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Abstract

Motivation: Genome-wide profiles of chromatin accessibility and gene expression in diverse cellu-

lar contexts are critical to decipher the dynamics of transcriptional regulation. Recently, convolu-

tional neural networks have been used to learn predictive cis-regulatory DNA sequence models of

context-specific chromatin accessibility landscapes. However, these context-specific regulatory se-

quence models cannot generalize predictions across cell types.

Results: We introduce multi-modal, residual neural network architectures that integrate cis-regula-

tory sequence and context-specific expression of trans-regulators to predict genome-wide chroma-

tin accessibility profiles across cellular contexts. We show that the average accessibility of a gen-

omic region across training contexts can be a surprisingly powerful predictor. We leverage this

feature and employ novel strategies for training models to enhance genome-wide prediction of

shared and context-specific chromatin accessible sites across cell types. We interpret the models

to reveal insights into cis- and trans-regulation of chromatin dynamics across 123 diverse cellular

contexts.

Availability and implementation: The code is available at https://github.com/kundajelab/

ChromDragoNN.

Contact: akundaje@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cost-effective, sequencing-based functional genomics assays such as

RNA-seq, ChIP-seq, DNase-seq and ATAC-seq have enabled large-

scale profiling of epigenomes and transcriptomes across diverse cellu-

lar contexts (Consortium, 2012; Kundaje et al., 2015). These datasets

provide a unique resource to understand the relationship between

regulatory DNA sequence, chromatin state and gene expression.

DNase-seq (Boyle et al., 2008; Thurman et al., 2012) or ATAC-

seq (Buenrostro et al., 2013) experiments profile the accessible chro-

matin landscape typically bound by regulatory DNA binding pro-

teins such as transcription factors (TFs). Chromatin accessibility is

highly dynamic across cellular contexts (Thurman et al., 2012).

Chromatin accessibility of a regulatory element is largely a function

of the combinatorial cis-regulatory code of TF binding sequence

motifs embedded in its DNA as well as the availability and activity

of the trans-regulatory proteins such as TFs that bind them.

A large body of literature has focused on developing computation-

al models to decipher the cis-regulatory sequence code of cell-type spe-

cific chromatin accessibility landscapes. Recently, convolutional

neural networks (CNNs) have been used to learn the cis-regulatory

grammars encoded in regulatory DNA sequences associated with cell-

type specific in vivo TF binding and chromatin accessibility (Alipanahi

et al., 2015; Kelley et al., 2016; Quang and Xie, 2016; Zeng et al.,

2016; Zhou and Troyanskaya, 2015). By learning a series of de-novo

motif-like pattern detectors (called convolutional filters) and non-

linear activation transformations, CNNs are able to map raw DNA se-

quence across the genome to binary or continuous measures of associ-

ated regulatory activity profiles without explicit feature engineering.

The Basset model (Kelley et al., 2016) is a state-of-the-art CNN

architecture that predicts binary chromatin accessibility in a specific

cellular context across the genome as a function of local 600 bp DNA

sequence context around each bin. The Basset model is also a multi-
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task architecture trained simultaneously on binary chromatin accessi-

bility profiles from multiple cellular contexts (each context is a predic-

tion task) and produces a vector of outputs for any genomic position

containing the probability of accessible chromatin state at that pos-

ition in each of the cellular contexts (task). The input DNA sequences

represented using a one-hot encoding is transformed by three convolu-

tion layers. A rectified linear unit (ReLU) non-linear transformation is

applied to the output of the final convolution layer and a pooling op-

eration takes the maximum across a window of adjacent positions.

These transformations are then passed to three fully connected layers

followed by a logistic non-linearity for each task (cellular context)

that outputs the probability of accessibility. The convolutional filters

learned by Basset were visualized and interpreted to infer putative cis-

regulatory sequence drivers of context-specific chromatin accessibility.

The model was also used to score putative regulatory genetic variants

using an in-silico mutagenesis approach.

The Basset model was recently enhanced by factorizing the con-

volution layers (Wnuk et al., 2017) (Factorized model). The

Factorized model increases the model depth—the three convolution

layers in Basset are replaced by nine convolution layers. Further, the

first two convolution layers in Basset which contain convolutional

filters (motif-like pattern detectors) of widths 19 and 11, respective-

ly, are factorized into multiple convolution layers with smaller

widths. The authors note that these modifications enhance predic-

tion performance and reduce learning time.

While these and other sequence-only models (Kelley et al.,

2018; Zhou and Troyanskaya, 2015) have provided useful insight

into context-specific cis-regulatory sequence features and the

context-specific impact of regulatory genetic variants, these models

cannot be used to predict chromatin accessibility or other regula-

tory profiles in cellular contexts not present in the training set. This

is largely because these sequence-only models do not model the

regulatory activity of trans-factors that vary across cellular con-

texts. Gene expression levels of trans-factors as measured by RNA-

seq provide a useful, albeit indirect surrogate for their availability

and activity in different cellular contexts. Models that can integrate

cis-regulatory DNA sequence and trans-regulator expression should

in principle be able to generalize to predict chromatin accessibility

landscapes across cellular contexts. Such a model would be very

valuable because it would enable prediction of chromatin accessi-

bility profiles in large collections of cellular contexts that are cur-

rently characterized only by RNA-seq (Collado-Torres et al.,

2017). Moreover, interpreting such an integrative model would

also provide insights into cis-regulatory sequence features and

trans-regulators that are predictive of chromatin dynamics across

cellular contexts.

Deep-learning architectures allow this kind of flexibility to inte-

grate multi-modal data i.e. DNA sequence coupled with RNA expres-

sion profiles. Hence, we expand upon previous work to predict

genome-wide maps of chromatin accessibility using sequence and

gene expression data (Kelley et al., 2016; Wnuk et al., 2017). We

introduce multi-modal, residual neural network (ResNet) architec-

tures (He et al., 2016) that integrate cis-regulatory sequence and

context-specific expression of trans-regulators to predict genome-wide

chromatin accessibility profiles across cellular contexts. We show that

the average accessibility of a genomic region across training contexts

can be a powerful baseline predictor. We leverage this feature and em-

ploy novel strategies for training models to enhance prediction per-

formance of shared and context-specific chromatin accessible sites

across cell types. Further, we show that we can interpret these cross-

cell type models to reveal insights into cis- and trans-regulators of

chromatin dynamics across 123 diverse cellular contexts.

2 Materials and methods

2.1 Chromatin accessibility data
DNase-seq datasets profiling genome-wide chromatin accessibility

were downloaded from the Roadmap Epigenomics Project (http://

www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/) and ENCODE

(https://www.encodeproject.org/). The complete list of DNase-seq

datasets and their identifiers is provided in Supplementary Table S1.

The fastq files were aligned with BWA aln (v0.7.10), where all data-

sets were treated as single-end, with ENCODE default alignment

parameters. After mapping, reads were filtered to remove unmapped

reads and mates, non-primary alignments, reads failing platform/

vendor quality checks and PCR/optical duplicates (-F 1804). Low

quality reads (MAPQ < 30) were also removed. Duplicates were

then marked with Picard MarkDuplicates and removed. The final

filtered file was then converted to tagAlign format (BED 3þ3) using

bedtools bamtobed. Cross-correlation scores were then obtained for

each file using phantompeakqualtools (v1.1).

All files were checked to have cross-correlation with a quality tag

above 0 and discarded if not. For the ENCODE data generated from

the Stam Lab protocol, all datasets were trimmed to 36 bp and then

technical replicates were combined. Read depths were considered, and a

standardized depth of 50 million reads was set for the final datasets. As

such, the files were filtered to remove mitochondrial reads, filtered for

mappability (MAPQ > 30) and then subsampled to 50 million reads.

For the ENCODE data generated from the Crawford Lab protocol, the

same procedure as above was performed, except reads were trimmed to

20 bp due to the different library generation protocol. For the Roadmap

data, which was all generated by the Stam Lab protocol, the same pro-

cedure as above was performed with trimming to 36 bp, and files were

only combined to give a minimum read depth of 50 million reads, since

each file came from a different developmental time point. These

trimmed, filtered, subsampled tagAlign files were then used to generate

signal tracks and call peaks. Signal tracks and peaks were called with a

loose threshold (P<0.01) with MACS2 to generate bigwig files (fold

enrichment and P-value) and narrowPeak files, respectively.

To identify reproducible peaks, we performed pseudoreplicate

subsampling on the pooled reads across all replicates (taking all

reads from the final tagAligns and splitting in half by random assign-

ment to two replicates) and retaining reproducible peaks passing an

Irreproducible Discovery Rate (v2.0.3) (Li et al., 2011) (https://

github.com/kundajelab/idr) threshold of 0.1 to get a reproducible

peaks for each DNase experiment. The pipeline is available in a

Zenodo record https://doi.org/10.5281/zenodo.156534.

We bin the human genome (GRCh37 assembly) into 200 bp bins

(i) every 50 bp. For each of the 123 cellular contexts (j ¼ 1 . . . 123f g),
all bins are assigned binary labels (yi;j 2 0; 1f g) corresponding to ac-

cessible (þ1) or inaccessible (0) state based on whether they overlap

(>50% overlap) context-specific reproducible DNase-seq peaks or

not. The genome-wide binary labels for each task j (cellular context)

are highly imbalanced (Proportion of positive bins: min¼3%,

median¼7%, max¼10% across cell types). The complete binary

label matrix is available via a Zenodo archive https://doi.org/10.5281/

zenodo.2603199. The cis-regulatory sequence context (Si) for each

bin i is represented using 1000bp of genomic DNA sequence centered

at the bin. We use a 1000 bp sequence context since previous work

showed performance gains using contexts up to 1000 bp (Avsec et al.,

2018; Zhou and Troyanskaya, 2015).

2.2 Gene expression data
RNA-seq fastq files (no subsampling, no filtering, no trimming)

from Roadmap and ENCODE were mapped using the STAR aligner
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(version 2.4.1d), using ENCODE default parameters. GENCODE

release 19 (GRCh37.p13) transcriptome annotations were used. To

determine the strandedness of the file (which is needed for RSEM

quantification), the infer_experiment.py script from RSeQC (version

2.6.4) was used in conjunction with the STAR output that was

sorted by coordinate. The strandedness and the pairedness (paired-

end or single-end) of the experiment were passed on to RSEM (ver-

sion 1.2.21). For RSEM, we used ‘–estimate-rspd’ to estimate read

start position distribution, and we did not calculate confidence

bounds. If the experiment was stranded, we set ‘–forward-prob’ to

be 0, and unstranded experiments were left at default. The transcrip-

tome aligned file from STAR was used in the RSEM run. The com-

plete list of RNA-seq datasets and their identifiers is provided in

Supplementary Table S3. The pipeline is available at https://github.

com/ENCODE-DCC/rna-seq-pipeline (v1.0).

The final dataset includes RNA-seq data associated with each of

the 123 cell types. We extract the transcripts per million (TPM) val-

ues and use the log transformed TPM values.

The trans-regulatory feature space Rj for each cellular context

j ¼ 1 . . . 123f g is represented by the log(TPM) expression levels of a

list of 1630 putative TFs as curated by the FANTOM5 consortium

(http://fantom.gsc.riken.jp/5/sstar/Browse_Transcription_Factors_h

g19) of human TFs. The TF gene expression feature matrix is avail-

able via a Zenodo archive https://doi.org/10.5281/zenodo.2603199.

2.3 ChromDragoNN neural network architecture
Our goal is to learn a model F Si;Rj

� �
that can predict the binary

chromatin accessibility state yi;j at any bin i in genome in any cellu-

lar context j as a function of the one-hot encoded 1 kb cis-regulatory

sequence context Si of bin i and the expression of 1630 TFs Rj in cel-

lular context j. We use a multi-modal neural network model to inte-

grate the cis-sequence and trans-expression modalities and

optionally the mean accessibility of the bin across cell types.

The one-hot encoded sequence Si for each bin i in the genome is

fed into a residual convolutional neural network (ResNet) model

(Fig. 1A). The ResNet architecture includes hierarchically arranged

convolution layers that are able to map one-hot encodings of raw

DNA sequence input data to learn complex representations without

explicit feature engineering. Each convolution layer learns and scans

a set of weight matrix pattern detectors (convolutional filters) across

its input and detects patterns in the input sequence. ResNets (He

et al., 2016) have been shown to be more effective for training

CNNs with a large number of layers by introducing skip connec-

tions between blocks of convolution layers to optimize gradient

flow and improve learning. Utilizing these concepts, we use a

ResNet architecture to extend previous models (Kelley et al., 2016;

Wnuk et al., 2017). The residual network (He et al., 2016) consists

of blocks in which the input is transformed through one or more

convolutional layers to an intermediate output to which the input is

added back. In our model, the convolution layers within a block pre-

serve the input dimensions.

To provide the model with quantitative information on the avail-

ability of trans-regulator TFs, we follow recent work (Wnuk et al.,

2017) that extended the Basset model to predict chromatin accessi-

bility in held-out cellular contexts, using RNA-seq profiles as surro-

gates of cell-type specific availability and activity of trans-

regulators. RNA-seq profiles have been shown to uniquely identify

individual cell types while preserving biological similarity between

cell types (Sudmant et al., 2015). We use log(TPM) RNA expression

levels of 1630 TFs as a meaningful representation of trans-regula-

tory cell state, as TFs are the DNA binding proteins that would

affect chromatin accessibility by binding cis-regulatory sequence

patterns. The sequence ResNet-CNN component of the model

learns cis-regulatory sequence patterns and returns a transformed

sequence-based feature space as intermediate representation. The TF

RNA-seq vector Rj for cellular context j is concatenated with this

intermediate sequence representation, which is then passed through

fully connected neural network layers and a logistic non-linearity to

produce an output F Si;Rj

� �
representing the predicted probability

that the bin i is accessible in the cellular context j. The mean accessi-

bility for bin i across all training cell types, if used, is concatenated

at the final fully connected layer. The complete sequential network

is as follows:

One-hot input sequence of dimension 1000. Two convolutional

layers with 48 and 64 channels, respectively, filter size (3, 1). Two

residual blocks, each with three convolution layers with 64 channels

and filter size (3, 1). Two residual blocks, each with two convolu-

tion layers with 128 channels and filter size (7, 1). Two residual

blocks, each with three convolution layers with 200 channels and fil-

ter sizes (7, 1), (3, 1), (3, 1) respectively. Two residual blocks, each

with two convolution layers with 200 channels and filter size (7, 1).

The output is flattened and concatenated with gene expression. In

case of mean accessibility models, the mean is concatenated. Fully

connected layer with 1000 dimension output. Fully connected layer

with 1000 dimension output. Fully connected layer with one output

dimension.

A single convolution layer is present after each residual block

(except the third) to transform the number of channels. Batch nor-

malization (Ioffe and Szegedy, 2015) layers are present after each

layer. A max pool is applied after the last three residual blocks. We

use the ReLU non-linearity transform. We use a fixed dropout of 0.3

on the fully connected layers.

2.4 Multi-stage training
We randomly split our 123 cellular contexts into training, validation

and test sets across 5 folds (Supplementary Table S2). For each fold,

we train models genome-wide across the training cell types. The val-

idation set cell types are used for hyperparameter tuning. The mod-

els are evaluated based on their genome-wide predictions in the

held-out cell types in the test sets.

The shift from a multi-task, cell-type specific sequence-only

model to a single-task, cross-cell type, multi-modal model increases

the number of training examples by a factor of C, equal to the num-

ber of cell types in the training data. The increased size of the train-

ing data has implications for training. A naive training setup could

potentially take up to a factor C longer to train compared to a fixed

cell type model. To improve efficiency, performance and interpret-

ability, we train our models in two steps: the first stage pre-trains a

multi-task sequence-only model that maps sequence of each genomic

bin to accessibility labels in each of the cellular contexts in the train-

ing set as individual tasks. The second stage trains the multi-modal

model across all genomic bins and cellular contexts in the training

set by initializing the sequence-mode’s convolutional layer weights

using the pre-trained model. The two-stage training scheme provides

added flexibility in that during the second stage of training, the con-

volutional layer weights may or may not be frozen while the fully

connected layers are trained.

2.5 Model training and testing
We use the Adam optimizer (Kingma and Ba, 2014) on binary cross

entropy loss to update our network’s weights, along with batch nor-

malization on the convolution and fully connected layers. We use
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the default PyTorch v0.4 parameter initialization method (LeCun

et al., 2012). We perform hyperparameter searches for all stage 1

models with batch sizes (128, 256) and learning rates (2e-2, 2e-3,

2e-4), and for stage 2 models with batch sizes (256, 512, 1024) and

learning rates (1e-3, 1e-4). To mitigate the class imbalance, we

maintained a 1:3 ratio of positives to negatives per batch by upsam-

pling accessible regions in the second stage of training.

Given the significant class imbalance in the labels, we use the

area under precision–recall curve (AUPRC) as our primary perform-

ance evaluation measure.

2.6 Motif extraction
The dynamics of chromatin accessibility of regulatory elements

across cellular contexts is a result of distinct subsets of context-

specific TFs binding combinations of motifs encoded in the sequence

of the regulatory elements (Sherwood et al., 2014; Voss and Hager,

2014). Deep neural network models of regulatory DNA sequence

implicitly learn these motifs as distributed representations across the

convolutional filters. Hence, valuable insights on predictive regula-

tory sequence features can be obtained by interpreting the model. A

commonly used approach involves directly visualizing the convolu-

tional filters or deriving position weight matrices from subsequences

that maximally activate filters (Kelley et al., 2016). However, this

approach has the drawback that the motifs obtained from individual

filters are often redundant or incomplete since the models learn dis-

tributed representations (Shrikumar et al., 2018). An alternative ap-

proach is to use feature attribution methods to interpret predictive

patterns in specific input DNA sequences. These feature attribution

methods (Shrikumar et al., 2017; Simonyan et al., 2013;

Sundararajan et al., 2017) decompose the output prediction of a

model for a specific input sequence of interest in the form of contri-

bution scores of individual nucleotides in the sequence. Nucleotides

with high positive scores can be interpreted as driving the prediction

for the sequence. Feature attribution methods allow for instance-by-

instance interpretation of predictive patterns but do not provide a

global summary of predictive motifs across all accessible sites within

and across cellular contexts. Hence, we used a new method we re-

cently developed called TF-MoDISco (v0.2.1) (Shrikumar et al.,

2018) that (i) identifies predictive sequence patterns within the

sequences of each accessible site across the genome in a cell context

of interest as subsequences (called seqlets) with significant contribu-

tion scores derived using a feature attribution method (specified

below); (ii) computes a similarity matrix between all predictive seq-

lets across the accessible landscape and (iii) clusters the seqlets into

non-redundant motifs. To obtain nucleotide-resolution contribution

scores for each input sequence corresponding to accessible bins in

the genome in a specific cellular context, we used the gradient of the

A

C D E

B

Fig. 1. Improved training methods and new architecture design enhances model performance (A) Model architecture for the ResNet model. The RNA-seq inputs

and mean accessibility (if used) are concatenated after the convolutional layers. (B) The validation set loss over training steps for a model (Basset architecture for

sequence mode) with and without two-stage learning (without mean accessibility as an input feature). In two-stage learning the weights of the convolutional layer

of the model are initialized from a model first trained to map sequence to chromatin accessibility for all training cell types. (C) The test set AUPRC of the original

Basset model, Factorized model and ResNet model under 4 training paradigms: with and without mean accessibility as an input feature, and with (Tune) and with-

out (Freeze) fine-tuning convolution layers in second stage. Numbers reported on a fixed training, validation and test split with 103 training, 10 validation and 10

test cell types. Models using mean accessibility as an input feature significantly outperform models without mean accessibility. (D) Five-fold cross-validation per-

formance of the ResNet model compared to the Factorized model with and without mean locus accessibility as an input to the model. Each fold contains a split

over 123 cell types in the dataset. All models trained using 2-stage scheme with all weights tunable in second stage. Wilcoxon signed rank test (single-tailed) was

performed with n¼5, n.s. not significant, *P<0.05. (E) Binned AUPRC of Factorized model without mean accessibility, ResNet model without mean accessibility

and ResNet model with mean accessibility. Loci are binned by the fraction of training cell types that are accessible, and AUPRC is computed for predictions on

test cell types for each bin. Note that AUPRC is computed for the minority class—when fraction of accessible cell types >0.5, AUPRC is computed on non-access-

ible regions. Gray bars indicate the fraction of loci having a certain fraction of accessible cell types. Numbers reported on a training, validation and test split same

as for (C)
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logit of the output probability of the model (predicted probability of

site being accessible in the specific cellular context) with respect to

the one-hot DNA sequence, gated by the observed nucleotides in the

input sequence. To focus on motifs associated with dynamic chro-

matin accessible sites, for each cellular context, we extracted the

contribution score profiles from the ResNet model (that does not

use mean accessibility as an input feature) for subsets of 20 000 bins

that are accessible in the given cellular context and in <30% of all

the cell types. Contribution score profiles computed for these 20 K

sequences in each cellular context were passed to TF-MoDISco to

learn context-specific globally predictive motifs. The TF-MoDISco

motifs were matched against a database of known TF motifs using

Tomtom (Gupta et al., 2007).

3 Results

3.1 Accurate prediction of chromatin accessibility

across cellular contexts from DNA sequence and gene

expression with multi-stage training
We developed multi-modal neural network architectures to predict

the binary chromatin accessibility state at each bin in the genome in

any cellular context by integrating 1 kb cis-regulatory sequence con-

text around each genomic bin and gene expression levels of 1630

TFs in the specific cellular context. Models were trained on a subset

of training cell types and their performance was reported based on

genome-wide predictions in held-out test cell types. We developed a

two-stage learning strategy to improve efficiency, performance and

interpretability of the models. In the first stage, we pre-trained a

multi-task sequence-only model across all training cell types. In the

second stage, we trained a multi-modal model integrating sequence

and expression, where we initialized the convolutional layer weights

of the sequence model from the first stage. We found that tuning the

convolution layers in the second stage consistently improved per-

formance over freezing the weights of the layers at an increased

computational cost. Further, pre-training the sequence mode con-

sistently improved training time and performance (Fig. 1B).

We experimented with different CNN architectures, training

strategies and tested the impact of adding an additional feature—the

mean accessibility of a genomic bin across training cell types. After

evaluating the various models on our validation datasets, our best

model architecture achieves an average AUPRC¼0.76 and area

under Receiver Operating Characteristic curve (AUROC)¼0.954

across five folds, outperforming previously published model archi-

tectures trained and tested on matching data (average

AUPRC¼0.69, AUROC¼0.937 across five folds) (Fig. 1C).

3.2 Using mean accessibility as an input feature boosts

performance
A key difference between cell-type specific models and cross-cell

type models is that cross-cell type models can make use of statistics

based on the accessibility state of each genomic bin (locus) across

the training cell types. For each bin in the genome, we computed the

mean of the binary accessibility values across all cell types in the

training set. Since binary accessibility is 0 if the locus is closed and 1

if open, the mean accessibility is a value in 0;1½ � that is equivalent to

the fraction of cell types in which the bin is accessible.

We observed that mean accessibility is a strong baseline predict-

or of chromatin accessibility across cell types [also recently reported

by Schreiber et al. (2019)]. Setting the predicted accessibility of a

locus equal to its mean accessibility across training cell types yielded

an AUPRC of 0.579 and an AUROC of 0.902 on the test set. This

method is oblivious to the test cell type and in fact assigns the same

values to all test cell types for a given bin. A stronger baseline is

achieved by computing a weighted average of accessibility across

training cell types, where the weight is proportional to the similarity

between RNA-seq profiles of the training and test cell types. The

resulting predictions yield an AUPRC of 0.587 and AUROC of

0.903 which are marginally better than the unweighted version.

All our multi-modal models that use sequence and expression

substantially outperform this strong baseline predictor (mean base-

line AUPRC¼0.579, weighted-mean baseline AUPRC¼0.587,

Bassetþexpr AUPRC¼0.656, FactorizedBassetþexpr AUPRC¼
0.692, ResNetþexpr AUPRC¼0.700). However, we decided to

capitalize on the strong mean baseline and decided to use it as an

auxiliary input feature to the multi-modal model. The single scalar

mean accessibility value for each bin is concatenated with the output

of first feed forward layer. We observe substantial improvements

when the mean accessibility feature is provided as an input to the

model (Fig. 1C and D). Across three different types of architectures

that we trained, incorporating the mean as an input feature

improves the performance of the model by as much as 0.09 AUPRC.

3.3 Residual network architecture outperforms previous

architectures
ResNets (He et al., 2016) have been shown to be highly effective for

training deeper CNNs with a large number of layers. ResNets pro-

vide added flexibility to CNNs by introducing skip connections be-

tween blocks of convolution layers. In practice, while the

performance of ordinary CNNs saturates or even drops with

increasing layers (Srivastava et al., 2015), ResNets have made pos-

sible training of CNNs often having >100 convolution layers.

ResNets have also recently been used to train high performance

deep learning sequence models of splicing (Jaganathan et al., 2019).

We implemented a ResNet architecture that uses 23 convolution

layers across eight residual blocks. Following the Factorized model,

we used convolution filters with shorter widths. Figure 1D shows

the results of a 5-fold cross-validation performed on our dataset. We

compared the performance of the model with the Factorized model

with and without passing mean locus accessibility as an input to the

model. In both cases, the ResNet architecture improved upon the

performance of the Factorized model. Overall, our best performing

ResNet(þmean accessibility) model achieves a mean AUPRC of

0.76 while the previous best published model in the literature i.e. the

Factorized Basset model (Wnuk et al., 2017) achieves 0.69 (Fig. 1C)

on a matched training/validation/test data split.

Next, in order to understand performance variation as a function

of cell-type specificity of accessible sites, we grouped genomic bins

based on the fraction of cell types in which bins exhibit accessibility.

For each group, we compared the AUPRC of our best ResNet model

that included mean accessibility as auxiliary input with the previous

best published model i.e. Factorized Basset without mean accessibil-

ity (Fig. 1E). Our models consistently outperform the previous state-

of-the-art across all groups.

3.4 Model interpretation reveals cell-type specific

cis-regulatory sequence features and associated

trans-regulators
Understanding what the model is utilizing in the DNA sequence in-

put is of interest, and previous work has successfully shown that

CNNs learn predictive motif-like patterns of cell-type relevant TFs

from regulatory DNA sequences (Kelley et al., 2016). However, the

model learns a distributed representation of the sequence features.
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Hence, interpreting individual convolutional filters results in redun-

dant and partially complete motifs. Instead, we use TF-MoDISco,

a new method we recently developed, for distilling consolidated

motifs from sequence-based deep learning models (Shrikumar et al.,

2018). First, we use a feature attribution approach (gradient�input)

to infer contribution scores attributed by the model to each nucleo-

tide in chromatin accessible sequences with respect to the output

prediction in each cellular context. Predictive nucleotides and motif

instances get highlighted with high positive contribution scores. The

same sequence can have different contribution score profiles across

different cellular contexts representing dynamic regulation of the re-

gion by different sequence motifs (Fig. 2A). For each cellular con-

text, we sample a subset of bins that are labeled accessible, obtain

contribution scores for corresponding input sequences and extract

motifs using TF-MoDISco with default parameters. The motifs are

matched against a database of known motifs of TFs using Tomtom

(Gupta et al., 2007). The sets of motifs retrieved for each cellular

context reflect the globally predictive TF motif patterns learned by

the model for that context (Fig. 2B).

The model learned known DNA motifs of ubiquitous as well as

cell-type specific TFs that match the canonical roles of TFs in differ-

ent lineages (Fig. 2B). As reported in Kelley et al. (2016), the model

learns the CTCF motif as a widely important sequence element for

accessible regions across cellular contexts (Ong and Corces, 2014).

The HNF1A and HNF4A motifs are more narrowly predictive of ac-

cessibility in hepatocyte-related, large and small intestinal contexts

(D’Angelo et al., 2010). The model discovers SIX2 motif as a key

predictor in kidney-related contexts (Kobayashi et al., 2008).

TWIST1 motif is retrieved for contexts of mesenchymal origin (Qin

et al., 2012), while RUNX1, ETS1 and IRF1 motifs are mainly dis-

covered only in specific hematopoietic cell types (Brien et al., 2011).

GRHL2 motif is discovered in the lung, epithelial cells and kidneys,

which matches known differential expression patterns of GRHL

family TFs across cell types (Aue et al., 2015). No prior information

about sequence motifs is provided to the model, suggesting that the

model is effective at extracting cell context relevant cis-regulatory

features from the DNA sequence input.

Many of the discovered motifs are cell-type specific, which sug-

gested that intersecting these results with the dynamics of RNA ex-

pression profiles of trans-regulators could potentially lead us to the

TFs that potentially bind these discovered motifs. For each discov-

ered motif, we determined all the TFs (often from the same family)

that could potentially bind the motif. We computed the binary vec-

tor of dynamic motif activity for each motif across cell types

(whether that motif was discovered by TF-MoDISco in the cell type

or not). We computed the Pearson correlation between the motif ac-

tivity vector and the vector of expression levels of matching TFs

across those cell types. We show the top 15 most correlated TFs in

Fig. 3A. This analysis highlighted several known key regulators,

both universal and cell-type specific, across a variety of cell types.

TWIST1 is a known regulator in mesenchymal cell types and is high-

lighted as important in muscle cell types and fibroblasts (Qin et al.,

2012). RUNX3 and IRF1 are important regulators in blood cell

types (Brien et al., 2011), while HNF4A is a master regulator in in-

testinal development (Babeu and Boudreau, 2014). HNF1A,

GRHL2, SIX2 and HOXA9 are all regulators known to be import-

ant in kidney development (Aue et al., 2015; Kobayashi et al., 2008;

Martovetsky et al., 2013), and are highlighted here as important

specifically in kidney cell types. Interestingly, ASCL1 is highlighted

as important in thymus and spleen cell types, where the expression is

also very specifically high in these cell types—this suggests a role for

ASCL1 in these cell types that was not elucidated before, though

further work is required to fully validate this hypothesis. This ana-

lysis thus uncovers possible trans-regulators that modulate cell

context-specific chromatin accessibility profiles through predictive

cis-regulatory motifs.

3.5 Biologically relevant segregation of cell types based

on predicted chromatin accessibility
We used our cross-cell type, multi-modal models to impute genome-

wide binary chromatin accessibility profiles in 250 additional cellu-

lar contexts (see Supplementary Table S3) that were not seen in our

original dataset and were profiled only using RNA-seq. These new

imputed samples were then embedded into a 2D visualization using

t-SNE (Maaten and Hinton, 2008) to determine how well the

imputed accessibility profiles group distinct and related cell types.

Comparing an equivalent t-SNE visualization in RNA-seq expres-

sion space (using the 1630 TFs as features) to the predicted chroma-

tin accessibility (Fig. 3B), we find that the t-SNE map from imputed

accessibility shows improved separation of distinct clusters of sam-

ples grouped by cell type and disease state. E.g. the carcinoma cell

types and the adenocarcinoma cell types are embedded near each

other in the t-SNE from predicted accessibility. Further, the pre-

dicted accessibility t-SNE embeds the adenocarcinomas as slightly

offset from the carcinomas. While t-SNE embeddings can be un-

stable and difficult to interpret, our visualizations do suggest that

the imputed accessibility profiles do capture biologically meaningful

differences and similarities between cell types and that these differ-

ences are not simply reflecting differences in expression of the TFs

that were used as predictors. This ability to distinguish cell types

through imputed accessibility profiles is important because it sug-

gests that given a new expression profile, these models can produce

distinct accessibility profiles that may be granular enough to poten-

tially reveal subtypes and finer grained structure beyond the expres-

sion profile.

4 Discussion

We present an optimized multi-modal residual network architecture

that can integrate cis-regulatory DNA sequence and expression of

trans-regulators to predict genome-wide binary chromatin accessi-

bility profiles across cellular contexts. The model can be used to pre-

dict genome-wide chromatin accessibility in cellular contexts that

are only profiled with RNA-seq. This is particularly useful given the

large number of profiled transcriptomes that do not have corre-

sponding experimentally profiled epigenomes. We demonstrate that

accessibility profiles predicted from sequence and TF expression do

not simply recapitulate the landscape of expression profiles across

cell types but rather provides a complementary feature space that

can discriminate between related and distinct cellular contexts.

Using enhanced training strategies, we achieve a new state-of-

the-art in terms of prediction performance across cellular contexts.

We show that a two-stage training strategy that pre-trains using

only sequence before integrating the expression data improves per-

formance and training time. This method of transfer learning is com-

mon in applications in computer vision and natural language

processing (Chen et al., 2015; Oquab et al., 2014). In two-stage

model learning, we show that tuning the convolution layers in the

second stage offers a benefit over freezing the weights of the layers,

however, at an increased computational cost. Mean accessibility of

a given locus across contexts is a surprisingly strong predictor of

chromatin accessibility. Combining the mean accessibility with cis-

regulatory sequence and trans-regulator RNA expression allows
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improved prediction performance. Notably, we find that adding

mean accessibility as a feature improves performance across all types

of accessible sites including the cell-type specific and ubiquitously

active.

We demonstrate that using a residual CNN architecture for

chromatin accessibility prediction results in superior performance

compared to previous architectures. Recent related work (Wnuk

et al., 2017) showed that increasing the number of convolution

layers while reducing the width of each convolution layer increases

the model performance. ResNets (He et al., 2016) allows for con-

nections between non-adjacent layers and have been shown to con-

fer performance gains in deep networks. We observe and confirm

similar improvements in model performance for predicting chroma-

tin accessibility models.

Recently developed imputation methods such as ChromImpute

(Ernst and Kellis, 2015), BIRD (Zhou et al., 2017), PREDICTD
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(Durham et al., 2018) and Avocado (Schreiber et al., 2018) also

tackle the problem of predicting regulatory profiles in new cellular

contexts. In systematic comparisons on matched data, our models

outperform the BIRD method in predicting genome-wide binary

chromatin accessibility profiles from RNA expression data

(Supplementary Table S4). The imputation methods are based on

capturing and modeling the local correlation structure between pro-

files of multiple biochemical markers such as RNA, histone modifi-

cations and chromatin accessibility within and across diverse cell

types. In our framework, we instead use only one widely available

auxiliary modality, the gene expression of trans-regulators.

Moreover, the above mentioned imputation methods do not model

cis-regulatory DNA sequence and hence lack the ability to interpret

biologically meaningful predictive sequence features from the mod-

els. Our models enable interpretation of predictive cis-sequence fea-

tures learned by the models. Using model interpretation methods,

we show that our models learn motifs of ubiquitous and lineage spe-

cific TFs. Correlating the RNA profiles of TFs with the dynamic pre-

dictive activity of motifs discovered by the model provides insights

into the TFs that might bind these motifs and the relationship be-

tween cis- and trans-regulatory features.

Our current models predict genome-wide binary chromatin

accessibility profiles instead of continuous, quantitative profiles.

However, our models can be easily adapted to predict continu-

ous, quantitative profiles at finer resolutions by using regression

loss functions (Kelley et al., 2018). Our models can also be

extended to include additional input data modalities or predict

other types of genome-wide regulatory profiles such as histone

modification profiles. Finally, improved approaches for inter-

preting multi-modal neural networks will provide significantly

more nuanced insights into the complex interactions between cis-

regulatory sequence features and trans-regulatory features. More

transparent encodings of the gene expression space (e.g. using la-

tent variables that directly model modules of functionally related

genes or pathway annotations) would also improve interpretabil-

ity. Our study highlights the promise of integrative multi-modal

deep learning models for learning predictive models that general-

ize across cellular contexts and obtaining insight into the dynam-

ics of gene regulation.
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