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For the shortcomings of the manta ray foraging optimization (MRFO) algorithm, like slow convergence speed and difficult to
escape from the local optimum, an improved manta ray foraging algorithm based on Latin hypercube sampling and group
learning is proposed. Firstly, the Latin hypercube sampling (LHS) method is introduced to initialize the population. It divides the
search space evenly so that the initial population covers the whole search space to maintain the diversity of the initial population.
Secondly, in the exploration stage of cyclone foraging, the Levy flight strategy is introduced to avoid premature convergence.
Before the somersault foraging stage, the adaptive t-distribution mutation operator is introduced to update the population to
increase the diversity of the population and avoid falling into the local optimum. Finally, for the updated population, it is divided
into leader group and follower group according to fitness. )e follower group learns from the leader group, and the leader group
learns from each other through differential evolution to further improve the population quality and search accuracy. 15 standard
test functions are selected for comparative tests in low and high dimensions.)e test results show that the improved algorithm can
effectively improve the convergence speed and optimization accuracy of the original algorithm. Moreover, the improved al-
gorithm is applied to wireless sensor network (WSN) coverage optimization. )e experimental results show that the improved
algorithm increases the network coverage by about 3% compared with the original algorithm, and makes the optimized node
distribution more reasonable.

1. Introduction

With the advancement and development of intelligent in-
formation technology, the scale and complexity of data are
also increasing. Traditional numerical optimization methods
are difficult to solve complex optimization problems,
resulting in higher and higher calculation costs. In recent
years, swarm-based intelligent optimization algorithms have
been favored by many researchers because of their simplicity
and high efficiency [1]. Swarm intelligence algorithms can
effectively solve many complex optimization problems in the
field of engineering, and are mainly used in network opti-
mization [2], feature selection [3], image processing [4],
automatic control [5], and other fields. In recent years, swarm
intelligence optimization algorithms have been proposed,
including butterfly optimization algorithm (BOA) [6], whale
optimization algorithm (WOA) [7], sine cosine algorithm
(SCA) [8], sparrow search algorithm (SSA) [9], marine

predator algorithm (MPA) [10], African vultures optimiza-
tion algorithm (AVOA) [11], manta ray foraging optimi-
zation (MRFO) algorithm [12], and so on.

)e MRFO algorithm is a new swarm intelligence op-
timization algorithm proposed by Weiguo Zhao et al. in
2020. )e inspiration of this algorithm is based on intelligent
behaviors of manta rays. )e foraging (optimization) process
is divided into three stages, namely chain foraging, cyclone
foraging, and somersault foraging. Compared with some
classical intelligent algorithms and most of the above algo-
rithms, it has higher convergence accuracy and faster opti-
mization speed. AlthoughMRFOhas the above advantages, it
still has the problems of easy premature convergence and
falling into local optimum. In order to solve these problems,
many researchers have improved the basic MRFO algorithm.
Davut Izci et al. [13] introduced the opposition-based
learning strategy into the population initialization, which
improves the quality of the population to a certain extent, but
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convergence accuracy needs to be improved. Biqi Sheng et al.
[14] proposed a balanced manta ray foraging optimization
(BMRFO) algorithm. BMRFO introduces the Levy flight
strategy in the cyclone foraging stage, and improves the flip
factor. Although the algorithm’s ability to jump out of the
local optimum is improved, the convergence speed is not
significantly improved. Oguz [15] introduces the chaotic map
into the foraging behavior of MRFO, which improves the
optimization performance of the algorithm, but the im-
provement ability was limited.

In order to better solve the problems and improve the
optimization accuracy and convergence speed of the MRFO
algorithm, this paper combines the Latin hypercube sam-
pling (LHS) method with the group learning strategy, and
introduces the Levy flight and adaptive t-distribution dis-
turbance strategy. )erefore, an improved MRFO algorithm
based on LHS and group learning (LGMRFO) is proposed.
To verify the performance of the LGMRFO algorithm, 15
general test functions and 9 CEC2017 test suite functions are
selected for low-dimensional and high-dimensional com-
parison tests.

Adaptive adjustment and deployment of sensor nodes in
WSN can make them more evenly distributed in the de-
tection area and have a higher coverage, so as to rationally
allocate network space resources and better complete the
tasks of environmental awareness and information acqui-
sition. )is is of great significance to improve network vi-
ability, improve network reliability, and save network
construction costs. Generally, area coverage is the main
criterion for evaluation. Optimized coordinate deployment
of sensor nodes is carried out through optimization algo-
rithm, and as few sensor nodes as possible are used to ensure
the area coverage requirement and reduce the redundancy of
sensor nodes. )erefore, in order to improve the poor
coverage effect caused by unreasonable deployment of WSN
nodes, the LGMRFO is applied to the coverage optimization
problem of WSN.)e experimental results further verify the
effectiveness of the algorithm.

)e rest of this paper is organized as follows. )e MRFO
algorithm is described in details in section “MRFO”. Section
“Related Works” detailly introduces some intelligence op-
timization algorithms. Section “LGMRFO” describes the
improved strategies for MRFO in this work. )e perfor-
mance of LGMRFO is evaluated by optimizing 24 test
functions in section “Numerical Simulation Analysis”. Sec-
tion “Coverage optimization of WSN Based on LGMRFO”
presents the simulations and performance evaluation of
LGMRFO for WSN coverage. At last, Section “Conclusion”
summarizes this paper.

2. Related Works

Based on the source inspiration, the intelligence optimiza-
tion algorithms can be divided into four classes of [16]: (a)
physics-based, (b) math-based, (c) human-based, and (d)
swarm-based. Physics-based methods tend to perceive the
landscape as a physical phenomenon and move the search
agents using formulae borrowed from physical rules or
theories. )e Archimedes optimization algorithm [17] is

devised with inspirations from an interesting law of physics
Archimedes’ principle. An equilibrium optimizer (EO) [18]
is inspired by control volume mass balance models used to
estimate both dynamic and equilibrium states. Atomic or-
bital search (AOS) [19] is proposed based on some principles
of quantum mechanics and the quantum-based atomic
model. Transient search optimization (TSO) [20] is inspired
by the transient behavior of switched electrical circuits that
include storage elements.

Math-based algorithms are solely based onmathematical
equations. )ey are not inspired by a specific natural phe-
nomenon. Runge Kutta optimizer (RUN) [21] is designed
according to the mathematical foundations of the Runge
Kutta method. Gradient-based optimizer (GBO) [22] is
inspired by the gradient-based Newton’s method. )e
golden sine algorithm (Gold-SA) [23] is inspired by sine that
is a trigonometric function. )e arithmetic optimization
algorithm (AOA) [24] utilizes the distribution behavior of
the main arithmetic operators in mathematics. Weighted
mean of vectors (INFO) [25] is an efficient optimization
algorithm based on weighted mean of vectors.

Inspired by the social behaviors of human beings, a lot of
optimization algorithms have been proposed. Political op-
timizer (PO) [26] is inspired by the multiphased process of
politics. )e group teaching optimization algorithm
(GTOA) [27] simulated the impact of teachers on learners’
output in the classroom. Queuing search (QS) [28] is in-
spired from human activities in queuing. Student psychol-
ogy based optimization (SPBO) [29] is inspired by the
psychology of the students who are trying to give more effort
to improve their performance in the examination up to the
level for becoming the best student in the class.

Swarm-based approaches imitate the social behavior and
communications within a group of species of animals,
plants, or other living things. )ese approaches have gained
increasing popularity in terms of both application and new
algorithm development. Some of the recently proposed al-
gorithms that can be categorized under this approach are
slime mould algorithm (SMA) [30], hunger games search
(HGS) [31], Harris hawks optimization (HHO) [32], moth
search algorithm (MSA) [33], monarch butterfly optimi-
zation (MBO) [34], golden eagle optimizer (GEO) [35], and
tuna swarm optimization (TSO) [36].

Compared with these three types, swarm-based algo-
rithms have superiority over other three types of algorithms.
Manta ray foraging optimization (MRFO), with few ad-
justable parameters, is easy to implement, which in turn
makes it very potential for applications in many engineering
fields. So, this paper improves the manta ray foraging op-
timization (MRFO) algorithm named MRFO based on Latin
hypercube sampling and group learning (LGMRFO). MRFO
falls into the fourth class of optimization algorithms, as it
originates from swarm behavior of manta rays (a kind of sea
animal).

3. MRFO

MRFO updates the individual position by three foraging
behaviors, including chain foraging, cyclone foraging, and
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somersault foraging.)emathematical models are described
below.

3.1. Chain Foraging. Manta rays’ line up head-to-tail and
form a foraging chain. In each iteration, each individual is

updated by the best solution found so far and the solution in
front of it. )is mathematical model of chain foraging is
represented as follows:

x
d
i (t + 1) �

x
d
i (t) + r · x

d
best(t) − x

d
i (t)􏼐 􏼑 + α · x

d
best(t) − x

d
i (t)􏼐 􏼑, i � 1,

x
d
i (t) + r · x

d
i−1(t) − x

d
i (t)􏼐 􏼑 + α · x

d
best(t) − x

d
i (t)􏼐 􏼑, i � 2, . . . , N,

⎧⎪⎨

⎪⎩
(1)

α � 2 · r ·

�������

|log(r)|

􏽱

, (2)

where, xd
i (t) is the position of ith individual at t-th iteration,

r is a random vector within the range of [0, 1], α is a weight
coefficient, xd

best(t) is the plankton with high concentration
(the best solution found so far), and N denotes the pop-
ulation size.

3.2. Cyclone Foraging. When manta rays find plankton in
deep water, they form a long foraging chain and swim

towards the food by a spiral. In the cyclone foraging behavior
of manta rays, in addition to spirally move towards the food,
each manta ray swims towards the one in front of it. )e
mathematical model of the exploitation stage of cyclone
foraging behavior can be calculated by the following
formula:
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where β is a weight factor, T is the maximum number of
iterations, and r1 is a rand number in [0, 1].

In equation (3), MRFO focuses on local exploitation. In
addition, by taking the random position in the search space

as the reference position, this behavior can also be used to
improve the exploration mechanism of the algorithm. )e
mathematical model is as follows:

x
d
rand � Lb

d
+ r · Ub

d
− Lb

d
􏼐 􏼑,

x
d
i (t + 1) �

x
d
rand + r · x

d
rand − x

d
i (t)􏼐 􏼑 + β · x

d
rand − x

d
i (t)􏼐 􏼑, i � 1,

x
d
rand + r · x

d
i−1(t) − x

d
i (t)􏼐 􏼑 + β · x

d
rand − x

d
i (t)􏼐 􏼑, i � 2, . . . , N,

⎧⎪⎨

⎪⎩

(5)

where xd
rand is a random position produced in the search

space, Lbd and Ubd are the lower and upper limits of the dth
dimension, respectively.

3.3. Somersault Foraging. In this foraging behavior, the po-
sition of food is regarded as a pivot. Each individual tends to
swim to and from around the pivot and somersault to a new
position. )e mathematical model can be created as follows:

x
d
i (t +1) � x

d
i (t) + S · r2 · x

d
best − r3 · x

d
i (t)􏼐 􏼑, i � 1, . . . ,N,
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where S is the somersault factor that decides the somersault
range of manta rays and S � 2, r2 and r3 are two random
number in [0, 1].

MRFO balances the ability of global exploration and
local exploitation by controlling the change in t/T, where, t is
the current number of iterations and T is the maximum
number of iterations. When t/T< rand, selecting the current
optimal position as the reference position for global ex-
ploration behavior. When t/T≥ rand, taking the optimal
individual as the reference point, it focuses on the local
exploitation ability of the algorithm.
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4. LGMRFO

In order to improve the performance of MRFO, this paper
improves it in three aspects: Firstly, the LHS method is used
to initialize the population to enhance the diversity of the
population; Secondly, in the exploration stage of cyclone
foraging, Levy flight strategy is introduced to accelerate the
convergence speed. Before the somersault foraging, an
adaptive t-distribution mutation operator is added to update
the population position to avoid falling into local optimi-
zation; Finally, the group learning strategy is set to improve
the optimization accuracy of the algorithm.

4.1. LHS Method Population Initialization Strategy. In the
basic MRFO, the initial population is generated in a random
way.)e initial population generated by this method is often
unevenly distributed or even overlaps individuals, which
reduces the optimization performance of the algorithm to a
certain extent. )e LHS method is a multidimensional
stratified sampling technology proposed byMcKay et al. [37],
which has the following advantages compared with simple
random sampling method.

(1) )e sampling points generated by LHS can achieve
full space coverage and can be evenly distributed in
the search space;

(2) LHS has better robustness and stability.

)erefore, in order to enhance the diversity of the initial
population and improve the performance, we adopt the LHS
method to initialize the population.

Assuming that N initial individuals are generated in the
d-dimensional space, the specific steps to initialize the
population with the LHS method are as follows:

Step 1.Firstly, the population sizeNanddimensiond are
determined.
Step 2. Determine the interval for individual x as [lb,
ub], where lb and ub are the lower and upper bounds of
the variable x, respectively.
Step 3. Divide the interval of variable x into N equal
small intervals.
Step 4. Randomly select a point in each subinterval of
each dimension.
Step 5.Combine the extracted points of each dimension
to form initial population.

Figure 1 and 2 are sample point maps generated by the
LHS method and simple random sampling method, re-
spectively, where the sampling size is 20 and dimension is 2.
It can be seen that the sample points generated by the LHS
method can be more evenly distributed in the search space.
)erefore, using the LHS method to initialize the population
of the MRFO algorithm, it can make the population position
evenly distributed in the search space, and enhance the
population diversity to improve the convergence perfor-
mance of the algorithm.

4.2. Mutation Strategy

4.2.1. Levy Flight. In some cases, due to the random indi-
vidual selection in each iteration, premature convergence
may occur, thereby increasing the running time, so different
mechanisms can be used to improve the MRFO algorithm.
)is paper uses the Levy flight mechanism [38] for local
disturbance, the mechanism is based on random walk be-
havior, and the mathematical model is as follows:

Levy(λ) �
u

|v|
− λ, (7)

where u and v come from the normal distribution, i.e.,

u ∼ N 0, σ2u􏼐 􏼑 v ∼ N 0, σ2v􏼐 􏼑. (8)

)e values of σu and σv are as follows:
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Γ(1 + λ)sin(πλ/2)

Γ(1 + λ/2)λ2λ−1/2􏼨 􏼩

1/λ

, σv � 1, (9)

where Γ is the standard gamma function.
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Figure 1: Samples distribution map based on the LHS method.
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Figure 2: Samples distribution map based on the random method.
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)e position update formula of the cyclone foraging
exploration stage with the addition of Levy flight strategy is
as follows:
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where ⊗ denotes point-to-point multiplication.

4.2.2. Adaptive t-Distribution. T-distribution is also called
student distribution [39], and its distribution state is closely
related to degrees of freedom. In order to enhance the di-
versity of the population and avoid falling into local opti-
mum, this paper introduces the adaptive t-distribution
strategy to disturb manta ray population before the som-
ersault foraging behavior. )e calculation formula is as
follows:

xnew � xold + xold · t(iter), (11)

where xold is the original individual, xnew is the new indi-
vidual after mutation, and t(iter) is the t-distribution with
the current iteration number iter as the degree of freedom.

In the early stage of the iteration, the degree of freedom is
small (the number of iterations is small), and t-distribution
is similar to Cauchy distribution. At this time, the update
step size is larger, which can expand the search field of the
individual and improve the global exploration ability. In the
middle and later iteration, the degree of freedom gradually
increases, and the performance of t-distribution is similar to
Gauss distribution. At this time, the update step size is
smaller, which helps the algorithm to search around the
current individual neighbourhood, and the algorithm has
better local exploitation ability.

4.3. Group Learning Strategy. In the process of algorithm
evolution, some individuals may reach the optimal position,
and the fitness value of others may become more worse. In
order to overcome this defect, inspired by the salp swarm
algorithm (SSA) [40], individuals with poor location need to
learn foraging skills from individuals with good location.
Based on this idea, a group learning strategy is proposed.)e
population after somersault foraging is evenly divided into
two groups according to the fitness value. )e group with
better fitness is called the leader group, and the group with
poor fitness is called the follower group.

4.3.1. Leader Group Learning Strategy. )e differential
evolution (DE) algorithm [41] has a good effect in solving
complex optimization problems. In this paper, the differ-
ential evolution strategy is used to generate a new leader
group individual, and the greedy strategy is used to select the
optimal individual. )e specific mathematical model is as
follows:

xnew � xbest′ + F · xm − xn( 􏼁, (12)

where xnew is a new individual produced bymutation; x’
best is

the optimal individual xbest new individuals generated by
randomly sorting dimensions; F is the scaling factor, and
F � 0.5; xm and xn are two different leaders randomly se-
lected from the leadership group, which are different from
the current individual. )e new individual generated by this
strategy needs to be compared with the original individual,
and the individual with better fitness should be selected as
the current individual.

Compared with the mutation of whole individuals, this
strategy has stronger selectivity, which can effectively en-
hance the local mining performance and improve the
convergence accuracy of the algorithm.

4.3.2. Follower Group Learning Strategy. Each follower in
the follower group learns from the average of the two
leaders. )e mathematical model is described as follows:

x
i new
follower �

x
i
leader + x

i+1
leader􏼐 􏼑

2
, (13)

where xi new
follower refers to the new individual generated after

the ith individual of the following group learns from the
leading group, xi

leader represents the ith individual of the
leadership group. )e new follower individual needs to be
compared with the original follower individual, and the
individual with a better fitness value is selected as the current
follower individual.

By learning from the leader group, the follower group
can greatly improve the fitness, realize the conversion from
follower to leader, and then improve the convergence speed
of the algorithm.

4.4. LGMRFO Algorithm Implementation Steps. )e specific
implementation steps of LGMRFO algorithm are as follows:

Step 1. Set the relevant parameters: population size N,
variable dimension D, maximum number of iterations
T, and initialize the population position by the LHS
method.
Step 2.)e fitness value of each individual is calculated,
and the initial optimal individual position and its
optimal fitness value are obtained according to the
fitness value.
Step 3. Enter the algorithm iteration process. When
rand≥ 0.5, chain foraging is performed and updates the
individual position according to equation (1); Otherwise,
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cyclone foraging is performed, when t/T< rand, the
individual enters the exploration stage, introduces Levy
flight strategy, and updates the individual position
according to equation (10), when t/T< rand, the indi-
vidual enters the development stage and updates the
individual position according to equation (3).
Step 4.Before performing somersault foraging behavior,
an adaptive t-distribution strategy is added, the indi-
vidual position is updated according to equation (11),
and the current individual is greedily selected.
Step 5. Perform somersault foraging behavior according
to equation (6).
Step 6.)e group learning strategy is implemented, that
is, the updated population is divided into a leading group
and a following group according to the fitness value, and
new individuals are generated by learning from equa-
tions (12) and (13), respectively. If the fitness becomes
better after learning, the current individual position will
be updated, otherwise, it will not be updated.
Step 7. Update the optimal location and its optimal
fitness value of each generation.
Step 8. Judge whether the algorithm meets the iteration
conditions. If so, the algorithm terminates; Otherwise,
go to Step 3.

)e pseudocode of LGMRFO is shown in Algorithm 1.

4.5. Time Complexity of the LGMRFO. )e overall time
complexity of MRFO is given as

O(MRFO) � O(T(O(cycloneforaging+ chainforaging)))

+ O(somersault foraging),

O(MRFO) � O(T(nd + nd)) � O(Tnd),

(14)

where, T is the maximum number of iterations, n is the
number of individuals, and d is the number of variables.

LGMRFO proposed that in this paper only increases the
computational complexity in adaptive t-distribution and
group learning. )erefore, the overall time complexity of
LGMRFO is given as

O(LGMRFO) � O(MRFO) + O(T(O(adaptive t

−distribution) + O(grouplearning))),

O(LGMRFO) � O(MRFO) + O(T(nd + nd)) � O(Tnd).

(15)

)is shows that the time complexity of LGMRFO is
consistent with that of MRFO.

Input: Initialize the size of population N, the maximal number of iterations T, and the manta rays X.
Output: )e best solution Xbest.

(1) Compute the fitness of each individual fi� f(Xi) and obtain the best solution found so far Xbest, where lb and ub are the lower
and upper boundaries of problem space, respectively.

(2) Initialize the iteration counter t� 0
(3) While t<T
(4) For i� 1 to N
(5) if rand <0.5
(6) if t/T< rand
(7) Perform the exploratory behavior of cyclone foraging according to equation (10)
(8) else
(9) Perform the exploitative behavior of cyclone foraging according to equation (3)
(10) end
(11) else
(12) Perform the chain foraging according to equation (1)
(13) end
(14) end
(15) Greedy selection of the current individual
(16) For i� 1 to N
(17) Perform the adaptive t-distribution strategy according to equation (11)
(18) end
(19) Greedy selection of the current individual
(20) For i� 1 to N
(21) Perform the somersault foraging according to equation (6)
(22) end
(23) )e population was divided into two groups according to the fitness value
(24) Perform the group learning strategy according to equations (12) and (13)
(25) Compute the fitness of each individual fi � f(Xi) and obtain the best solution found so far Xbest
(26) t� t + 1
(27) end
(28) Return the best solution found so far Xbest

ALGORITHM 1: LGMRFO Algorithm.
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5. Numerical Simulation Analysis

24 test functions are chosen and experimentally tested with
five algorithms for finding the minimal value of the function:
BOA, WOA, SCA, SSA (sparrow search algorithm), and
MRFO, in order to evaluate the effectiveness of the proposed
LGMRFO algorithm. Refer to the corresponding original
literature for specific parameter settings.

5.1. Test Functions
(1) General functions: Single-peaked functions have

only one global best point and no local extreme
points, while the test functions F1 to F4 are multi-
dimensional single-peaked functions, F5 to F12 are
high-dimensional multipeaked functions, and F13 to
F15 are three fixed-dimensional multipeaked func-
tions. )e multipeak function has numerous local
extremum points, which are utilized to observe the
performance of the function jumping out of local
extremum points in different dimensions from two
high-dimensional views. Table 1 shows the precise
function details.

(2) CEC2017 test suite functions: In order to further test
the performance of LGMRFO, this paper selects
some CEC2017 test suite functions [42] for testing,
which are CF2, CF4, CF7, CF8, CF10, CF15, CF17,
CF20, and CF24, respectively, withD� 30 and Range
∈ [−100, 100].

5.2. Results Evaluation of General Functions. Simulation and
comparison experiments of six algorithms were conducted
in the Matlab R2018a environment. To avoid excessive
chance errors, each benchmark function was chosen to run
30 times independently in the experiments, and the optimal
value, the worst value, the average value, and standard
deviation were used as evaluation indexes, and the pop-
ulation size was set to 30 and the maximum number of
iterations was 500. Black highlights the greatest outcomes.
F13 to F15 (fixed-dimensional multipeak function), D� 50
(low-dimensional), and D� 500 (high-dimensional) func-
tions F1 to F12, respectively, are used to test and assess the
algorithm.

)e iterative convergence curves of six algorithms at 500
dimensions under four single peak test functions, eight
multipeak function test functions, and three fixed-dimen-
sion test functions are plotted in this research due to the
article length constraint, as shown in Figure 3.

5.2.1. Multipeak Function Test with Fixed Dimensions.
Table 2 shows the test results for the three fixed-dimension
multipeak functions from F13 to F15. Table 2 and
Figures 3(e) and 3(f) show that LGMRFO has faster con-
vergence and better optimization-seeking accuracy than
other algorithms, and its standard deviation is the smallest,
indicating that it is more stable. )e standard deviation
reflects the algorithm’s stability in solving, so LGMRFO is
more stable.

Table 1: Test function information.

No. Function name Function formula D Range Optimum

F1 Bent cigar F1(x)� x2
1 + 106 􏽐

D
i�2 x2

i 50/500 [−100,
100] 0

F2 Sum of different power F2(x)� 􏽐
D
i�1 |xi|

i+1 50/500 [−100,
100] 0

F3 Zakharov F3(x)� 􏽐
D
i�1 x2

i + (􏽐
D
i�1 0.5xi)

2 + (􏽐
D
i�1 0.5xi)

4 50/500 [−100,
100] 0

F4 High conditioned F4(x)� 􏽐
D
i�1 (106)i− 1/D−1x2

i 50/500 [−100,
100] 0

F5 Griewank’s F5(x)� 􏽐
d
i�1 x2

i /4000 − 􏽑
D
i�1 cos(xi/

�
i

√
) + 1 50/500 [−100,

100] 0

F6 Rastrigin F6(x)� 􏽐
D
i�1(x2

i − 10 cos(2πxi) + 10) 50/500 [−100,
100] 0

F7 Expanded Schaffer’s F7(x)� 􏽐
D−1
i�1 y(xi, xi+1) + y(xD, x1)

y(u, v)� 0.5 + (sin2(
������
u2 + v2

√
) − 0.5)/(1 + 0.001(u2 + v2))2 50/500 [−100,

100] 0

F8 Noncontinuous rotated
Rastrigin’s F8(x)� 􏽐

D
i�1[y2

i − 10 cos(2πyi) + 10] yi �
xi |xi|< 0.5
round(2xi)/2 |xi|≥ 0.5􏼨 50/500 [−100,

100] 0

F9 Rosenbrock’s F9(x)� 􏽐
D−1
i�1 [100(x2

i − xi+1)
2 + (xi − 1)2] 50/500 [−100,

100] 0

F10 Discus F10(x)� 106x2
1 + 􏽐

D
i�1 x2

i 50/500 [−100,
100] 0

F11 Ackley F11(x)�

−20 exp(−0.21/D 􏽐
D
i�1 x2

i ) − exp(1/D 􏽐
D
i�1 cos(2πxi)) + 20 + e

50/500 [−100,
100] 0

F12 Schaffer’s F7 F12(x)� [1/D − 1􏽐
D−1
i�1 (

��
si

√
× (sin(50s0.2

i ) + 1))]2 si �
��������
x2

i + x2
i+1

􏽱
50/500 [−100,

100] 0

F13 Foxholes F13(x)� (1/500 + 􏽐
25
j�11/j + 􏽐

2
i�1 (xi − aij)

6)− 1 2 [−65, 65] 1
F14 Schkel F14(x)� −􏽐

10
i�1[(X − ai)(X − ai)

T + ci]
− 1 4 [0, 10] −10.5363

F15 Six-hump camel F15(x)� 4x2
1 − 2.1x4

1 + 1/3x6
1 + x1x2 − 4x2

2 + 4x4
2 2 [−5, 5] −1.0316
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Figure 3: Continued.
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5.2.2. Evaluation of Low-Dimensional Functions. Table 3
shows a comparison of the algorithm’s function test re-
sults in 50 dimensions. Both LGMRFO and basic MRFO can
meet the theoretical optimal value in the single-peak low-
dimensional function test, as shown in Table 3, and standard
deviation is 0. )is indicates that LGMRFO’s optimization-
seeking ability is more stable than other algorithms, and
LGMRFO’s convergence speed is significantly faster than
other intelligent algorithms, including MRFO, indicating
that the improvement strategy has significantly improved
MRFO’s convergence performance. Table 2 shows that

LGMRFO can also get greater accuracy solutions in the
multipeak low-dimensional function test, especially for
functions F5, F6, F7, F8, and F10. Although the average
solutions of functions F9, F11, and F12 do not approach the
theoretical ideal value, LGMRFO’s overall convergence
performance ranks 2nd, 1st, and 2nd, respectively, when
compared to other algorithms. )e other algorithms have a
better chance of escaping the local optimum. Except for
functions F9 and F12, LGMRFO has the smallest standard
deviation among the other functions, hence its robustness is
higher in terms of stability.
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Figure 3: Average convergence curves of 500 dimensional partial functions and fixed-dimensional functions F14 and F15. (a) F1 (b) F2.
(c) F5 (d) F6. (e) F14 (f) F15.

Table 2: Comparison of test results for fixed-dimensional function F13–F15.

Function Algorithm Best Worst Average Std. Deviation
F13 BOA 0.9980 3.0050 1.2986 0.6261

WOA 0.9980 10.7632 3.0888 3.5685
SCA 0.9980 2.9821 1.7922 0.9882
SSA 0.9980 12.6705 7.3556 5.7991

MRFO 0.9980 0.9980 0.9980 1.01E− 16
LGMRFO 0.9980 0.9980 0.9980 9.22E− 17

F14 BOA −5.4578 −4.0632 −4.5494 0.2656
WOA −10.1531 −2.6283 −7.6042 2.8176
SCA −7.8812 −0.4973 −3.2410 2.0496
SSA −10.1532 −5.0552 −9.2006 1.9674

MRFO −10.1532 −5.0552 −8.7937 2.2930
LGMRFO −10.1532 −10.1532 −10.1532 6.33E− 15

F15 BOA −1.0316 −1.0287 −1.0307 8.58E− 04
WOA −1.0316 −1.0316 −1.0316 2.01E− 09
SCA −1.0316 −1.0316 −1.0316 3.96E− 05
SSA −1.0316 −1.0316 −1.0316 6.39E− 16

MRFO −1.0316 −1.0316 −1.0316 6.52E− 16
LGMRFO −1.0316 −1.0316 −1.0316 5.61E− 16
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Table 3: Comparison of test results under different dimensions for function F1–F12.

Function Algorithm D� 50 D� 500
Best Worst Average Std Best Worst Average Std

F1 BOA 1.38E− 11 1.68E− 11 1.55E− 11 8.44E− 13 1.45E− 11 1.76E− 11 1.60E− 11 9.61E− 13
WOA 1.08E− 79 1.32E− 63 7.38E− 65 2.86E− 64 9.70E− 81 2.86E− 61 1.11E− 62 5.23E− 62
SCA 1.01 E+07 3.24 E+09 8.14 E+08 8.47E+ 08 6.92E+ 10 3.38E+ 11 2.03E+ 11 7.12E+ 10
SSA 0 1.20E− 60 4.01E− 62 2.19E− 61 1.74E− 248 2.91E− 54 9.69E− 56 5.31E− 55

MRFO 0 0 0 0 0 0 0 0
LGMRFO 0 0 0 0 0 0 0 0

F2 BOA 6.27E+ 74 9.03E+ 89 8.05E+ 88 2.18E+ 89 Inf Inf Inf NaN
WOA 4.34E− 112 2.54E− 82 9.08E− 84 4.65E− 83 Inf Inf Inf NaN
SCA 2.41E+ 24 4.86E+ 48 1.65E+ 47 8.87E+ 47 Inf Inf Inf NaN
SSA 0 2.99E− 37 9.96E− 39 5.46E− 38 0 7.82E− 44 2.61E− 45 1.43E− 44

MRFO 0 0 0 0 0 0 0 0
LGMRFO 0 0 0 0 0 0 0 0

F3 BOA 1.11E− 11 1.46E− 11 1.28E− 11 8.41E− 13 1.10E− 11 1.49E− 11 1.34E− 11 8.32E− 13
WOA 6.01E+ 04 1.47E+ 05 9.47E+ 04 1.83E+ 04 1.54E+ 06 1.86E+ 06 1.64E+ 06 6.22E+ 04
SCA 2.643E+ 03 2.81E+ 04 1.28E+ 04 6.33E+ 03 2.98E+ 05 8.34E+ 05 5.59E+ 05 1.31E+ 05
SSA 5.52E− 169 1.24E− 74 6.94E− 76 2.68E− 75 0 1.48E− 61 4.95E− 63 2.71E− 62

MRFO 0 0 0 0 0 0 0 0
LGMRFO 0 0 0 0 0 0 0 0

F4 BOA 1.20E− 11 1.68E− 11 1.50E− 11 9.51E− 13 1.43E− 11 1.75E− 11 1.59E− 11 8.93E− 13
WOA 4.59E− 79 2.42E− 66 8.32E− 68 4.41E− 67 2.65E− 77 6.99E− 66 2.47E− 67 1.28E− 66
SCA 5.43E+ 03 3.79E+ 06 2.99E+ 05 6.84E+ 05 8.61E+ 08 8.53E+ 09 4.01E+ 09 1.68E+ 09
SSA 0 1.01E− 55 3.36E− 57 1.84E− 56 1.26E− 248 1.51E− 53 5.04E− 55 2.76E− 54

MRFO 0 0 0 0 0 0 0 0
LGMRFO 0 0 0 0 0 0 0 0

F5 BOA 2.30E− 12 1.40E− 11 7.28E− 12 2.44E− 12 1.28E− 11 1.63E− 11 1.43E− 11 7.15E− 13
WOA 0 0 0 0 0 0 0 0
SCA 3.95E− 01 1.65E+ 00 1.12E+ 00 2.96E− 01 1.57E+ 01 7.96E+ 01 5.01E+ 01 1.73E+ 01
SSA 0 0 0 0 0 0 0 0

MRFO 0 0 0 0 0 0 0 0
LGMRFO 0 0 0 0 0 0 0 0

F6 BOA 0 1.34E− 02 4.49E− 05 2.45E− 03 0 0 0 0
WOA 0 0 0 0 0 0 0 0
SCA 2.42E+ 02 4.29E+ 03 1.37E+ 03 1.02E+ 03 6.84E+ 04 3.47E+ 05 2.02E+ 05 8.54E+ 04
SSA 0 0 0 0 0 0 0 0

MRFO 0 0 0 0 0 0 0 0
LGMRFO 0 0 0 0 0 0 0 0

F7 BOA 2.55E− 15 1.75E+ 01 1.89E+ 00 4.82E+ 00 0 0 0 0
WOA 0 7.77E− 01 3.95E− 02 1.58E− 01 0 0 0 0
SCA 6.39E+ 00 1.77E+ 01 1.41E+ 01 2.59E+ 00 5.87E+ 01 2.34E+ 02 1.80E+ 02 5.13E+ 01
SSA 0 0 0 0 0 0 0 0

MRFO 0 0 0 0 0 0 0 0
LGMRFO 0 0 0 0 0 0 0 0

F8 BOA 0 3.59E+ 02 5.62E+ 01 1.28E+ 02 0 0 0 0
WOA 0 0 0 0 0 0 0 0
SCA 2.09E+ 02 2.27E+ 03 9.64E+ 02 5.04E+ 02 9.11E+ 04 3.56E+ 05 2.07E+ 05 6.99E+ 04
SSA 0 0 0 0 0 0 0 0

MRFO 0 0 0 0 0 0 0 0
LGMRFO 0 0 0 0 0 0 0 0

F9 BOA 4.88E+ 01 4.90E+ 01 4.89E+ 01 3.31E− 02 4.99E+ 02 4.99E+ 02 4.99E+ 02 2.75E− 02
WOA 4.76E+ 01 4.87E+ 01 4.82E+ 01 3.93E− 01 4.96E+ 02 4.98E+ 02 4.97E+ 02 3.84E− 01
SCA 2.37E+ 06 2.57E+ 09 5.79E+ 08 5.52E+ 08 1.12E+ 11 3.54E+ 11 2.42E+ 11 5.69E+ 10
SSA 4.13E− 07 8.29E− 03 1.60E− 03 2.17E− 03 1.62E− 06 7.75E− 03 1.35E− 03 1.92E− 03

MRFO 4.27E+ 01 4.48E+ 01 4.37E+ 01 5.71E− 01 4.94E+ 02 4.97E+ 02 4.96E+ 02 6.72E− 01
LGMRFO 4.29E+ 01 4.44E+ 01 4.35E+ 01 2.82E− 01 4.91E+ 02 4.92E+ 02 4.91E+ 02 1.97E− 01

F10 BOA 9.12E− 12 1.41E− 11 1.17E− 11 1.21E− 12 1.04E− 11 1.47E− 11 1.28E− 11 1.21E− 12
WOA 3.03E− 89 1.82E− 69 6.35E− 71 3.33E− 70 5.05E− 83 5.29E− 69 2.95E− 70 1.04E− 69
SCA 8.10E+ 00 2.94E+ 03 8.03E+ 02 8.46E+ 02 3.40E+ 04 1.82E+ 05 1.08E+ 15 3.80E+ 04
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Table 3: Continued.

Function Algorithm D� 50 D� 500
SSA 0 1.71E− 35 5.70E− 37 3.11E− 36 4.61E− 241 1.18E− 54 3.94E− 56 2.16E− 55

MRFO 0 0 0 0 0 0 0 0
LGMRFO 0 0 0 0 0 0 0 0

F11 BOA 2.11E− 10 4.35E− 09 1.49E− 09 1.11E− 09 7.82E− 11 2.23E− 09 4.66E− 10 4.12E− 10
WOA 8.88E− 16 7.99E− 15 3.85E− 15 2.65E− 15 8.88E− 16 1.51E− 14 5.03E− 15 3.37E− 15
SCA 2.04E+ 01 2.06E+ 01 2.05E+ 01 6.67E− 01 2.08E+ 01 2.09E+ 01 2.09E+ 01 2.84E− 02
SSA 8.88E− 16 8.88E− 16 8.88E− 16 0 8.88E− 16 8.88E− 16 8.88E− 16 0

MRFO 8.88E− 16 8.88E− 16 8.88E− 16 0 8.88E− 16 8.88E− 16 8.88E− 16 0
LGMRFO 8.88E− 16 8.88E− 16 8.88E− 16 0 8.88E− 16 8.88E− 16 8.88E− 16 0

F12 BOA 1.37E− 03 1.01E− 01 2.97E− 02 2.70E− 02 5.91E− 06 3.51E− 04 7.83E− 05 6.69E− 05
WOA 1.52E− 47 5.89E− 01 1.18E− 01 1.90E− 01 4.32E− 57 4.26E− 13 1.42E− 14 7.78E− 14
SCA 1.27E− 01 7.06E− 01 3.55E− 01 1.33E− 01 3.43E− 02 1.39E− 01 7.27E− 02 3.02E− 02
SSA 0 3.85E− 16 2.02E− 17 7.22E− 17 0 3.62E− 16 2.15E− 17 7.20E− 17

MRFO 0 2.57E− 13 3.21E− 14 4.70E− 14 0 3.76E− 11 4.21E− 12 1.01E− 11
LGMRFO 0 4.30E− 13 9.43E− 14 1.27E− 13 0 0 0 0
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Figure 4: Continued.
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Figure 4: Continued.
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5.2.3. Evaluation of High-Dimensional Functions. Table 3
shows a comparison of the algorithms’ outcomes in the 500-
dimensional function test. It is obvious from a comparison
of the experimental findings of the low-dimensional func-
tion test that LGMRFO gets better outcomes in terms of both
search accuracy and convergence speed. )e increase in
dimensionality of the function from a low-dimensional to a
high-dimensional function will affect the algorithm’s con-
vergence performance. Table 3 shows that both LGMRFO
and basic MRFO approach the theoretical optimum with a
standard deviation of 0 in the single peaked high-dimen-
sional test function.)is indicates that LGMRFO andMRFO
are stable, and the convergence speed of LGMRFO is faster
than other algorithms, as shown in Figures 3(a)∼3(d), dem-
onstrating the superiority of the improved strategy, whereas
the convergence results of other compared algorithms are
worse than the low-dimensional function. )e standard de-
viation is also higher than in the low dimension, indicating
that theother comparisonalgorithmsare less robust on single-
peaked high-dimensional functions; LGMRFO ranks first in
the multipeaked high-dimensional function test, except for
function F9; and LGMRFO ranks first in the low-dimensional
multipeaked function F12, indicating that the improvement
strategy in higher ability. In terms of convergence perfor-
mance under high-dimensional functions, LGMRFO still
outperforms the other five techniques.

5.3. Results Evaluation of CEC2017 Test Suite Functions.
Table 4 shows a comparison of the algorithms’ outcomes in
some CEC2017 test suite functions. Figure 4 shows the
average convergence curves of some CEC2017 test suite

functions. )erefore, LGMRFO achieves the best results in
CF2, CF4, CF7, CF8, CF10, CF17, and CF20. It shows that
the overall performance of LGMRFO is powerful so that it
can perform a smoother transition between exploration and
exploration trends.

5.4. Wilcoxon Rank Sum Test. )e Wilcoxon rank sum test
[43] is a nonparametric statistical test that is performed to
see if the LGMRFO method is significantly different from
others. As a result, the results of the five algorithms were
tested 30 times independently on 15 test functions and 9
CEC2017 functions as samples, and the Wilcoxon rank sum
test was used to determine the significant difference between
the solution results of the five compared algorithms and the
LGMRFO solution results for the 50 and 500-dimensional,
fixed-dimensional functions, and 9 CEC2017 functions,
respectively. Tables 5–7 show the outcomes of the tests.

)e null hypothesis is rejected when P< 0.05 indicates
that the two algorithms are statistically different, whereas
P> 0.05 implies that the two algorithms provide equivalent
search results, according to the literature [44]. “NaN” im-
plies that the associated algorithm searches for theoretical
optimal solution, hence this hypothesis test is not applicable.
In the 50-dimensional instance, the LGMRFO algorithm
performs much better than the other examined algorithms,
with the exception of MRFO, whereas in the 500-dimen-
sional situation, the LGMRFO method performs signifi-
cantly better than the 50-dimensional one. In the 9 CEC2017
functions situation, among the 45 data sets, 42 are less than
0.05, comprising 93.3% of the total data. )is shows that
LGMRFO has statistical advantages over the other
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Figure 4: Average convergence curves of some CEC2017 test suite functions. (a) CF2. (b) CF4. (c) CF7 (d) CF8. (e) CF10. (f ) CF15. (g) CF17.
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Table 4: Comparison of some CEC2017 test suite Functions.

Function Algorithm Best Worst Average Std. Deviation
CF2 BOA 61865.0516 94673.9128 83610.9 7252.6901

WOA 181153.9155 432212.7775 276488.167 55312.8565
SCA 47819.1154 168455.467 86410.2938 22263.7286
SSA 62613.8174 88822.6913 76844.6378 5701.0961

MRFO 9829.1363 31305.175 19475.5722 5541.5783
LGMRFO 3696.8277 25977.9711 12196.0016 5512.4282

CF4 BOA 877.3537 967.557 910.4024 22.3843
WOA 729.3879 1020.0647 864.4385 73.0595
SCA 786.6671 876.3863 835.3316 26.4226
SSA 670.135 847.6568 777.11 42.704

MRFO 598.501 749.7332 657.6086 38.2902
LGMRFO 596.5108 742.7687 656.0086 32.1436

CF7 BOA 1105.4266 1162.1825 1132.1944 15.1434
WOA 1009.6932 1229.7966 1074.2146 51.6852
SCA 1065.2217 1126.971 1096.4516 17.2106
SSA 891.4775 1049.7886 992.9483 34.9974

MRFO 873.6269 1002.9701 952.1615 34.1025
LGMRFO 881.5865 982.2495 934.2627 22.9263

CF8 BOA 8895.1653 12920.2913 11075.1726 1016.128
WOA 6526.484 24593.4414 11953.6288 4545.5098
SCA 5801.305 12951.4022 9435.4069 2185.7205
SSA 5377.5911 6872.3515 5815.5711 314.8259

MRFO 2164.7351 7093.8441 4205.0785 1036.6014
LGMRFO 2152.914 5618.2209 3717.7776 748.5012

CF10 BOA 6547.2791 13835.6547 9002.8469 2183.7801
WOA 3775.3694 17919.2339 10044.4225 3734.4153
SCA 2566.8743 5716.6906 3883.7186 870.4679
SSA 1492.0962 4381.4378 2434.9342 820.455

MRFO 1165.9774 1315.8124 1240.9612 47.1172
LGMRFO 1164.0194 1259.8653 1201.5794 37.8005

CF15 BOA 4532.5588 12202.6872 7530.0974 1860.0716
WOA 3091.6252 6343.4343 4183.5431 668.3028
SCA 3391.0211 4496.9845 4182.2468 265.6575
SSA 2430.5504 4058.9642 3139.6938 393.3999

MRFO 2095.1895 3166.5832 2712.2462 317.7892
LGMRFO 2229.9637 3421.9934 2809.234 277.3386

CF17 BOA 4956069.9615 195429416.0647 58482274.1537 48599692.6692
WOA 466476.5171 41365723.3653 9301704.5173 10116889.255
SCA 2977781.3915 38837593.3164 15400703.9766 9893645.6625
SSA 81791.5292 12803104.8522 2438302.354 2728490.4502

MRFO 41716.4756 962707.3555 254339.6966 203873.0355
LGMRFO 28304.0738 430158.1843 122081.5603 102567.4144

CF20 BOA 2612.4543 2931.4312 2729.5077 205.2435
WOA 2412.3452 2734.6753 2582.6538 66.6743
SCA 2400.7732 2714.5564 2609.7752 76.453
SSA 2423.4533 2612.1334 2543.1367 23.8764

MRFO 2201.1145 2511.1134 2422.0052 16.0254
LGMRFO 2301.7768 2501.657 2404.667 13.1909

CF24 BOA 4867.6438 7550.4929 6012.4665 605.8525
WOA 3111.795 3356.4394 3222.9168 72.9402
SCA 3305.9347 4349.4399 3601.44 268.54
SSA 2937.7087 3081.5462 3001.3027 38.5158

MRFO 2885.7049 2942.7045 2900.6972 17.214
LGMRFO 2891.818 2979.9971 2932.3753 24.3826
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competitive algorithms. In conclusion, LGMRFO outper-
forms MRFO, SSA, SCA, WOA, and BOA by a statistically
significant margin, indicating that the LGMRFO algorithm
is statistically superior.

6. Coverage Optimization of WSN
Based on LGMRFO

6.1. WSN Node Coverage Model. )e Boolean measurement
model and the probabilistic measurement model are the two
basic types of WSN node coverage models [45]. In this
research, we calculate network coverage using the more
standard Boolean model.

Assume that in a square WSN monitoring region with
a side length of L, N isomorphic sensor nodes are ran-
domly distributed. Assume that the set of nodes is V �

v1, v2,􏼈 . . . , vN}, with node vi’s location coordinates being

Table 5: Wilcoxon rank sum test results for 50 and fixed dimensions.

F MRFO SSA SCA WOA BOA
F1 NaN 1.21E− 12 1.21E− 12 1.21E− 12 1.21E− 12
F2 NaN 1.21E− 12 1.21E− 12 1.21E− 12 1.21E− 12
F3 NaN 1.66E− 11 1.21E− 12 1.21E− 12 1.21E− 12
F4 NaN 1.93E− 10 1.21E− 12 1.21E− 12 1.21E− 12
F5 NaN NaN 1.21E− 12 0.3337 1.21E− 12
F6 NaN NaN 1.21E− 12 NaN 0.0013
F7 NaN NaN 1.21E− 12 NaN 1.21E− 12
F8 NaN NaN 1.21E− 12 0.3337 1.95E− 09
F9 0.0023 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11
F10 NaN 1.66E− 11 1.21E− 12 1.21E− 12 1.21E− 12
F11 NaN NaN 1.21E− 12 2.17E− 07 1.21E− 12
F12 0.8877 0.2010 2.40E− 11 2.42E− 07 2.40E− 11
F13 0.0419 3.46E− 10 4.28E− 11 3.86E− 11 5.84E− 11
F14 0.0080 4.09E− 11 1.57E− 11 1.57E− 11 1.57E− 11
F15 0.3128 3.02E− 06 1.72E− 12 1.72E− 12 1.72E− 12

Table 6: Wilcoxon rank sum test results for 500 dimensions.

F MRFO SSA SCA WOA BOA
F1 NaN 5.77E− 11 1.21E− 12 1.21E− 12 1.21E− 12
F2 0.3337 5.77E− 11 1.69E− 14 1.69E− 14 1.69E− 14
F3 NaN 4.57E− 12 1.21E− 12 1.21E− 12 1.21E− 12
F4 NaN 4.57E− 12 1.21E− 12 1.21E− 12 1.21E− 12
F5 NaN NaN 1.21E− 12 NaN 1.21E− 12
F6 NaN NaN 1.21E− 12 NaN NaN
F7 NaN NaN 1.21E− 12 NaN NaN
F8 NaN NaN 1.21E− 12 NaN 0.3337
F9 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11
F10 NaN 4.57E− 12 1.21E− 12 1.21E− 12 1.21E− 12
F11 NaN NaN 1.21E− 12 3.66E− 08 1.21E− 12
F12 1.27E− 05 1.21E− 12 1.21E− 12 1.21E− 12 1.21E− 12

Table 7: Wilcoxon rank sum test results for 9 CEC2017 functions.

F MRFO SSA SCA WOA BOA
CF2 1.5292E− 05 3.0199E− 11 3.0199E− 11 3.0199E− 11 3.0199E− 11
CF4 0.9 4.1997E− 10 3.0199E− 11 4.0772E− 11 3.0199E− 11
CF7 0.040595 1.5581E− 08 3.0199E− 11 3.0199E− 11 3.0199E− 11
CF8 0.096263 5.4941E− 11 3.0199E− 11 3.0199E− 11 3.0199E− 11
CF10 0.00047138 3.0199E− 11 3.0199E− 11 3.0199E− 11 3.0199E− 11
CF15 0.26433 0.0015178 3.6897E− 11 8.1527E− 11 3.0199E− 11
CF17 0.00065486 3.8249E− 09 3.0199E− 11 3.0199E− 11 3.0199E− 11
CF20 6.5991E− 07 3.8249E− 09 3.0199E− 11 3.0199E− 11 3.0199E− 11
CF24 7.5991E− 07 3.8249E− 09 3.0199E− 11 3.0199E− 11 3.0199E− 11

Table 8: Parameter setting for WSN coverage.

Parameters Values
Region 50m× 50m
Number of nodes 30/35
Perceived radius 5m
Communication radius 10m
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(xi, yi), and each node’s sensing radius being Rs. )e area
is discretized into m × n target grid points to be covered to
make the calculation easier, and the set of target points is
indicated as uj � (xj, yj), j ∈ 1, 2, . . . , m × n{ }. )e dis-
tance between the sensor node and the target point is
specified as

d vi, uj􏼐 􏼑 �

������������������

xi − xj􏼐 􏼑
2

+ yi − yj􏼐 􏼑
2

􏽲

. (16)

)e target point has been covered if there is a node whose
distance from the target point is less than or equal to the
sensing radiusRs.According to theBooleanmodel, the chance
that the sensor node vi detects the target location is defined as

p vi, uj􏼐 􏼑 �
0, d vi, uj􏼐 􏼑>Rs,

1, d vi, uj􏼐 􏼑≤Rs.

⎧⎪⎨

⎪⎩
(17)

When the target point is sensed bymore than one sensor,
the joint sensing probability of the target point is defined as

p V, uj􏼐 􏼑 � 1 − 􏽙

N

i�1
1 − p vi, uj􏼐 􏼑􏽨 􏽩. (18)

)e area network coverage is calculated by multiplying
the sum of the total perceived probability of target points
covered by a set of nodes by the entire number of target
points in the area.
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Figure 5: Node distribution before and after algorithm optimization: (a) Coverage result of MRFO (N� 30), (b) Coverage result of
LGMRFO (N� 30), (c) Coverage result of MRFO (N� 35), and (d) Coverage result of LGMRFO (N� 35).
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Rcov �
􏽐

m×n
j�1 p V, uj􏼐 􏼑

m × n
. (19)

As a result, the WSN coverage optimization issue can be
defined as the coverage of complete target grid points by N
sensor nodes on the monitoring area using an optimization
technique, which can then be turned into a single objective
optimization problem that maximizes equation. (17), i.e.,

max
􏽐

m×n
j�1 p V, uj􏼐 􏼑

m × n
⎛⎝ ⎞⎠. (20)

6.2.Analysis of Simulation. Two sets of experiments are used
in this work to verify the efficiency of LGMRFO on WSN
coverage optimization. As stated in Table 8, the experimental
settings have been set.

Figure 5 shows the results of sensor area coverage after
algorithm optimization. )e distribution at 30 nodes is
shown in Figure 5(a) and 5(b), with MRFO covering 82.43
percent of the nodes and LGMRFO covering 84.78 percent.
In the monitoring region, there are still coverage blind spots,
and node overlapping coverage is more evident, as shown in
Figure 5(a), but the optimized nodes in Figure 5(b) are more
uniformly distributed. Figures 5(c) and 5(d) show the
coverage results when 35 nodes are installed. After MRFO
optimization, the coverage rate is 89.43%, yet there are

coverage blind patches near the monitoring area’s edge.
After LGMRFO optimization, the coverage rate is 92.62%,
and the node overlapping area is greatly reduced.

Table 9 shows the coverage of MRFO and LGMRFO
running independently for 20 times and each operation
iteration for 500 times, respectively. As can be seen from
Table 9, LGMRFO’s final and initial coverage are higher than
those of the MRFO algorithm, indicating that the LHS
method’s enhanced strategy and location update improve
the algorithm’s search accuracy.

)e average coverage iteration curves are given in Fig-
ure 6. LGMRFO coverage in the middle of iteration is
slightly lower than MRFO at 30 nodes in Figure 6(a), which
is owing to the premature maturity produced by MRFO
converging too quickly. LGMRFO gradually surpasses
MRFO after 300 iterations, suggesting that MRFO has en-
tered the local optimum, whereas LGMRFO jumps out of the
local optimum and optimization accuracy improves, dem-
onstrating that the group learning technique is effective. )e
population’s health (node distribution) has improved, and
the coverage rate has continuously increased. LGMRFO’s
coverage is greater than MRFO’s when 35 nodes are
deployed, which corresponds to an increase in individual
dimension, and both the convergence speed and coverage
are much greater than the MRFO algorithm’s average op-
timization result.

In summary, by comparing the experimental results of
deploying different numbers of nodes, LGMRFO achieves

Table 9: Average coverage.

Algorithm
Average coverage/%

30 nodes 30 nodes initialization 35 nodes 35 nodes initialization
MRFO 82.79 63.36 89.24 67.47
LGMRFO 83.87 63.65 90.66 68.89
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Figure 6: Average coverage iteration curve: (a) Average coverage iteration curve (N� 30) and (b) Average coverage iteration curve (N� 35).
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higher average network coverage under the same conditions,
and the node layout is more reasonable, resulting in fewer
coverage blind areas and overlapping areas, proving the
effectiveness of the improved strategy.

7. Conclusion

To overcome the inadequacies of the manta ray foraging
optimization method in terms of optimization accuracy, this
work offers an improved manta ray foraging optimization
algorithm (LGMRFO). Firstly, to improve the quality of the
initial population, the LHS method is used to homogenize
the population position distribution. Secondly, the Levy
flight and adaptive t-distribution variation strategies are
used before the cyclone foraging exploration phase and
somersault foraging behavior, respectively, so as to improve
the algorithm’s ability to jump out of the local optimum.
Finally, a group learning strategy is used for the updated
population. On 24 typical test functions, the LGMRFO al-
gorithm is compared to the other five algorithms, and the
method significance level is validated using the Wilcoxon
rank sum test. LGMRFO greatly enhances convergence
speed, optimization-seeking accuracy, and global optimi-
zation capability, according to the findings of the experi-
ments. Finally, on the WSN coverage optimization problem,
LGMRFO is compared to MRFO, and the experimental
findings support the usefulness of the proposed improve-
ment strategies.

As future challenges, different applications other than
WSN coverage optimization of LGMRFO can be explored
and its capabilities in dealing with difficult test problems can
be examined. Besides, new configurations of this algorithm
can be considered as other researchers may have different
viewpoints on the presented methodology.
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