obtain the 
corresponding nanoparticles. In this method, the 
solvent of polyols with high boiling points can be 
used as both the reducing agents and the stabilizing 
agents to control the growth process of nanoparticles 
and prevent possible agglomeration [91]. Wan et al. 
[106] prepared monodisperse Fe3O4 NPs with a 
uniform size of 10 nm through the polyol method 
using the triglyceride glycol and iron acetylacetone, 
the obtained Fe3O4 NPs showed well dispersity in 
aqueous or other polar media due to hydrophilic 
polyol ligands coated in the synthesis process. 

Hydrothermal reaction 
Fe3O4 NPs can also be synthesized by the 

hydrothermal reaction under the condition of suitable 
temperature (100-250 ℃) and relatively high pressure 
(0.3-4 MPa) [107]. Hydrothermal synthesis involves 
no organic solvents or metal organic precursors, and 
the high crystallinity and good hydrophilicity of 
yielded Fe3O4 NPs omits the subsequent surface 
modification processes [92]. Shi et al. [92] reports the 
facile preparation of Fe3O4 NPs coated with branched 
PEI (abbreviated as: Fe3O4-PEI NPs) via the 
hydrothermal method (Figure 2C). The surface of 
Fe3O4-PEI NPs with primary amine groups, which 
could be further modified with PEG, succinic 
anhydride and acetic anhydride, and induce 
Fe3O4-PEI NPs continue surface functionalities. 
Hydrothermal reaction provides a choice for the 
simple synthesis Fe3O4-based multifunctional 
nanomaterial for biomedical applications.  

Coprecipitation synthesis/Sol-gel synthesis 
Coprecipitation of Fe2+ and Fe3+ ions in solution 

also a classical method applied to manufacture Fe3O4 
NPs by precipitating a specific proportion of the 
inorganic salts in aqueous media [79, 108]. Compared 
with the thermal decomposition synthesis, the 
coprecipitation can avoid the problem that surface 
decoration (template molecules, surface organic 
ligands, surfactant) are difficult to be removed [93, 
94]. The size, quantity and morphology of the 
obtained Fe3O4 NPs could be controlled by 
experimental condition, such as power of hydrogen 
(pH), ion concentration, reaction temperature, 
precursor and so on. Stroeve et al. [109] synthesized 
the Fe3O4 NPs in aqueous solutions without any 
surfactants. The coprecipitation process of Fe2+/Fe3+ 

was achieved by changing the pH value of solution, 
and the achieved Fe3O4 NPs with a narrow size 
distribution and the average diameter less than 10 nm 
[98]. 

Sol-gel method can be considered as the further 
development from this strategy, which stirred the 
metal salt with a gelling agent to form a homogeneous 
gel, then gelled the sol by chemical reaction or solvent 
removal to get a 3D iron oxide network [96]. To obtain 
the pure Fe3O4 NPs, the formed gels usually requires 
an additional crushing step after drying and 
calcination. The structure and properties of the 
obtained Fe3O4 NPs are usually influenced by the 
concentration, reaction temperature, pH values, and 
solvents. The yield of nanoparticles using the sol-gel 
method usually is high, thus this method can be used 
for massively producing large-sized nanoparticles. 

Microemulsion synthesis 
Microemulsion method is also widely 

investigated as a classic method to prepare 
nanocrystals [110]. Microemulsion is a 
thermodynamically stable dispersions, which can be 
obtained by mixing immiscible water/oil phase that 
stabilized by the arrangement of co-surfactant or 
surfactant molecules at the interface. The 
microemulsion system especially the water-in-oil 
(W/O) phase, which is consist of the dispersion of 
water nanodroplets in the oil phase to form a 
stabilized spherical reverse micelle, can be considered 
as “nanoreactor” for the synthesis of nanoparticles. 
Since the nucleation and growth of nanoparticles are 
limited in the nanoreactor, that the size of 
nanoparticles can be controlled [111]. Li et al. [95] 
reported the synthesis of the magnetic Fe3O4 NPs by 
the W/O microemulsions, and investigated the 
relationship between the experiment condition 
(concentration, water/ethanol/organic solvent ratio, 
kinds of surfactants, temperature, reaction time) and 
the properties (morphology, crystal phase, and size 
distribution) of the obtained Fe3O4 NPs (Figure 2D). 

Template synthesis 
Recently, many researches have designed and 

prepared of hollow or porous Fe3O4 nanostructures by 
the template synthesis method, which can be divided 
into the hard template method (e.g., silica, carbon 
spheres, and polymer nanoparticles) and the soft 
template method (e.g., vesicles, micelles, emulsion 
droplets, gas bubbles and others) according with the 
process of package, calcination and separation in 
obtaining the hollow nanostructure [112]. Among the 
hard templates, polymer latex particles, especially 
polystyrene (PS) beads, have been demonstrated to be 
effective templates for the preparation the hollow 
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spherical inorganic materials of Fe3O4 NPs [113], and 
this method also be applied to other nanoparticles, 
such as Gd2O3 [105], TiO2 [114], ZnS [115], SiO2 [116] 
and so on. Similarly, mesoporous silica can also be 
used as the hard templates for the preparation of 
mesoporous Fe3O4 NPs, followed by the process of 
heating treatment and silica removal (Figure 2E) [97]. 
Compared to the hard template method, the 
morphology of Fe3O4 NPs synthesized by the soft 
template method is usually more uncontrollable. The 
obtained Fe3O4 NPs usually present nanowires 
structure and are rarely used in cancer diagnosis and 
treatment. 

Surface Modification of Magnetic Fe3O4 
NPs 

Fe3O4 NPs prepared with hydrophobic ligands 
(oleic acid or stearic acid) needed to be converted into 
hydrophilic ligands for further biomedical 
applications [104]. Meanwhile, appropriate surface 
modification can also import the Fe3O4 NPs with 
better biocompatibility, long blood circulation and 
further functionalization, such as active targeting 
ability [105, 117]. Currently, the surface modification 
methods of Fe3O4 NPs fall into two categories of 
ligand replacement and encapsulation [118, 119]. 
Ligand replacement refers to an exchange of native 
hydrophobic ligands (oleic acid) on the surface of 
nanoparticles with strong anchoring groups (such as 

phosphonates, catechols, thiols, sulfonates, and 
carboxylic acids), which act as hydrophilic ligands to 
improve their dispersity in biological environment 
[120-123]. However, the actual ligand exchange 
process is often underperformed and always causes 
the leakage of surface ligand defectiveness. In 
contrast, the surface modification of Fe3O4 NPs 
through the encapsulation method shows better 
efficient, which can effectively coating the surface of 
Fe3O4 and ensure their uniformity [124, 125]. The 
usual strategy of encapsulation process is to utilize 
inorganic or organic shells to embellish iron oxide 
nanoparticles into core-shell structured nanocarriers 
[126-128], and the surface functionalized decorations 
mainly include noble metals (e.g., gold, silver, 
gadolinium) [129-132] or oxides (e.g., silica, graphene, 
titanium dioxide) [133, 134], biodegradable organic 
polymers (e.g., polyethylene glycol (PEG), poly 
(lactic-coglycolicacid) (PLGA)) [135-137], proteins 
(e.g., antibodies, monoclonal antibody and their 
fragments) [138], nucleic acids (e.g., DNA, siRNA, 
aptamers) [134, 139-141], amino acids (e.g., 
phenylalanine, tyrosine, arginine, lysine and cysteine) 
[142], small molecules (e.g., photosensitizer, folic acid, 
doxorubicin), and other species (vitamins, 
carbohydrates) [143, 144]. Here we detailly introduce 
the recent advances in the surface modification Fe3O4 
NPs (Table 3).  

 
 
 

Table 3. Comparison of different modification methods of Fe3O4 NPs. 
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Figure 3. (A) Synthetic schematic illustration of core-shell structure Fe3O4@mSiO2 NPs. (B) TEM image of Fe3O4@mSiO2 NPs. In vivo imaging for the T2-weighted MRI imaging 
(C) and fluorescence confocal microscopy image (D) using Fe3O4@mSiO2. Adapted with permission from [153], copyright 2008 Angewandte Chemie International Edition. 

Inorganic mesoporous materials 
In recent years, many inorganic nanomaterials 

have been extensively studied in biomedical fields, 
such as silica, aluminum oxide, molybdenum dioxide, 
graphene, calcium carbonate, calcium phosphate and 
others [145-147]. Among them, mesoporous silica 
(mSiO2) materials have been used as delivery carriers 
for small molecule drugs, quantum dots, siRNA and 
aptamers due to their uniform pore sizes and high 
accessible pore volume [148, 149]. Meanwhile, the 
monodisperse mSiO2 smaller than 100 nm, have also 
been proved to possess a high stability in blood 
circulation [150-152]. The modification of mSiO2 onto 
Fe3O4 NPs to form uniform core-shell nanocomposite 
have been reported to improve their biocompatible, 
enhance hydrophilicity and provide anchoring points 
(Si-OH groups) for further loading of molecular drugs 
(e.g. paclitaxel, platinum-based drugs, DOX) or other 
targeted functional groups (e.g. FA, antibodies). The 
modification of mSiO2 shell onto Fe3O4 NPs usually 
using the sol-gel method or microemulsion method. 
Hyeon et al. [153] synthesized the composite structure 
consist of monodisperse Fe3O4 NPs core and mSiO2 
shell (Figure 3). CTAB was used as the surfactant for 

the transfer of hydrophobic Fe3O4 NPs, and provide 
the soft template for the grown of mSiO2 shell in the 
sol-gel process. The size of Fe3O4@mSiO2 NPs could be 
controlled within 100 nm, and the fluorescein 
isothiocyanate and rhodamine B isothiocyanate were 
further modified on the mSiO2 shell for fluorescence 
imaging in vivo, which could show typical emissions 
of fluorescein and rhodamine B at 516 nm and 577nm 
with the corresponding excitation wavelength of 460 
nm and 520 nm. Meanwhile, the core-shell 
Fe3O4@mSiO2 NPs also could be used as the contrast 
agent for T2-weighted MRI in vivo, providing an idea 
for construction multimodal imaging platform by 
modifying the hydrophobic Fe3O4 NPs with the 
functional mesoporous material shell.  

Noble metals 
Magnetic Fe3O4 NPs, due to their excellent 

imaging properties and magnetic targeting ability, are 
usually conjunction with other functional systems to 
improve their capability for multimodal imaging and 
precision targeting [154]. Among them, noble metals 
are a crucial species of functional components. On one 
hand, most of noble metals have a higher atomic 
number than the iodine element, and can be used as 
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the contrast agent for computed tomography (CT) 
imaging, due to their remarkable X-ray attenuation 
property [155, 156]. On the other hand, noble metals 
usually have the strong surface plasmon resonance 
(SPR) effect, which could absorb the energy of light 
and convert that into thermal or other energy [157]. In 
particular, the core/shell nanostructures adopt the 
plasmonic effects of noble metals into magnetic Fe3O4 

NPs, can be used in the photothermal therapy of 
cancer [158-160]. Shi et al. [157] developed a 
multifunctional theranostic nanoplatforms for tumor 
imaging and therapy based on the star-shaped 
Fe3O4@Au core/shell nanoparticles, which presented 
an excellent effect in MRI, CT, thermal imaging and 
photothermal therapy. After further modification of 
PEI and HA, the nanostars showed better 
biocompatibility, stability and targeting for cancer 
cells.  

Shi et al. [158] reported a method for preparation 
the core-shell structured of Fe3O4/Au, and the Fe3O4 
NPs core are linked to the Au shell by the hybrid of 
SiO2 and PS-b-PAA (a kind of amphiphilic block 
copolymers consisting of polystyrene and 
polyacrylicacid). The details of synthetic process are 
shown in Figure 4A. First process is modified SiO2 on 
the surface of Fe3O4 NPs and self-assembly with the 
PS-b-PAA. Then reduce AuCl4- on the surface of 

Fe3O4@hybrid to Au NPs form the shell structure, and 
ultimate formation the Fe3O4/Au. The SPR effect of 
Au NPs on the core-shell structured could absorb the 
near-infrared light (808 nm) and converted that into 
thermal energy and eventually kill the tumor cells. 
Meanwhile, due to the MRI performance of the Fe3O4, 
the noble metal modified Fe3O4 not only have 
property of photothermal therapy, but also an agent 
of MRI and thermal imagery, demonstrating a flexible 
way for the construction of Fe3O4-based multifunc-
tional diagnosis and treatment platforms. 

Polymers 
In the last decade, biocompatible polymers have 

been extensively used to improve conventional mode 
of medication in drug-delivery [161-163]. Meanwhile, 
the magnetic Fe3O4 NPs are gaining more research 
interests in the medical fields relying on their unique 
properties such as imaging capability of MRI and 
magnetic targeting drug carrier. For improving the 
hydrophilicity and other physiochemical properties of 
Fe3O4 NPs, the surface modification with polymers 
provided an ideal choice, and the commonly used 
polymers include polyethylene glycol (PEG), poly(L- 
lysine) (PLL) [164], poly(propyleneimine) (PPI), 
polyethyleneimine (PEI), polystyrene (PS) [165], poly 
(vinyl pyrrolidone) (PVP), poly (lactic-co-glycolic 

 

 
Figure 4. (A) Schematic of synthesis Fe3O4/Au nanocomposite. (B) SEM images of Fe3O4/Au core-shell structure. (C) Thermal images effect of Fe3O4/Au nanocomposite under 
808 nm irradiation. (D) The T2-weighted MRI effect of Fe3O4/Au nanocomposite in vivo. Adapted with permission from [158], copyright 2011 Advanced Materials. 
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acid) (PLGA) and poly (vinyl alcohol) (PVA)), which 
having hydrophilic segments to improve 
biodegradability and biocompatibility. Parveen et al. 
[166] revealed the surface coated Fe3O4 NPs with the 
hydrophilic PEG could prevent nanoparticles from 
being removed by the phagocytic activities to further 
boost the endurance of the Fe3O4. PLGA is a 
biodegradable polymer and has been frequently used 
as a drug-delivery platform in the treatment of cancer 
therapy in recent years, and has also been reported to 
modify magnetic Fe3O4 NPs for enhance their 
magnetic targeting delivery ability to tumor tissues 
under magnetic field conditions [167-169]. Wu et al. 
[170] prepared the uniform microcapsules with Fe3O4 
and PEGylated PLGA (abbreviated as Fe3O4@PEG- 
PLGA MCs) for MRI and ultrasound bimodal imaging 
(USI) (Figure 5). The Fe3O4@PEG-PLGA MCs showed 
better stability in physiological solutions owing to the 
PEGylation. Meanwhile, the in vivo and in vitro 
experiment results showed the polymers modified 
Fe3O4-based microcapsules could be used as an agent 
for USI and MRI performance, without dramatic 
cytotoxicity and embolism to mice even at high doses. 

Metal-organic frameworks 
Metal-organic frameworks (MOFs) is an 

emerging species of porous nanomaterials acquire 
from metal ions or clusters coordinating with bridged 
ligands, which could be used to load guest 
nanoparticles to gain new performance due to their 
good physicochemical stability, larger surface area 
and tunable functionality [171]. Responsive MOFs 
coated Fe3O4 NPs have been studied for improving 
the hydrophilicity, increasing the porosity of delivery 
system and enhancing the responsiveness of the 
tumor environment. The mechanism of MOFs 
responsive decomposition may be due to the effects of 
H+ and glutathione (GSH) in the tumor 
microenvironment on the binding of metal ions and 
organic ligands [171, 172]. Yang et al. [172] designed a 
novel MRI contrast agent, which utilized the pH and 
GSH responsive ZIF-8 as nanocarrier to deliver 
small-sized Fe3O4 NPs (about 5 nm, T1-weight MRI) 
into a Fe3O4-ZIF-8 nanostructure (T2-weight MRI). The 
slightly acidic conditions and overexpressed GSH in 
tumor microenvironment would lead the 
decomposition of the Fe3O4-ZIF-8 nanostructure and 
release the small-sized Fe3O4 (Figure 6A), leading to 

 

 
Figure 5. (A) The schematic diagram: (1) The traditional method yielded microcapsules with an uneven distribution; (2) Premix membrane emulsification method obtained 
uniform microcapsules with the help of microporous membrane; (3) The structure diagram of Fe3O4@PEG-PLGA MC. (B) SEM images of Fe3O4@PEG-PLGA MCs. The imaging 
of in vivo USI (C) (liver) and MRI (D) of mice. Arrows of yellow, red and blue corresponding to kidneys, spleens and livers. Adapted with permission from [170], copyright 2015 
ACS Applied Materials & Interfaces. 
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the MRI effect from T2 to T1 and enhancing the 
contrast of the tumor tissue (detail in part 4.3), which 
could distinguish tumor tissue from the normal tissue 
by the T2 to T1 conversion. Han et al. [173] synthesized 
a novel Co-ferrocene metal-organic framework (Co-Fc 
MOF) with high Fenton activity. After combined with 
the glucose oxidase (GOx), the nanoplatform 
(Co-Fc@GOx) construct an enzymatic/Fenton 
catalytic synergistic effect for enhanced tumor 
treatment effect. GOx delivered by Co-Fc MOF could 
catalyze endogenous glucose of tumor 
microenvironment to H2O2 and gluconic acid, which 
further favored the Fenton reaction of Co-Fc MOF and 
enhanced the generation of ROS. Experimental results 
demonstrated this synergistic enzymatic/Fenton 
catalytic activity triggered by Co-Fc@GOx 
nanoplatform enabled remarkable anticancer 
properties both in vivo and in vitro. 

Cell membranes and derivatives 
It is a common method to functionalize the 

nanoparticles with tumor imaging and therapy with 
the exogenous ligand. However, several problems are 
still needed to be solved, such as: (1) the foreign 
nanoparticles can be easily detect by immune systems 
and cause severe immune responses; (2) the 
physiological barriers could eliminate nanomaterials 
from the blood circulation and restrict the 
accumulation in target sites; (3) nontargeted 
nanomaterials that relies on the EPR effect limit the 
therapeutic effects and increase the damage to normal 

tissues; (4) the potential toxicity of nanomaterials in 
vivo [174-180]. Fe3O4 NPs with their unique properties 
and long blood circulation time are widely researched 
to overcome these limitations. Compared to 
exogenous ligands for surface modification, the 
endogenous cell membranes for nanoparticles 
wrapping provide a novel method for solve these 
problems [181-184]. The classic types of biomimetic 
cell membranes include red blood cell membrane, 
white blood cell membrane, cancer cell membrane, 
stem cell membrane and so on [185]. Zhao et al. [183] 
fabricated the delivery platform based on the platelet 
mimicking Fe3O4 NPs for enhancing the blood 
circulation time and targeting ability. As shown in 
Figure 7, step 1 showed the collections of blood from 
the mice, step 2 showed the dissociation of membrane 
and protein from platelet formed the vesicles, step 3 
was to coat the vesicles of platelet on the surface of 
Fe3O4 NPs, step 4 was to injection the vesicles 
modified Fe3O4 NPs into blood vessel, steps 5 to 7 
were the systematic circulation of vesicles modified 
Fe3O4 NPs, enrichment in tumor tissues by EPR effect 
and entry into tumor cells with the help of vesicles, 
steps 8 and 9 showed the performance test of imaging 
and therapeutic by the MRI and photothermal 
therapy (PTT). The results showed that the cell 
membrane modified Fe3O4 NPs have a good tumor 
targeting ability and could kill the tumor cells by 
photothermal treatment under the irradiation of near 
infrared light. 

 

 
Figure 6. (A) Schematic of Fe3O4-ZIF-8 switch from T2 to T1 weight. (B) TEM images of Fe3O4-ZIF-8 assemblies. (C) In vivo T1-weight MRI of tumor after intravenous injection 
of Fe3O4-ZIF-8, and homologous T1 signals (D) extracted from tumor sites. Adapted with permission from [172], copyright 2019 Chemical Communications. 
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Figure 7. The schematic of platelet vesicles modified Fe3O4 NPs for enhanced the effect of MRI and PTT, and the UV-Vis-NIR absorption spectra of Fe3O4 NPs. Adapted with 
permission from [183], copyright 2017 Advanced Functional Materials. 

 

Aptamers 
In general, when the Fe3O4 NPs circulate in the 

blood system, they are easily subjected to macrophage 
uptake and reticuloendothelial system clearance. To 
improve specificity and recognition of the tumor 
targeted delivery system, many functionalized 
substances such as aptamers, peptides and small 
molecule can also be used for the surface modification 
of nanoparticles. Aptamer is a single-stranded 
oligonucleotide generated from an in vitro selection 
process, which called systematic evolution of ligands 
by exponential enrichment (SELEX) and they could 
bind with the targeted small molecules, proteins, and 
even intact cells and tissues with excellent specificity 
and high affinity. Aptamers used for surface 
modification have many advantages, such as easy to 
operate, good stability, rapid tissue penetration and 
lack of immunogenicity, thus making them as a 
suitable candidate. Tan et al. [186] designed a 
multifunction delivery platform that perform five 
distinct functions synergistically and effectively. To 
accomplish this, they prepared the gold-coated 
rose-shaped Fe3O4 (Au@Fe3O4) nanoplatform as an 
agent for photothermal therapy (PTT) and MRI. To 
enhance the targeting ability, the sgc8 aptamers were 
easily conjugated with the Au@Fe3O4 via the thiolate 
bonding, which could specifically recognize 
CCRF-CEM leukemia cells. Additionally, the 
chemotherapeutic agent doxorubicin (DOX) could 

also intercalate into the GC base pairs in the extended 
part of the aptamers, and with the releasing of DOX, 
the fluorescence signal in vitro also changed and cause 
the optical imaging. Therefore, the DOX-loaded 
Au@Fe3O4 nanoplatform presented five distinct 
functions for simultaneous imaging and therapy with 
the help of aptamers. 

Fe3O4 NPs for Tumor Imaging   
T2-weighted magnetic resonance imaging 

MRI is an effective method for tumor diagnosis 
due to the acquired high contrast images and the 
precise handling of details of the targeted tissues with 
non-invasiveness and real-time monitoring [184]. The 
sensitivity of MRI could be significantly enhanced 
with the help of contrast agents. The agents of MRI 
could be classified base on the effect on longitudinal 
(T1) or transversal (T2) relaxations, and the ability is 
defined as relaxivity (r1, r2). Therefore, MRI contrast 
agents could be divided in two types, which are 
T1-weighted (positive) and T2-weighted (negative), 
mainly shortens the T1 and T2 contrast media. In 
general, fast T1-weighted results appear to be bright 
contrast in the MRI, while the opposite T2-weighted 
results to be the dark contrast [187]. Due to the 
superparamagnetic property, Fe3O4 NPs typically 
decrease the relaxation time of surrounding protons, 
thus providing possibility to be employed as 
T2-weighted MRI agent media. 
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Figure 8. (A) The schematic of the synthetic process of AG/PEI-Fe3O4 NGs. (B) The imaging of T2-weighted MRI in vitro (a) and signal intensity analysis (b). (C) The images of 
T2-weighted MRI in vivo. Adapted with permission from [188], copyright 2016 Biomaterials Science. 

 
Shi et al. [188] prepared a novel agent for MRI, 

which was the nanogels consisting of PEI coated 
Fe3O4 NPs immobilized with alginat (abbreviated as: 
AG/PEI-Fe3O4 NGs). The synthetic process is shown 
in Figure 8, and the nanogels presented a dispersion 
state in water with the size distribution from 153 nm 
to 219.2 nm. Moreover, the novel Fe3O4-based 
nanogels were excellent T2-weighted contrast agent 
for the MRI (the relaxivity of r2 is 170.87 mM−1s−1) and 
could be vastly swallowed by the tumor cells. 

T1-weighted magnetic resonance imaging 
Superparamagnetic Fe3O4 NPs (SPIONs) are 

widely used as T2 contrast agents, since the strong 
magnetic moment could lead the magnetic 
inhomogeneity. However, some reasons limit their 
clinical application of T2 contrast agents [189]. Because 
the intrinsic dark signal of T2-weighted MRI could not 
accurately distinguish the tumors and other 
hypointense areas, such as calcification, metal 
deposition, or bleeding. Meanwhile, the T2-weighted 
contrast agents usually with the high magnetic 
moment that perturbation the local magnetic field, 
which could exaggerate the size of the labeled area 
and blurs the images, thus causing the so-called 
“blooming effect”. Therefore, T1 contrast agents 
shows better desirable than T2 contrast agents for the 
accurate and high-resolution imaging [190]. It is 
noteworthy that compared with the familiar T1 
contrast agents, Fe3O4 contrast agents show better 
biocompatibility due to the iron element are rich in 
human blood, and stored in the body in the form of 

ferritin [201]. However, the common Fe3O4 NPs are 
unfit for the T1 contrast agents because of that the 
ideal T1 contrast agents would have high r1 value and 
low r2/r1 ratio to realize the T1 contrast maximize 
effect [191]. Although iron with five unpaired 
electrons which could increase the r1 value, the innate 
high magnetic moment of Fe3O4 NPs lead to the high 
r2 value and prevents then to be used as T1 contrast 
agent. However, this problem could be solved by 
decreasing the size of the Fe3O4 NPs, because the 
magnetic moment of Fe3O4 NPs could rapid decreases 
with the sizes reduction, which can lead to the 
reduction in the volume magnetic anisotropy [41, 
192-194]. Therefore, a series of research on Fe3O4 NPs 
as contrast agent are widely carried out.  

Hyeon et al. [189] reported the preparation of 
small-sized Fe3O4 NPs (mainly 3 nm) by the thermal 
decomposition (Figure 9), and the obtained Fe3O4 NPs 
showed extremely low magnetization derived due to 
the spin canting effect. For improving the 
water-dispersion and biocompatibility of Fe3O4 NPs, 
the PO-PEG ligands were modified on the surface. In 
vitro cytotoxicity assay of PO-PEG capped Fe3O4 NPs 
showed no observed toxic response, exhibited a high 
r1 relaxivity (4.78 mM-1·s-1) and low r2/r1 ratio (6.12), 
which demonstrated the magnetic Fe3O4 NPs could be 
used as T1 contrast agents. The high r1 relaxivity of 
Fe3O4 NPs could be attributed to the large surface 
number of iron with five unpaired valence electrons. 
The Fe3O4 NPs (around 3 nm) indicated a longer 
circulation time than the clinically used Gd-based 
contrast agents. High-resolution blood pool MRI 



Theranostics 2020, Vol. 10, Issue 14 
 

 
http://www.thno.org 

6291 

using Fe3O4 NPs were able to provide a clear 
observation of various blood vessels within sizes less 
to 0.2 mm. All of these results demonstrated the Fe3O4 
NPs with the potential as T1 contrast agents for MRI in 
clinic. 

However, there are still several problems limit 
the ultrasmall size Fe3O4 NPs used as T1 contrast 
agents [195]. First, ultrasmall size nanoparticles could 
be fast cleared out by renal metabolism and limit the 
imaging. Second, due to the high surface energy, the 
self-aggregation is a major concern of ultrasmall 
nanoparticles. Once aggregated the small Fe3O4 NPs 
will lose their T1 performance. Third, the surface 
modification of the ultrasmall size Fe3O4 NPs is 

critical to maintain the T1 performance, because the 
molecules modified on the surface directly controls 
the paramagnetic [195, 196]. Therefore, it is necessary 
to modify the ultrasmall size Fe3O4 NPs reasonably 
while ensuring its performance. Bao et al. [196] 
reported a novel method to form nanoclusters by 
crosslinking bovine serum albumin (BSA) onto 
ultrasmall size Fe3O4 NPs (Figure 10). Different from 
traditional studies showing T1 signal decrease or 
complete loss after polymer encapsulation, the 
nanoclusters not only maintain the T1 contrast agent’s 
performance of the Fe3O4 NPs, but also significantly 
enhanced the blood circulation times from 15 minutes 
to over two hours.  

 
 

 
Figure 9. (A) TEM images of Fe3O4 NPs; T1-weighted MRI of Fe3O4 NPs with the diameters of 3 nm (B) and 12 nm (C); (D) The MRI intensity with the dynamic time in vivo. 
Adapted with permission from [189], copyright 2011 Journal of the American Chemical Society. 
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Figure 10. (A) The synthetic process of BSA modified Fe3O4 nanoclusters. (B) (a) TEM image of BSA modified Fe3O4 nanoclusters, (b) T1-weighted MRI of ultrasmall size Fe3O4 
NPs (USNP) and BSA modified nanoclusters. (C) T2 and T1-weighted MRI after injection for 2 hours, the measured gray values of kidney and brain regions are shown in table. 
Adapted with permission from [196], copyright 2017 Nanoscale. 

 

4.3 Responsive T1/T2 imaging 
Due to the fact that magnetic Fe3O4 NPs display 

a remarkable change from the T2 enhanced contrast 
effect to T1 enhanced contrast effect when the size less 
than 5 nm, Fe3O4 NPs have become an attractive 
material for the preparation of responsive MRI 
contrast agents for tumor diagnosis. Yang et al. [172] 
utilized the ZIF-8 as a carrier for agglomerate small 
Fe3O4 NPs (a T1 contrast agent) into Fe3O4-ZIF-8 
assembly (a T2 contrast agent). Because ZIF-8 is more 
stable under the normal physiological conditions and 
decompose under the acidic microenvironment of 
tumor tissues or in the presence of competitive 
ligands (Figure 6A). Therefore, the acidic conditions 
and GSH of the tumor microenvironment would 
trigger the disassembly of Fe3O4-ZIF-8 and to release 
the ultrafine size Fe3O4 NPs, leading the conversion 
from T2 to T1 enhancement on the sign of the tumor 
tissue.  

The low delivery efficiency of nanomaterials is 
still a challenge in tumor imaging and treatment. 
Generally speaking, the EPR effect is considered as a 
driving force through either active or passive 
targeting for nanoparticles to reach and accumulate in 
the tumor tissues. Previous research has shown that 
nanoparticles in appropriate sizes (from 50 nm to 200 
nm) can enhance the EPR effect through limit 
nanoparticle intravasate back into the circulation. 
Recently, more and more researches have been 
proved the mutual effect between nano system and 
the biological environment also affect the effect of 
nanomaterials and the mount of accumulation in 
tumor, some modified ultrafine size nanoparticles 
show better permeation and distribution in the tumor 
tissue than large nanoparticles, which include the size 
less than 5 nm Fe3O4 T1-contrast agent. Mao et al. [197] 
reported a research using the Fe3O4 NPs (3.5 nm) 
modified with oligosaccharide (uIONPs), which could 

penetrate the tumor tissue and self-assemble in the 
acidic microenvironment of tumor tissues (Figure 11). 
The improvement on the delivery and tumor 
retention of Fe3O4 NPs were achieved by combining 
the reduced intravasation and enhanced 
extravasation. Moreover, in vivo MRI revealed that 
ultrafine Fe3O4 NPs showed “bright” T1 contrast when 
injected into the tumor vasculature, and then turn into 
“dark” T2 contrast after 24 h. The switch of T1-T2 
contrast demonstrated the ultrafine Fe3O4 NPs with T1 
contrast were dispersed state when inject into blood, 
and may aggregate formed large size Fe3O4 clusters 
with T2 contrast after penetrated into the tumor 
tissues. Therefore, this property of Fe3O4 NPs showed 
an inspiration on the design of responsive T1/T2 

conversion MRI contrast agents. 

4.4 Multimodal imaging 
In the process of the diagnosis and treatment, 

single imaging modality often cannot provide 
complete information about the tissues and organs 
[194]. Therefore, the combination of Fe3O4 NPs with 
two or more components to construct multimodal 
imaging system has become one of the main research 
directions [108]. Liu et al. [198] have designed the 
core-shell structure of Fe3O4@Cu2-xS (<10 nm), which 
showed excellent superparamagnetic and 
photothermal conversion capability. Therefore, the 
Fe3O4@Cu2-xS nanoparticles could be used as the agent 
of MRI, thermal imaging and photothermal therapy. 
Lee et al. [199] designed a MRI agent by the 
construction of Fe3O4/MnO nanoparticles to 
implement the dual modes of T2 and T1 contrast 
enhancement of each compound. The in vitro and in 
vivo results that the dumbbell-shaped Fe3O4/MnO 
nanoparticles with negative T2 contrast effect in the 
full state, but in low pH environment, the positive 
effect of T1-weighted MRI was raised due to the 
releasing of Mn2+. Yang et al. [200] have designed a 
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multifunctional nanoplatform by assembly the 
upconversion nanoparticles (UCNPs: β-NaGdF4:Yb/ 
Tm@β-NaGdF4) on the surface of graphitic-phase 
carbon nitride (g-C3N4) coated Fe3O4 nanospheres 
(Figure 12). Due to the T1 contrast agents of Gd and T2 

contrast agents of Fe, this platform showed the 
magnetic targeting ability under the guide of external 
magnetic field, and further supervised the therapeutic 
effect by dual-modal imaging precise localization. 

 

 
Figure 11. (A) The mechanism diagram of ultrafine Fe3O4 NPs (uIONPs) switch from T1-T2. (B) The change of T1 to T2-weighted MRI in vivo after injecting uIONPs for different 
times. Adapted with permission from [197], copyright 2017 ACS Nano. 

 
Figure 12. (A) The schematic diagram of synthesis process of Fe3O4@g-C3N4-UCNPs-PEG. (B.C) In vivo T2/T1-weighted MRI of samples, preinjected and after injection in situ. 
Adapted with permission from [200], copyright 2017 Advanced Healthcare Materials. 
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5. Fe3O4 NPs for Imaging-Guided Tumor 
Treatment 
5.1 Nanozyme 

In recent years, Fe3O4 NPs are reported to have 
the intrinsic biocatalytic activity akin to horseradish 
peroxidase (HRP) [201]. Therefore, inorganic 
nanoparticles have been used as nanozyme for 
specific biomedical applications [202, 203]. The 
mechanism of Fe3O4 as nanozyme in killing tumor 
cells can be understood as the Fenton reaction, which 
utilizes Fe3+/Fe2+ ions reaction with excessive H2O2 in 
tumor tissues to generate excessive reactive oxygen 
species (ROS) [204-206]: 

Fe3+ + H2O2 = Fe2+ + HO2•+ H+ 

Fe2+ + H2O2 = Fe3+ + •OH + OH- 

Due to the chain reaction between Fe3O4 (Fe2+, 
Fe3+) and H2O2, the Fenton reaction consumes the 
H2O2 in the tumor tissues and produce the •OH with 
cytotoxicity [207]. Based on the excellent enzyme-like 
activities, Fe3O4 NPs have been developed as enzyme 
mimetics for many novel biomedical applications 
[201]. It is worth mentioning that the efficient Fenton 
reaction usually require specific conditions, such as 
lower pH (3.0 ~ 4.0), higher temperature or UV/vis 
light irradiation. However, the pH value of tumor 
microenvironment is around 5.5-6.5, which cannot 
achieve the optimal Fenton reaction conditions [208]. 
Therefore, for achieve the best therapeutic effect, the 

UV/vis light or thermotherapy are always used to 
assist the Fenton reaction to enhance the ability of 
producing •OH [209]. 

Gu et al. [210] verified the enzyme-like activities 
of Fe3O4 NPs on role position and pH values. When 
the Fe3O4 NPs were internalized into tumor cells 
mainly concentrated in lysosomes and the cytotoxicity 
is related to the concentration. Fe3O4 show stronger 
toxic potency than γ-Fe2O3. Due to the acidic 
microenvironment of lysosomes, Fe3O4 NPs presented 
the peroxidase-like activity and the cell damage 
would be enhanced by the induced H2O2. In neutral 
pH conditions, both Fe3O4 and γ-Fe2O3 NPs cannot 
produce hydroxyl radicals (•OH), but just catalyze 
decomposition of H2O2 into H2O and O2 directly. 
These results show that the cytotoxicity of Fe3O4 
nanozyme are decided by the external environment 
and distribution intracellular. Lin et al. [211] reported 
a strategy for enhanced the chemodynamic therapy 
(CDT) effect by the synergistic of photothermal 
therapy, which combined the typical Fe3O4 nanozyme 
and the semiconductor Bi2S3 as shown in Figure 13A. 
The Fe3O4@Bi2S3 nanocatalysts could kill the cancer 
cells through the effect of photothermal treatment 
under 808 nm laser, and sequential thermal effect 
enhanced the Fenton action of Fe3O4 NPs, which could 
efficiently convert H2O2 into highly toxic •OH, thus 
realizing a remarkable synergistic anticancer 
achievement. 

 
 

 
Figure 13. (A) The synthesis mechanism diagram of Fe3O4@Bi2S3 nanocatalysts. (B) The schematic diagram of in vivo photothermal and chemodynamic therapy. (C) The 
photographs of anatomical tumors in vivo of treating groups. Adapted with permission from [211], copyright 2020 ACS Applied Materials & Interfaces. 
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Figure 14. The synthesis process illustration (A) and the TEM images (B) of FMUP (Scale bars: 100 nm). (C) In vivo CT images of FMUP before (down) and after injection (up). 
(D) The photographs of tumor-bearing mice after 14 days of treatment. Adapted with permission from [209], copyright 2018 Chemical Engineering Journal. 

 
Yang et al. [209] designed a novel diagnosis and 

treatment platform composed of Fe3O4 NPs, metal 
organic frame MIL-100(Fe), UCNPs (NaYF4:Yb, 
Tm@NaGdF4:Yb) and modified by PEG (aliased as 
FMUP). The UCNPs were designed for converter the 
near-infrared light to UV/vis light, which could excite 
the Fe3+/Fe2+ ions in the Fe3O4 NPs and enhance the 
effect of photo-Fenton reaction, thus activating the 
photocatalytic reaction by using MIL-100(Fe) as 
photosensitizer (Figure 14), which synergy combined 
photodynamic therapy (PDT) and photochemo-
therapy (PCT). The Fenton reaction produced 
cytotoxic reactive oxygen (•OH) with high 
cytotoxicity independent of the oxygen in the tumor 
microenvironment. Meanwhile, the Fe3O4 NPs and 
MIL-100(Fe) could form the heterojunctions that 
markedly inhibited the recombination of electrons 
and holes, thus effect enhancing the ability of PCT 
and PDT in producing ROS. The antitumor effect was 
showed by in vivo and in vitro assays, the experimental 
results have indicated that the FMUP with the 
excellent imaging ability of CT and UCL with positive 
synergistic treatment effect of PDT and PCT. 

5.2 Magnetic hyperthermia treatment 
Magnetic nanoparticles (MNPs) provide an 

effective platform for biomedicine with lots of 
applications such as MRI, magnetic guidance 
delivery, magnetic separation, and thermal treatments 

[212, 213]. The magnetic hyperthermia treatment 
(MHT) is a classical therapeutic concept based the 
principle of cancer cells are more vulnerable than 
healthy cells when the environment temperatures 
higher than 41 ℃. The thermal effect of MNPs could 
generate by the external alternating magnetic field 
(AMF) and define by the specific absorption rate 
(SAR), which is rate value of energy absorbed per unit 
mass of the agent when located in radio frequency. 
The values of SAR are influenced by the morphology 
and composition of the MHT agent, also be affected 
by the property of magnetic field such as frequency (f) 
and amplitude (H). Therefore, for achieving an effect 
of hyperthermia to tumors, the magnetically mediated 
hyperthermia nanomaterials must show the high SAR 
and low (f)/(H) in the low content. Thereinto, the 
superparamagnetic Fe3O4 NPs as the heat mediators 
via an oscillating magnetic field show remarkable 
superiority, because SAR values of superparama-
gnetic nanoparticles can be enhanced by increasing 
either (f) or (H) (or both increase) during the 
measurements [96]. In general, most studies on the 
SAR carried out on Fe3O4 NPs were prepared by 
co-precipitation method or sol-gel, the resulting 
nanoparticles were usually in the size of 20-50 nm. 
Only few researches of SAR prepared by thermal 
decomposition methods have reported, because small 
size Fe3O4 NPs usually has a low SAR value [212]. 
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Ishimura et al. [214] reported the research of 
superparamagnetic Fe3O4 NPs (SPIONs) clusters for 
MRI and MHT. Superparamagnetism of Fe3O4 NPs 
only present in the size less than 10 nm. However, this 
size is smaller than capillaries pores of normal tissues 
and will lead to the leakage of SPIONs from the 
normal tissues, resulting the low accumulation in 
tumors, and reduce the effect of the tumor diagnosis 
and treatment. To obtain effective accumulation and 
excellent therapeutic effect of magnetic hyperthermia 
treatment, the FA and PEG modified SPIONs 
nanoclusters were designed (FA-PEG-SPION NCs). 
The SPIONs clusters not only prevented the leakage 
from normal tissues capillaries, but also increased the 
rate of relaxivity and the specific absorption. 
Meanwhile, the FA and PEG could also increase the 
targeting of SPIONs clusters and enhance the amount 
accumulation in tumors. After intravenous injection 
the FA-PEG-SPION NCs for 24 h, the clusters would 
accumulate locally in cancer (not necrotic) tissues and 

enhance the MRI intensity. Furthermore, the 
FA-PEG-SPION showed excellence magnetic 
hyperthermia effect under the alternating current 
magnetic field (f = 230 kHz, H = 8 kA/m).  

Liang et al. [215] designed a multifunctional 
system consisting of Pd modified Fe3O4 nanoparticles 
(JNPs) with the property of dual-mode MRI and PA 
(photoacoustic) imaging, synergy of photothermal 
therapy, magnetic therapy and chemodynamic 
therapy (Figure 15). The plasmonic photothermia 
property of Pd nanosheets could achieve synergistic 
effects for enhancing the magnetic/photothermal 
effect of Fe3O4 NPs, and the chemodynamic therapy 
could be attributed to the •OH, which generate from 
the Fenton reaction of Fe3O4 NPs and catalytic 
properties of Pd nanosheet in an acidic environment 
of tumor H2O2. Meanwhile, the ability of reactive 
oxygen species production could also be further 
enhanced under alternating magnetic field and 
near-infrared light irradiation. 

 
 

 
Figure 15. (A) The illustration of the design Fe3O4-Pd JNPs. (B) TEM images of Fe3O4-Pd JNPs (TEM (a), enlarged TEM (b) and HRTEM (c)). (C) The photos of tumor tissues 
harvested from mice at the end of treatment. Adapted with permission from [215], copyright 2019 Nanoscale Horizons. 
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Figure 16. Schematic illustration showing the synthesis process of red blood cell membrane coated Fe3O4@Cu2-xS nanocluster system (A) and magnetic field triggered active 
targeting of MRI and PTT (B). Adapted with permission from [222], copyright 2020 Journal of Materials Chemistry B.   

 

5.3 Photothermal therapy 
Photothermal therapy (PTT) is widely used for 

tumor therapy in recent years, relying on the 
nanoparticles in tumor tissues to convert optical 
energy into thermal energy to kill cancer cells [216]. 
Compared with surgical management and 
radiotherapy chemotherapy, PTT is more controllable, 
highly efficient and lower invasive [217]. This 
treatment takes the advantage of near-infrared light 
(NIR) with excellent tissue penetration effect and 
minimum damage in the range of 700-1100 nm, which 
could activate specific materials to transformation 
energy generate thermal effect and cause damage to 
the tumor tissues. Many nanomaterials have been 
developed as PTT agents, such as noble metals, 
semiconductors, and special polymers, which usually 
have a strong optical absorbance in the near-infrared 
optical window [218]. The potential toxicity caused by 
photothermal agents is still an unresolved problem 
because these nanoparticles tend to accumulate in 
organs and the slow degradability of nanomaterials 
would introduce inflammatory cytokine production, 
increase oxidative stress and cell death, which would 
limit the clinical application of PTT [219, 220]. 
Therefore, that necessary to explore the agent with 
biosafe and biodegradable for PTT.  

Fe3O4 NPs have been attention due to the 
excellent biocompatibility, nontoxicity, MRI and 
magnetic targeting capability [221]. Although the 

Fe3O4 have been approved as drugs for clinical. 
However, there are few reports about Fe3O4 NPs in 
photothermal therapy, due to the low molar 
extinction coefficient and poor photothermal 
conversion efficiency [222]. In order to improve the 
photothermal therapy effect of Fe3O4 NPs, much 
research has been done, one common way is to 
decorate the materials with high photothermal 
conversion (e.g., noble metals, copper chalcogenides, 
special polymer) onto the surface of magnetic Fe3O4 
NPs to enhance the plasma resonance, another is to 
change the morphology of Fe3O4 NPs for obtaining 
better photothermal conversion effect [223]. Shi et al. 
[224] reported the photothermal effect of special 
shape magnetic Fe3O4 NPs both in vitro and in vivo 
experiments. The heating effect of Fe3O4 NPs with the 
shape of spherical, hexagonal and wire-like were 
found rapidly generated under the red and 
near-infrared range laser irradiation, which showed 
obviously damaged on cancer cell cellular organelles. 
Due to the photothermal effect of the special-shaped 
Fe3O4 NPs, the tumor cells were found to be 
significant apoptosis with tumor reduction. 

Wu et al. [222] proposed a simple method to 
transfer hydrophobic Fe3O4@Cu2-xS NPs to 
hydrophilic with the help of red blood cell membrane 
(Figure 16), which showed excellent performance for 
T2-weighted MRI and PTT. The obtained 
nanoplatform was consist of the densely Fe3O4@Cu2-xS 



Theranostics 2020, Vol. 10, Issue 14 
 

 
http://www.thno.org 

6298 

nanocluster core and the red blood cell membrane 
layer shell. This system displayed a stable 
nanostructure, excellent magnetic targeting ability 
and photothermal conversion ability. With the 
advantages of the red blood cell membrane, the 
nanocluster was protected from the elimination by 
macrophages, and showed excellence magnetic 
targeting under the external magnetic field. Therefore, 
all of these features promote the platform with high 
performance for MRI and PTT.  

Recent researches have demonstrated the 
magnetic moment could significantly enhance with 
the agglomeration state [225]. Therefore, change the 
monodisperse magnetic Fe3O4 NPs into clusters 
provided an effective way to enhance the specific 
absorption rate (SAR) [226]. Yang et al. [227] reported 
an efficient PTT platform by self-assembly the 
monodisperse Fe3O4 nanocrystal into spherical 
superparticles (SPs), which could significantly 
increase the effect of photothermal treatment (Figure 
17). For further enhance the tumor treatment effect, 
mPEG-PLGA copolymer were used to modify the 
Fe3O4 SPs, and immune adjuvant R837 were loaded to 

generate the antigens associated to tumor and induce 
strong antitumor immune responses synergistic 
treatment of tumor.  

5.4 Photodynamic therapy 
Photodynamic therapy (PDT) is considered as an 

emerging therapeutic strategy for clinical anticancer 
in recent years, due to the low systemic toxicity, 
cooperativity and negligible side effects. It includes 
three important parts: photosensitizers (PS), exciting 
light and oxygen in the tissue [200]. The principle of 
PDT is to trigger the reactive oxygen species (ROS) 
with cytotoxicity to induce tumor cells death. 
Meanwhile, the accurate delivery of photosensitizer to 
tumor tissue also play an important part of the 
treatment process. Magnetic targeting is a classic 
targeting approach, which takes the advantages of 
magnetic nanoparticles with the capability of being 
magnetized and directional movement by an external 
magnetic field, finally guidance the magnetic 
nanoparticles concentrate in specific location. This 
physical interaction exhibiting potential application 
for tumor targeting, and as an excellent magnetic 

 

 
Figure 17. (A) The schematic illustrates of the Fe3O4-R837 SPs synthesis process.  (B) TEM images of Fe3O4-R837 SPs (scale bar: 50 nm). (C) The schematic diagram of 
Fe3O4-R837 SPs for cancer therapy by antitumor immune responses synergistic photothermal therapy. Adapted with permission from [227], copyright 2018 ACS applied 
materials & interfaces. 
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carrier, the Fe3O4 NPs have been concerns on the 
excellent MRI performance, magnetic targeted ability, 
high biocompatibility and chemical stability. 
Therefore, the effective combination of 
photosensitizer with Fe3O4 NPs could construct the 
photodynamic therapy nanoplatform with the 
magnetic targeted and MRI guided. 

Lin et al. [228] synthesized a multifunctional 
treatment platform by covalently grafting Fe3O4 on 
the surface of MoS2, then the photosensitizers 
indocyanine green (ICG) molecules and prodrugs Pt 
(IV) were loaded on the surface of MoS2@Fe3O4 as 
shown in Figure 18A (Mo@Fe-ICG/Pt). The high 
transverse relaxivity Fe3O4 NPs in the Mo@Fe-ICG/Pt 
nanocomposites were used as an effectively 
T2-weighted MRI contrast agent, which provided an 
excellent positioning effect for photothermal therapy 
of MoS2, photodynamic therapy of ICG, and 
chemotherapy triggered of Pt (IV) prodrugs, thus 
leading to an ideal nanoplatform for tumor imaging 
and treatment. 

Zhu et al. [229] designed a multifunctional tumor 
treatment platform composed of Fe3O4 core and two 
kinds of shells, which are MnO2 and polypyrrole 
(PPy) as shown in Figure 19. The PPy was used as the 
agent of photothermal and photosensitizer, then 
combined with Fe3O4@MnO2 for achieving the 

magnetic targeting effects. The MnO2 shell could 
catalyze the H2O2 in the tumor tissues decompose into 
O2 to improve the production of ROS under the 
irradiation, finally enhance the therapeutic effect of 
PTT/PDT. Meanwhile, the Fe3O4@MnO2@PPy 
nanocomposite could also load DOX efficient and 
implement an acid response release in tumor tissues, 
which also realized the synergistic chemotherapy and 
PDT/PTT by avoiding damage to normal cells. 

5.5 Chemotherapy drug delivery  
The most common non-surgery methods for 

cancer treatment are chemotherapy and radiation 
therapy. Nowadays, there are about 80 different kinds 
of antitumor drugs in the clinic, and around 400 drugs 
are being tested in clinical trials [230, 231]. Although 
they are effective in some cancer types, most of them 
lack specificity towards tumor cells [232]. The normal 
tissues and organs will be harmed at therapeutic 
dosage [233]. Tumor-targeting therapy is delivering 
some chemotherapy drugs or other antitumor 
bioactive compounds to cancer cells by specific 
carriers, with limited influence on normal healthy 
tissues, resulting in higher therapeutic efficiency and 
lower toxicity [234, 235]. Meanwhile, the target 
delivery can be classified into three types based on the 
destination of the drugs, the primary target is 

 

 
Figure 18. The schematic diagram of the synthesis process (A) and TEM images (B) of Mo@Fe-ICG/Pt nanocomposites. The T2-weighted MRI preinjection (C) and after injection 
(D) of Mo@Fe-ICG. (D) The photographs of mice after treatments by Mo@Fe-ICG/Pt. Adapted with permission from [228], copyright 2017 Advanced Science. 



Theranostics 2020, Vol. 10, Issue 14 
 

 
http://www.thno.org 

6300 

reaching determined tissues or organs. The secondary 
target is reaching specific cells. The third-level target 
is interacting with some specific targets inside cells 
[236, 237]. So far, tumor nano-delivery systems have 
attracted main attention on the size so that the drug 
could enrich in tumor tissues owing to the EPR effect 
of tumor tissues [238, 239]. Meanwhile, the 
nano-delivery system could conjugate with some 
certain ligands to permits the active targeting into 
tumor tissues. Achieving highly specific targeting to 
cancer cells is the ultimate goal in cancer therapy and 

diagnosis [240, 241].  
In 1960s, Freeman et al has introduced the 

magnetically Fe3O4 NPs guided anti-cancer drugs 
delivery carrier is a unique method to concentrate 
drug accumulation of therapeutic nanoparticles to 
tumor tissues to improve therapeutic efficacy and 
used for the MRI contrast agent in 1985s [75, 242]. 
Meanwhile, the monitoring of drug release in vivo 
provides the accurate and reliable information for 
guiding the chemotherapy. The in vivo drug delivery 
based on the imaging guiding shows unique 

 

 
Figure 19. Schematic illustration for the fabrication and magnetic targeting, improved PDT by the catalytic decomposition of H2O2 and synergistic chemotherapy and PDT/PTT 
treatments of the Fe3O4@MnO2@PPy-DOX to cancer cells. Adapted with permission from [229], copyright 2018 Journal of Materials Chemistry B. 

 
Figure 20. The schematic diagram of Fe3O4@PLGA nanocomposite for MPI-based drug release monitoring. (B) SEM image of DOX loaded Fe3O4@PLGA nanocomposites, and 
TEM image of a Fe3O4@PLGA nanocomposites (Inset). (C) MPI and CT merged images injected intratumorally with Fe3O4@PLGA. Adapted with permission from [243], 
copyright 2019 Nano letters. 
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advantageous due to the no invasiveness and the 
drug distribution visualization [243]. Magnetic 
particle imaging (MPI) due to the deeper tissue 
penetration and quantifiable signal intensity are 
widely used in detecting drug release in vivo, which 
mainly use the superparamagnetic Fe3O4 NPs as the 
contrast agent and sole signal source [244, 245]. Smith 
et al. [243] designed a core-shell nanocomposite 
consisting of the superparamagnetic Fe3O4 
nanocluster and PLGA loaded with the chemotherapy 
drug DOX, which could be applied for drug delivery 
and the tracer of MPI quantification (Figure 20). The 
core-shell nanocomposite can occur decomposition in 
the tumor microenvironment (pH = 6.5), which could 
induce the gradual decomposition of the Fe3O4 
nanocluster, sustained release of DOX and the change 
of MPI signal. The results indicated that induced MPI 
signal changes and the release rate of DOX over time 
displayed a linear correlation (R2 = 0.99). Using this 
phenomenon, the chemotherapy drug release process 
in tumor tissue can be successfully monitored to 
assess the induced tumor cell damage. 

In recent years, the delivery of drug using cancer 
cell membrane, especially that from the homologous 
tumors has become an emerging tumor-targeting 
modification method [246]. In this context, a series of 
cancer cell membrane modified Fe3O4 NPs for the 
cancer diagnosis and treatment are reported. By 
modifying employ the source cancer cell membrane in 
vitro, the Fe3O4 NPs are identified with the 
self-recognition internalization, and “homing” 
targeting ability to the homologous tumor in vivo to 
precisely deliver the drugs to the appropriate tumor 
sites [247, 248]. As a result, Fe3O4-based delivery 
system shows strong curative effect for MRI and 
tumor treatment in vivo. This delivery strategy by 
modifying cell membrane on the traditional delivery 

system have shown great potentials for precise 
targeting to particular tumors by merely adjusting the 
corresponding type of modified cell membrane [249, 
250]. Zhang et al. [250] devised a magnetic Fe3O4 NPs 
(MNP) based diagnosis and treatment nanomaterials 
platform, and modifed the cracked cancer cell 
membranes (CCCM) on the surface coating the Fe3O4 
NPs with the particular kind of cell membrane 
derived from a specific delivery system to correspond 
type of tumor (Figure 21). Meanwhile, the 
chemotherapy drug DOX can also be delivered with 
the CCCM modified MNP system, which showed 
self-recognition to the same cancer cell lines by the 
“homing” to the homologous tumor in vivo. These 
results provide a new approach to develop highly 
tumor-recognizing self-targeting nanosystems for 
cancer therapy and diagnosis.  

5.6 Gene delivery 
Small interfering RNA (siRNA) could 

downregulate specific protein expression by 
suppressing a targeted gene selectively at the mRNA 
transcription level through a mechanism called RNA 
interference (RNAi) [251, 252], which have been 
widely researched for treating a variety of genetic 
diseases, such as cardiovascular diseases and cancers 
[253, 254]. Despite of these advantages, the low 
transport efficiency of siRNA with severe side effects 
still limits the clinical use [255, 256]. Fe3O4 NPs are 
well-established depend on possess magnetic 
properties, actively investigated as new generation for 
MRI, excellent biocompatibility and versatile surface 
functionalization capability, due to the unique 
characteristics, Fe3O4 NPs are extensively explored for 
various biomedical applications especially in delivery 
of therapeutics, antibodies, peptides, nucleic acids, 
and other assorted biological agents biological agents 

 
Figure 21. (A) The schematic diagram of cracked cancer cell membrane (CCCM) embellished MNPs and the mechanism for prioritizing cancer cells recognition; (B) TEM images 
of MNP and MNP@DOX@CCCM. Adapted with permission from [250], copyright 2016 Nano Letters. 
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[257, 258]. Chen et al. [259] reported a multifunctional 
nanoclusters as an agent for dual-modal T1-T2 MRI 
imaging and siRNA delivery (Figure 22). The 
hydrophilic nanoclusters were self-assembled from 
the hydrophobic gadolinium (Gd) embedded Fe3O4 
nanocrystals (GdIO), after self-assembly with 
polyethylenimine (stPEI), the obtained GdIO-stPEI 
nanoclusters showed good stability, dispersity and 
dual-modal T1-T2-weight MRI properties. Meanwhile, 
the composite nanoclusters with the ability to deliver 
the siRNA, while maintaining other properties such 
as magnetism, biocompatibility, and imaging 
performance, thus providing a safe and efficient 
method for imaging guidance gene delivery. 

Conclusion and Perspective  
In summary, we reviewed the recent research of 

Fe3O4 NPs from the synthesis, surface modification, 
and focus description the novel biomedical 
applications in tumor imaging and therapy. With the 
development of nanotechnology more high quality 
Fe3O4 NPs synthesis methods are reported, and the 
surface modification of Fe3O4 NPs also became more 
functional. New-generation Fe3O4-based contrast 
agents could realize the multimode and responsive 
imaging, provided more accurate and effective 
information for tumor diagnosis and guided follow 
treatment. 

At present, the clinical application of 
multifunctional Fe3O4 is mainly in MRI contrast agent, 
not really implemented the integration of diagnosis 
and treatment [260]. First, the complex preparation 

process, high cost and long tumor treatment trial 
period limit the clinical use of Fe3O4-based drugs. 
Second, although the magnetic targeting could 
increase the accumulation of Fe3O4-based drugs in 
tumor tissues, the available percentage still less than 2 
% of the intravenously administrated dose. Third, 
there may be no EPR effect of the nanomaterials in the 
solid tumor of human beings comparing with the 
nude mouse tumor models. Last but not the least 
important, the potential toxicity of nanoparticles has 
not been properly addressed. Totally, these 
disadvantages limit the Fe3O4-based drugs for the 
further clinical applications. We believe these 
advanced reports will guide the academic researchers 
and industries to accurate the present translational 
stage for the further bioapplications utilized with 
these multifunctionalized magnetic iron oxide 
nanomaterials.  
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