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Partially and fully saturated N-heterocycles are of high syn-
thetic value, and can for example be accessed by cyclization 
onto vinyl sulfonium reagents1–4, yet their direct synthe-

sis by cyclization reactions to olefins is not generally established. 
The development of SnAP reagents is an excellent example of how 
bifunctional reagents5 can quickly generate useful N-heterocycle 
diversity through cyclization onto aldehydes6, but similar reactiv-
ity via a single-step-reaction with alkenes has not been developed. 
In 2001, Oshima and co-workers reported a radical chain process 
using N-allyl-N-chlorotosylamide as a nitrogen-radical precur-
sor for reaction with alkenes to generate N-tosylpyrrolidines7. Shi 
and co-workers developed diaziridinones as nitrogen-centred radi-
cal (NCR) precursors for ring expansion with alkenes to generate 
N-tert-butyl-protected imidazolidinones under copper catalysis8. 
Xu and co-workers reported the use of functionalized hydroxyl-
amines to generate carbamate-based NCRs for the construction 
of oxazolidinones under iron catalysis9. Another example uses 
N-fluorobenzenesulfonimide specifically for the construction of 
sultams under copper catalysis10. Despite the large synthetic utility, 
these methods can only generate a single, specific N-heterocycle, 
typically with an electron-withdrawing nitrogen-protecting group 
that may be challenging to remove. No single method appears to be 
available that can generate several different types of N-heterocycles 
from olefins11. Here we fill this conceptual void and demonstrate 
a modular approach to access a large variety of different, syntheti-
cally valuable heterocycles that are not currently accessible via 
other NCRs or polar reactions from simple alkenes in a single step  
(Fig. 1)12. For example, while morpholine syntheses are well known, 
their one-step synthesis from olefins has not been reported13.

NCRs are important intermediates in C–N bond formation reac-
tions14–19. Due to the high bond dissociation energy of the N–H bond 
(107 kcal mol−1 for ammonia)20, NCRs can function as reactive spe-
cies for intramolecular hydrogen-atom transfer, for example to gen-
erate pyrrolidine derivatives21, as in the Hofmann–Löffler–Freytag 
reaction22,23. NCRs can also function as electrophilic radicals24, add-
ing to electron-rich π systems in alkenes or arenes to form alkyl or 
aryl amines. Synthetic applications of such reactivity have resulted 

in successful hydroamination25,26, aminooxygenation27–30, amino-
fluorination31–33, carboamination34,35 and aminoazidation36,37, all of 
which introduce two different functional groups to an alkene in a 
single step. Despite the advance and scope of difunctionalization 
reactions with NCRs, intermolecular cyclization reactions to furnish 
N-heterocycles are still challenging because most nitrogen-radical 
precursors contain sulfonyl or similar groups on the nitrogen to 
enhance the electrophilicity of the respective NCRs15,24.

Results and discussion
Our goal was to generate a stable reagent that could be transformed 
into an electrophilic NCR under conditions that would tolerate the 
presence and reactivity of a pendant nucleophile for subsequent 
ring closure. While, a priori, several NCR precursors could meet 
such a goal, one reason why such a compound class has not yet been 
disclosed may be the synthetic challenge to make these reagents due 
to undesired cross-reactivity of the pendant nucleophile or unde-
sired reactivity of the nitrogen-activating group. For example, the 
chloride released upon NCR formation from N-chloroamonium 
salts may outcompete a pendant hydroxyl group for addition38. Here 
we report the use of sulfilimines, a substrate class that has previ-
ously been used in other transformations39, to address this synthetic 
challenge. The bifunctional sulfilimine 1 was obtained directly from 
commercially available reagents in a reaction of aminoethanol and 
dibenzothiophene-S-oxide activated by triflic anhydride (Fig. 2a). 
Irradiation of a photoredox catalyst in the presence of sulfilimine 1,  
acid and styrene results in phenylmorpholine formation (Fig. 2a).  
Light and photoredox catalyst are essential for the reactivity 
(Supplementary Tables 1–6). Both Brønsted acids and Lewis acids 
accelerate cyclization, possibly due to more efficient single electron 
transfer (SET) from the excited photoredox catalyst to the sulfili-
mine coordinated to acid (Fig. 2b and Supplementary Table 1).  
According to the recorded cyclic voltammogram of sulfilimine 1 
(Supplementary Fig. 7), no reduction peak was observed within 
the evaluated potential, which indicates that mesolytic cleavage 
of the S=N bond in sulfilimine 1 by initial SET to 1 to the corre-
sponding NCR is slow with standard photocatalysts. In contrast, 
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the Bi(OTf)3-coordinated sulfilimine 1 (A) exhibits a high reduc-
tion potential (Ep = −0.4 V versus Ag/AgCl, Supplementary Fig. 7), 
so that fast SET with the excited iridium photocatalyst (E1/2(IrIII*/
IrIV) = −1.28 V vs saturated calomel electrode)40 can be observed, 
to form B (Fig. 2b). Bi(OTf)3 was identified as optimal because 
Brønsted acids could result in cationic polymerization of activated 
olefins such as electron-rich styrenes (Supplementary Table 2)41. In 
addition, both Lewis and Brønsted acids could be responsible for 
rendering the amine radical electrophilic for polarity-matched addi-
tion to the electron-rich π system of the olefin42–44. A stoichiometric 
amount of Bi(OTf)3 is required due to the basicity of the products. A 
conceptual advantage of the sulfilimines over other NCR precursors 
is their ability to enable easy introduction of pendant nucleophilic 
functional groups on NCRs, and directly afford unprotected N–H 
nitrogen heterocycles in a single step without the need for covalent 
activating groups or a deprotection step. Upon addition to the π 
system, the oxidized photoredox catalyst can oxidize the resulting 
carbon radical C for subsequent intramolecular nucleophilic attack 
(D) of the pendant nucleophile and regeneration of the photoredox 
catalyst resting state (Fig. 2b).

Various bifunctional sulfilimine reagents can be synthesized in a 
single step (Tables 1 and 2). Primary amines including aminoalco-
hols, diamines and aminopyridines react to produce iminodibenzo-
thiophenes with pendant hydroxyl (3–6), amide (7, 8) or pyridinyl 
groups (9, 10). The diversity of the suitable sulfilimines for het-
erocycle synthesis was extended by reaction of the parent iminod-
ibenzothiophene (11) with acylating reagents, which gives access 
to other classes of sulfilimines, such as those derived from amides, 
pyrimidines and triazines from acid chlorides (12–15), chloropy-
rimidines (16) and chlorotriazines (17), respectively. All sulfilimi-
nes shown, with the exception of 6, are easily handled solids and are 
stable in ambient atmosphere without detectable decomposition for 
at least three months; while also stable, 6 was isolated as an oil.

Cyclization of a variety of sulfilimines with a variety of 
electron-rich olefins gives access to a large family of diverse, syn-
thetically valuable heterocycles in a single step (Table 3 and Fig. 3). 
The products can be isolated without protecting groups on nitro-
gen, but in situ protection of nitrogen with a tert-butyloxycarbonyl 

(Boc) group is facile, if desired, as shown for 18. Styrene derivatives 
that are prone to cationic polymerization under acidic conditions45 
such as 19 and 22 can selectively react with the bifunctional sulfili-
mine 1 to produce morpholines in 78% and 55% yield, respectively. 
Olefins with heteroaryl substituents, such as indoles (24), pyridines 
(25) and benzothiophenes (28), are well tolerated. The putative 
bismuth(III)-coordinated amine radicals undergo addition reac-
tions chemoselectively to alkenes in the presence of electron-rich 
arenes (19), allylic hydrogens (23, 27, 30–33, 35) and even ether 
(DME) as solvent. Such functional groups are often reactive with 
other NCRs either via radical addition46,47 or via hydrogen-atom 
transfer processes48–50. In addition to α-styrenes, 1,1-disubstituted 
alkenes (37) can also undergo cyclization with sulfilimine 1 to pro-
duce morpholine heterocycles with a quaternary centre, although 
for most other investigated alkyl-substituted alkenes that fea-
ture allylic hydrogen atoms, allylic amination was observed44. For 
1,2-disubstituted alkenes that bear a group that can stabilize a 
positive charge, high diastereoselectivity is observed for cyclization 
(26, 27), providing 2,3-disubsituted morpholines. Both trans- and 
cis-propenylbenzenes produce the same product with the same 
diastereoselectivity, which supports the proposed intermediacy of 
NCRs. High regioselectivity is also obtained in reactions with dienes, 
such as 34 and 35, as cyclization reaction only occurs at the termi-
nal alkene of the diene, producing alkenyl-substituted morpholines. 
When alkyl-substituted dienes are used, the thermodynamically 
more stable trans-olefin is obtained as major product (35). In the 
case of styrene-derived dienes (34), a known photocatalysed isom-
erization51 occurs to produce cis- and trans-styrenylmorpholines. 
Cyclic alkenes afford bicyclic and tricyclic morpholines. Highly 
diastereoselective formation of morpholine derivatives with fused 
rings is achieved when endocyclic olefins such as norbornene 
(29), 1-phenyl-1-cyclohexene (30) and indenes (31, 32) are used. 
Exocyclic olefins such as 7-methyl-4-methylenechromane (33) 
and camphene (37) are also suitable reaction partners, produc-
ing spirocyclic morpholines. These polycyclic heterocycles can 
be constructed selectively in a single step from the corresponding 
alkenes, and are not readily accessible via other synthetic meth-
ods. Olefins that would afford cations upon radical addition and 
oxidation that are not sufficiently stabilized, such as in α olefins 
and 1,2-disubstituted alkenes without stabilizing groups, such 
as an aryl or vinyl substituent, cannot participate in the reaction 
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Fig. 1 | Bifunctional sulfilimines for synthesis of various N-heterocycles.  
a–c, In this article, bifunctional sulfilimines that feature both nitrogen-radical 
and polar reactivity have been developed to react with alkenes, giving a 
divergent and modular approach to versatile N-heterocycles including 
morpholines, piperazines and oxazepanes (a), dihydrooxazoles (b) and 
dihydroimidazoles (c). Nu, nucleophilic group; Het, heteroaryl.

Table 1 | Synthesis of bifunctional sulfilimines from amines
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Reaction conditions: 1.0 equiv. of dibenzothiophene-S-oxide, 1.1 equiv. of triflic anhydride and  
2.5 equiv. of amine in DCM (0.1 M) at −40 °C.

Nature Chemistry | VOL 14 | August 2022 | 898–904 | www.nature.com/naturechemistry 899

http://www.nature.com/naturechemistry


Articles NaTure CHemISTry

(Supplementary Fig. 1), whereas styrene-like, 1,1-disubstituted and 
diene-based olefins participate successfully. The method can be 
used for late-stage diversification (38, 39). To further demonstrate 
the synthetic value of the method, we accomplished a concise syn-
thesis of H1 receptor antagonist 41 (Fig. 3). The modular approach 
allows us to construct the key morpholine structure directly from 

alkene 40, which substantially increased the total yield and reduced 
the step count compared to the previously published procedure52. 
The reaction requires the use of a stoichiometric amount of diben-
zothiophene heterocycle, which, however, can be recycled after 
successful cyclization; for example, 92% of dibenzothiophene was 
reisolated after formation of 2.

The modular approach and the accessibility of various 
bifunctional sulfilimines enables the synthesis of other types of 
N-heterocycles under the same reaction conditions by simply 
changing the substituents on the sulfilimines (Fig. 3). Disubstituted 
morpholines are obtained when sulfilimines such as 3 or 4 react with 
alkenes. Although low diastereoselectivity (2:1) was observed when 
the stereocentre is α to the hydroxy substituent, high diastereoselec-
tivity (>20:1) is obtained when the stereocentre is α to the nitrogen 
substituent. Other sulfilimine reagents (5–8) enable the construc-
tion of oxazepanes (44, 45) and piperazines (46, 47) in syntheti-
cally useful yields. We subsequently explored the generality of our 
modular approach to N-heterocycles with sulfilimines derived from 
amines other than alkyl amines. Acyl-amine-derived sulfilimines 
(12–14) can also function as bifunctional reagents, which undergo 
cyclization with alkenes under the same reaction conditions to 
produce dihydrooxazoles (50–52)53,54. An intriguing reactivity 
was discovered when using sulfilimine 15 as substrate, providing 
tetrahydrobenzofuran 53 exclusively in 89% yield instead of an 
N-heterocycle. A plausible rationale is that the generated enamine 
NCR reacts to the more stable carbon-centred radical, which is then 
involved in annulation with 1,1-diphenylethylene (Supplementary 
Fig. 13). The photocatalytic annulation strategy can also be applied 
to heteroaryl-amine-derived sulfilimines (9, 10, 16, 17), generating 
electrophilic arylamine radicals that are reactive for cyclization with 
alkenes to form dihydroimidazole derivatives (48, 49, 54, 55). In 
the case of sulfilimine 17, the initially formed triazinium underwent 
hydrolysis under basic conditions to form triazinone 55. NCRs with 
alkyl, aryl and acyl substituents on nitrogen can be accessed via the 
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Fig. 2 | Synthesis of sulfilimine 1, reaction optimization and proposed mechanism of the cyclization reaction. a, The sulfilimine 1 was obtained from 
the reaction of aminoethanol and triflic-anhydride-activated dibenzothiophene-S-oxide in a single step. The reaction optimization shows that both 
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Table 2 | Synthesis of bifunctional sulfilimines from 
dibenzothiophene-S-imine
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Reaction conditions: 1.0 equiv. of dibenzothiophene-S-imine (11), 2.0 equiv. of K2CO3 and 1.5 equiv. 
of acid chloride in DMF (0.1 M) at 25 °C for 3 h, or 2.0 equiv. of chloroazine in DMF (0.1 M) at 
110 °C for 6 h.
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same photocatalytic method, which is difficult to achieve with other 
NCR precursors55,56. The scope of heterocycles presented herein 
exceeds that of other reported single methods12.

Preliminary mechanistic experiments are in agreement with the 
proposed strategy shown in Fig. 2b (Supplementary Figs. 2–12). 

A 1:1 mixture of sulfilimine 1 and Bi(OTf)3 results in a new peak 
potential that is absent in both 1 and Bi(OTf)3 alone, which we 
assign to the 1–Bi(OTf)3 adduct A as observed in the cyclic voltam-
mogram (Fig. 4a). The high reduction potential (Ep = −0.4 V versus 
Ag/AgCl) may be responsible for a fast SET from the excited iridium  
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Table 3 | Scope of alkenes for synthesis of morpholine derivatives
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Bi(OTf)3, sulfilimine 1 and a 1:1 mixture of Bi(OTf)3 and 1 in DME (2.5 × 10–5 M). A new absorption peak at 326 nm was observed when using a 1:1 mixture of 
Bi(OTf)3 and 1. Both cyclic voltammetry and ultraviolet–visible spectra indicate a direct interaction of Bi(OTf)3 with 1, which plays a key role in activation of 
sulfilimine 1 for the generation of the corresponding NCR. c, A radical clock experiment using both 2-vinylcyclopropylbenzene and 1,6-diene shows that the 
reactions proceed via generation of NCRs.
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photocatalyst, while reduction of 1 by itself was not observed. The 
existence of adduct A is further substantiated by ultraviolet–vis-
ible spectroscopy through a new absorption maximum at 326 nm  
(Fig. 4b). Radical clock experiments with 2-vinylcyclopropylbenzene 
and a 1,6-diene under optimized reaction conditions with sulfili-
mine 1 produce ring-opened product 56 and cyclization product 
57, respectively, in agreement with NCRs (Fig. 4c).

Conclusion
Photocatalysed modular synthesis has enabled the construction 
of various N-heterocycles with different ring types, ring sizes and 
substituents on the skeleton in a single step by reaction of easily 
available bifunctional sulfilimines and alkenes. The scope of het-
erocycles provided here is broader than that of other reported single 
methods for N-heterocycle synthesis from olefins.

Online content
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ing summaries, source data, extended data, supplementary infor-
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Methods
General procedure for cyclization. Under a nitrogen atmosphere, to a 4 ml 
borosilicate vial equipped with a magnetic stir bar were added alkene (if solid) 
(0.200 mmol, 1.00 equiv.), sulfilimine (0.400 mmol, 2.00 equiv.), [Ir(dFppy)3] 
(3.0 mg, 4.0 µmol, 2.0 mol%), Bi(OTf)3 (262 mg, 0.400 mmol, 2.00 equiv.), DME 
(1 ml, c = 0.2 M), and alkene (if liquid) (0.200 mmol, 1.00 equiv.). The vial was 
sealed with a septum cap and irradiated for 6 h at 10 °C using a photoreactor 
equipped with a blue LED module (KT-Elektronik, ‘100 W Power LED blau 450 nm 
Aquarium’, 450 nm, 30 W), cooled with two Peltier elements (TEC1-12706). Then, 
the reaction mixture was concentrated to dryness. The residue was dissolved 
in DCM (5 ml) and washed with saturated aqueous sodium carbonate solution 
(5 ml). The aqueous phase was extracted with DCM (2 × 5 ml). The organic phase 
was dried over Na2SO4 and filtered, and the solvent was removed under reduced 
pressure. The residue was purified by chromatography on silica gel eluting with 
CH2Cl2/MeOH (50/1–10/1 v/v) to afford the cyclization product.

Note: The reaction is air sensitive. The Schlenk technique was used to avoid 
air. For simplicity, in our research, we have opted to execute the transformation 
for most compounds in a glovebox. Control experiments showed that yields were 
within the error of measurement if the reaction was carried out using a glovebox or 
the Schlenk technique.
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