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ABSTRACT Globally, dental caries is the most prevalent chronic oral disease and af-
fects roughly half of all children. The aim of this report was to use metagenomic
analyses to investigate the relationship between the oral microbiome and caries in
preschool children. A total of 25 preschoolers, aged 3 to 5 years old with severe
early childhood caries (ECC), and 19 age-matched, caries-free children as controls
were recruited. Saliva samples were collected from the participants and were sub-
jected to metagenomic analyses, whereby the oral microbial communities were in-
vestigated. The metagenomic analyses revealed substantial microbiota differences
between the two groups, indicating apparent shifts of the oral microbiome present
in the ECC group. At the species level, the ECC-enriched microbes included Pre-
votella amnii, Shuttleworthia satelles, Olsenella uli, and Anaeroglobus geminatus. Inter-
estingly, Actinomyces odontolyticus and Actinomyces graevenitzii exhibited apparent
differences at the strain level but not the species level between the ECC and control
groups. Functional examination showed that the ECC group displayed extensive al-
terations in metabolic genes/pathways/modules, including enriched functions in
sugar metabolism. Finally, an SVM (support vector machine) classifier comprising
seven species was developed and generated a moderately good performance in pre-
dicting caries onset (area under the receiver operating characteristic curve
[AUC] � 78.33%). Together, these findings indicate that caries is associated with con-
siderable changes in the oral microbiome, some of which can potentially be ex-
ploited as therapeutic targets or diagnostic markers. (This study has been registered
at ClinicalTrials.gov under registration no. NCT02341352.)

IMPORTANCE Dental caries is a highly prevalent oral disease that can lead to severe
dental damage and may greatly compromise the quality of life of the affected indi-
viduals. Previous studies, including those based on 16S rRNA gene, have revealed
that the oral microbiota plays a prominent role in development of the disease. But
the approach of those studies was limited in analyzing several key microbiome
traits, including species- or strain-level composition and functional profile. Here, we
performed metagenomic analyses for a cohort of preschool children with or without
caries. Our results showed that caries was associated with extensive microbiota dif-
ferences at various taxonomic and functional levels. Some caries-associated species
had not been previously reported, some of which may have significant clinical impli-
cations. A microbiome gene catalogue from children with caries was constructed for
the first time. The results demonstrated that caries is associated with alterations of
the oral microbiome, including changes in microbial composition and metabolic
functional profile.
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Dental caries, also known as tooth decay, is one of the most common oral infections
in children (1). It is a destructive process that causes decalcification of tooth

enamel and subsequently leads to continued breakdown of enamel and dentin (2). If
left untreated, some pathogens or pathobionts in the oral microbiota can penetrate the
enamel and dentin to reach the pulp, which leads to pulpitis and periapical periodon-
titis. In the absence of immediate and effective infection control, these local infections
may expand and progress to culminate in more serious conditions, such as cellulitis (3,
4), osteomyelitis (5), bacteremia, and bacterial endocarditis (6).

The Global Burden of Disease (GBD) study reported that caries affected more than
10% of the world’s population in 2015 and that the incidence of deciduous caries
increased by 5.6% between 2005 and 2015 (7). According to an oral epidemiological
investigation in China in 2018, there is a marked increase in the prevalence of
childhood caries, up from 5.8% a decade ago (8). Therefore, study of the pathogenesis
of childhood caries is of great significance in prevention, screening, and early inter-
vention for vulnerable or affected children.

In previous studies, we performed 16S rRNA gene amplicon sequencing to examine
the bacterial microbiota of dental plaques to study the microbial traits in severe cases
of early childhood caries (ECC) (9), which revealed dynamic changes of oral microbiota
at different stages of caries progression (10, 11). Nevertheless, this approach cannot
provide some key information about oral microbiota, such as species-level and strain-
level resolution and metabolic profile, which are likely important for caries pathogen-
esis (12).

Fang Yang et al. employed a microbial functional gene microarray to reconstruct the
functional profiles of human saliva microbiota for healthy and caries-active adults; the
results showed that saliva microbiota carried disease-associated functional signatures,
which could be potentially exploited as diagnostic markers (13). However, the func-
tional features of gene microarrays are dependent on preselected probe sets, thus
limiting their scope in functional dissection of microbial communities.

In this study, we analyzed the oral microbiome in preschoolers, whereby a gene
catalogue was constructed for children with ECC. Our results not only corroborated
previous findings that the microbiome has a great relevance in the occurrence of dental
caries but also revealed new microbial species and functional groups associated with
the disease.

RESULTS
Sample collection, sequencing, and quality control. Saliva samples were col-

lected from 25 preschool children with severe early childhood caries (ECC) (decayed,
missing, and filled tooth surfaces [dmfs] � 8) and 19 healthy control subjects (dmfs �

0) living in Lin’an, Zhejiang Province (see Table S1 in the supplemental material). There
were no differences in age, gender, or body mass index (BMI) between the caries group
and the healthy group. A total of 195-GB of raw data was generated from the Illumina
HiSeq 2000 platform. After filtering out low-quality data and host contamination, an
average of 3.08 GB (1.51 to 7.07 GB) of clean data were generated for each sample
(Table S2).

To examine the association between oral microbiota and ECC development, we
classified the 19 healthy children into two subgroups based on the changes in caries
state during the 6 months after the initial sampling: (i) the “stay healthy” (H2H)
subgroup, in which the 15 subjects maintained a healthy state, and (ii) the “caries-
onset” (H2C) subgroup, in which the 4 subjects underwent the transition from a healthy
to a caries-active state.

Shifts of the oral microbiomes in preschoolers with caries. After filtering out
27.8% � 16.7% sequences/reads as host gene sequences, approximately 49.8% � 3.8%
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of the reads from each sample were mapped to 7,312 reference bacterial genomes from
GenBank and the HMP (Human Microbiome Project).

To investigate the diversity of salivary microbiome richness, the Shannon-Weiner
index and Simpson index were calculated for species and genes, which showed that
microbial diversity and richness were similar between the ECC and control groups
(P � 0.05) (Fig. S1a). To assess microbial structure alterations in the ECC group, we
employed nonparametric analyses and principal-coordinate analysis (PCoA). Three
nonparametric methods were applied, namely, the multiresponse permutation proce-
dure (MRPP), analysis of similarity (ANOSIM), and permutational multivariate analysis of
variance (Adonis). Apparent differences were detected by both the MRPP and Adonis at
the phylum, class, order, family, and genus levels (P � 0.05) or by the ANOSIM at the
phylum, family, and genus levels (P � 0.05). PCoA based on the Bray-Curtis distance of
species abundance showed that the ECC and healthy groups displayed apparent
microbiome structural differences (Fig. S1c).

At the phylum level, Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria
were the most abundant taxa in both groups (Fig. 1a). The healthy group displayed a
higher abundance of Nitrospirae than did the ECC group (Wilcoxon test, false discovery
rate [FDR] � 0.1) (Table S3).

At the genus level, Neisseria, Prevotella, Rothia, Streptococcus, Veillonella, and Hae-
mophilus were among the major phylotypes in both groups (Fig. 1b). Subsequent

FIG 1 Relative abundances of phylotypes in healthy and ECC (caries) groups. (a to c) Relative abundances of phyla, genera, and species, respectively, are shown
in a bar plot. (d and e) Relative abundances of genera (d) and species (e) with significantly different abundances (FDR � 0.1) are shown in a box plot.
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analysis of relative abundance revealed that nine genera, including Prevotella, were
more abundant in the ECC group than in the healthy group, whereas Nitrospira and the
genus Erysipelotrichaceae bacterium 5_2_54FAA were enriched in the healthy group
(Fig. 1d; Table S3).

At the species level, Neisseria mucosa, Rothia mucilaginosa, and Prevotella melani-
nogenica accounted for large shares of the total microbial abundance in both the
children with caries and caries-free children, suggesting that these microbes belonged
to the stable oral microflora (Fig. 1c). The caries-free subjects exhibited an increased
relative abundance of Neisseria lactamica or Streptococcus australis (Fig. 1e; Table S3).
Conversely, 20 species were found to be enriched in the severe ECC group (Fig. 1e;
Table S3). These species included Streptococcus mutans (14–17) and multiple Prevotella
spp. (12), which have been reported to be associated with dental caries, as well as
Prevotella amnii, Shuttleworthia satelles, Olsenella uli, and Anaeroglobus geminatus,
whose connections to the disease have not been reported.

To further delineate features of the ECC-associated saliva microbiome, we identified
26,264 differentially abundant genes (Wilcoxon rank sum test, FDR � 0.07) and clus-
tered them into metagenomic species (MGS) on the basis of their correlated abundance
variation across samples. We grouped the differentially abundant genes into 18 MGS,
with 12 MGS enriched in the ECC group and 6 MGS enriched in the healthy controls
(Fig. S2). Of the 12 MGS enriched in the ECC group, four were Prevotella species. On the
other hand, two Neisseria species were more abundant in healthy subjects (Fig. S2).
Importantly, these MGS-based results were in agreement with those derived from
taxonomic analysis (Fig. 1d and e).

Strain-level variations of the caries and healthy subjects. It is being increasingly
recognized that microbial species consist of distinct strains and that strain-level varia-
tions are a crucial factor for determining the functions of microbial communities. To
examine the strain-level variants between the caries and healthy groups, we applied
StrainPhlAn, an assembly-free strain-level phylogenetic method that identifies single
nucleotide variants (SNVs) in species-specific marker genes (18). Using the SNV-based
analysis, we built the phylogenetic trees of the common species from the samples with
sufficient coverage and available reference genomes. We found considerable strain-
level heterogeneity between the caries and healthy groups in two species, i.e., Actino-
myces odontolyticus and Actinomyces graevenitzii, albeit neither of which displayed a
difference in relative abundance at the species level. For A. odontolyticus (Fig. 2a), the
dominant strains in caries individuals were phylogenetically closer to A. odontolyticus
F0309, A. odontolyticus ATCC 17982, and A. odontolyticus XH001 than those in the
control group. In addition, the dominant A. graevenitzii strains in the ECC and H2C
subjects were closely related to A. graevenitzii C83 and A. graevenitzii UMB0286 strains,
as were those in the healthy subjects to A. graevenitzii F0530 (Fig. 2b).

Cooccurrence networks of saliva microbiota under healthy and ECC conditions.
To analyze the patterns of interbacterial interactions in oral microbial communities
under healthy and ECC conditions, we constructed the cooccurrence networks for the
two groups, respectively. We inferred the metacommunity cooccurrence networks
based on Spearman correlation relationships and P values for correlations adjusted with
the FDR (Benjamini and Hochberg). This generated a metacommunity cooccurrence
network of the ECC group comprising 282 edges, reflective of the interbacterial
associations, among 150 species/strains (Fig. 3a), as well as a network of the healthy
group containing 374 edges among 164 species/strains (Fig. 3b). Whereas the healthy
and ECC groups shared a considerable proportion of the edges (17.65% for the heal-
thy network and 24.40% for the ECC network), most edges were condition specific
(82.35% for the healthy network and 76.60% for the ECC network). In other words,
approximately 20% of the interbacterial associations were shared by the two groups.

We calculated topological features for each node in the networks with the igraph
package. This feature set included betweenness centrality (the number of shortest
paths going through a node), closeness centrality (the number of steps required to
access all other nodes from a given node), and degree (the number of adjacent edges).
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Comparing these features between the two networks, we found that the closeness of
nodes in the healthy group network was significantly higher than that in the ECC group
network (P � 4E�11, Wilcoxon rank sum test), whereas degree and betweenness were
not significantly different between the two groups.

Notably, there were one and two main clusters with �10 nodes in the networks of
ECC and control groups, respectively. Bacteroides spp. and Prevotella spp. were domi-
nant in the two main clusters of the control group, as were Streptococcus spp. and
Prevotella spp. in the main cluster of the ECC network.

Functional profiles of caries and healthy subjects. To construct the gene cata-
logue, we combined the genes predicted from the assembled contigs and genes from
the Human Oral Microbiome Database (HOMD). After filtering redundant genes, we
generated a nonredundant oral microbial gene catalogue containing 2,200,443 genes.
The healthy and ECC groups shared 107,151 genes, representing 71.05% and 81.58% of
their core genes, respectively (Fig. S1b).

To investigate the functional role of the oral microbiome in ECC, we annotated the
oral gene catalogues using KEGG (Kyoto Encyclopedia of Genes and Genomes data-
base) and eggNOG (evolutionary genealogy of genes: Nonsupervised Orthologous
Groups database). Correspondingly, three types of functional profiles were generated
and compared between the caries and control groups: (i) gene profile, (ii) KEGG
orthology profile, and (iii) eggNOG profile.

Analysis of the gene profile revealed a skewed pattern such that 1,200 genes were
enriched in the ECC group, as opposed to only 62 genes in the healthy group (Wilcoxon
rank sum test, FDR � 0.07) (Table S4). Using a 0.85 identity threshold, these genes were
mapped to GenBank via BLAT. Annotation of the differentially abundant genes to the
KEGG and eggNOG databases revealed that extensive differences were present be-
tween the two groups in a variety of functions/pathways, including a relatively in-
creased level of carbohydrate metabolism and decreased levels of translation, energy
metabolism, coenzyme/cofactor/vitamin metabolism, and signal transduction in the

FIG 2 Strain-level phylogenetic trees of A. odontolyticus (a) and A. graevenitzii (b) of ECC (caries) and healthy (H2H and H2C) group
samples. Available reference genomes were included in the phylogenetic trees.
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FIG 3 Networks in oral microbial communities under ECC and healthy conditions are shown, with each microbial species and
cooccurrence relationship indicated by a node and an edge, respectively. A connection (line between dots) indicates a strong
(Spearman’s � � 0.6) and significant (FDR � 0.05) correlation. The size of each node is proportional to the relative abundance.
Lines between nodes indicate positive correlations (green) or negative correlations (red). The top five abundant genera are
indicated in color.
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caries group (Fig. 4a and b). Differences were also detected at the third-level compo-
nents of KEGG between the two groups. In the membrane transport pathway, the
phosphotransferase system was enriched in the ECC children (Fig. 4c). In the carbohy-
drate metabolism pathway, citrate cycle (tricarboxylic acid [TCA] cycle) was enriched in
healthy children, while glycolysis/gluconeogenesis was enriched in the ECC group
(Fig. 4d). Notably, the glucosyltransferase (GTF) gene (12_gene_id_1342) (Table S4)
showed an increased relative abundance in ECC subjects, as did modules of the AI-2
(autoinducer-2) transport system, phosphotransferase (PTS) system, glucitol/sorbitol-
specific II component, and nucleotide sugar biosynthesis (Table S5).

Host factors associated with some microbial taxa and pathways. Permutational
multivariate analysis of variance (PERMANOVA) was performed to analyze the associ-
ation between clinical factors and interpersonal distance (Bray-Curtis) of microbial
composition (Table S6). For the 44 children, 3 factors were associated with interpersonal
distance of microbial composition (P � 0.05). Education background, height, and caries

FIG 4 Functional distribution of KEGG orthologous genes and eggNOG orthologous genes enriched in healthy and ECC (caries) children. (a) Comparison
between the KEGG orthologous genes enriched for healthy and ECC children for each KEGG functional category at the second functional level. (b) Compar-
ison between the eggNOG orthologous genes enriched for healthy and ECC children for 24 eggNOG orthologue group functional categories. (c and d)
Comparison between KEGG orthologous genes for healthy and ECC children for each KEGG functional category at the third functional level: membrane transport
(c) and carbohydrate metabolism (d). Asterisks indicate hypergeometric distribution test results with phyper.R (*, FDR � 0.05).
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status were the major sources of variance in the microbial species composition. In
contrast, BMI, gender, income level, and dietary habit made comparatively minor or
nonsignificant contributions to oral microbiome composition. We performed multivar-
iate linear association analyses between the host clinical phenotypes and 205 repre-
sentative species (�0.01% of total microbial reads and present in at least 10 individuals)
or 315 MetaCyc pathways. When corrections were made for age and gender, we
identified 28 associations with an FDR of �0.1 between 3 factors and 24 species
(Table S7), as well as 52 associations between 5 factors and 176 MetaCyc pathways
(Table S8). In our study, toothache in the past year was correlated not only with
microbial composition but also with MetaCyc pathways. The relative abundances of
Prevotella amnii, Prevotella buccae, and Streptococcus mutans were positively correlated
with toothache in the past year and caries status. Other associations with phenotypical
variables included a negative correlation between Neisseria lactamica and toothache in
the past year and caries status. MetaCyc pathways, including biotin biosynthesis II,
purine nucleobase degradation, and guanosine nucleotide degradation, were positively
correlated with toothache in the past year and the frequency of dietary intake of
biscuits, cakes, and bread. In comparison, the prevalence of L-lysine biosynthesis was
inversely associated with decayed, missing, or filled tooth (dmft), dmfs, and toothache
in the past year.

Disease classification based on oral microbiota profiles. By use of the mRMR
algorithm, 7 species markers were chosen to construct the SVM (support vector
machine) classifier, which exhibited the best performance (Fig. 5a). Of them, 5 species
(i.e., Streptococcus mutans, Prevotella amnii, Eubacteriaceae bacterium ACC19a, Shuttle-
worthia satelles, and Dialister invisus) were enriched in the caries group, as were
“Candidatus Nitrospira defluvii” and Erysipelotrichaceae bacterium in the control group
(Fig. 5b). This classifier manifested an area under the receiver operating characteristic
curve (AUC) of 98.53% and a 95% confidence interval (CI) of 95.81% to 100% (Fig. 5c).
Notably, the relative levels of the 7 marker species in the H2C subgroup all exhibited
a tendency of approaching that of the caries group (Fig. 5d). We used the classifier to
predict the future new ECC onset of these 19 healthy controls and showed that the
classifier was able to predict the onset of caries with a moderately good performance
(AUC � 78.33%) (Fig. 5e).

DISCUSSION

Dental caries is a major oral health problem worldwide, affecting a great proportion
of adults and children. The oral microbiome plays a crucial role in human health (19–22)
and can profoundly affect the development of many diseases, including caries (20, 23).
Microbial indicators of caries have been proposed as a method to predict future caries
onset (24). There are approximately 700 prokaryotic species reportedly present in the
human oral cavity, some of which may damage teeth under certain conditions (25). It
has been reported that dental caries is directly caused by acid production on the
enamel surface and that some microbes (e.g., Streptococcus mutans) play a significant
role in this process. Dental caries is a polymicrobial disease that is not determined by
one particular bacterium. Instead, it results from complex communal activities involving
at least tens of bacterial species (26, 27). Thus far, however, a consensus has not been
reached regarding cariogenic microbes and functional elements.

To study the effects of the oral microbiome on early childhood caries (ECC), we
established an oral saliva gene catalogue (severe-ECC catalogue) from 44 children. The
numbers of catalogue-specific genes were 22,824, 39,274, and 62,542 in the ECC group,
healthy group, and HOMD-derived gene set, respectively. Our results revealed some
differences between the oral microbiomes of the ECC and healthy groups. To facilitate
subsequent analyses, we built an oral reference gene set by integrating our oral saliva
genes with the gene set from the HOMD.

Our data revealed that the ECC and healthy groups exhibited considerable differ-
ences in taxonomic composition and functional profiles. For example, Prevotella amnii,
Shuttleworthia satelles, Olsenella uli, and Anaeroglobus geminatus, whose connections
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with caries have not been reported, were enriched in the ECC group (Fig. 1e). The
enrichment of Prevotella amnii in the ECC group is not surprising, as it is a species of
the Prevotella genus, most of which have been reported to be related to caries and
potentially have proteolytic/amino acid-degrading activities (12). Shuttleworthia
satelles, Olsenella uli, and Anaeroglobus geminatus were reported to be present in the
oral cavity and associated with periodontal disease (28, 29). Therefore, it appears that
the presence of these microbes indicates an oral environment favoring caries onset. N.
lactamica is considered a commensal microbe in the nasopharynx (30) and has been
found to be the most abundant nasopharyngeal species in preschool children under
the age of 5 years (31) (Fig. 1e). The higher levels of N. lactamica and Streptococcus
australis in healthy subjects than in caries counterparts suggest that the two microbes
correlate with dental health. Our results therefore not only corroborated previous
findings on the relationship between oral microbiota and caries (14, 15, 17) but also
identified new potential biomarkers of ECC.

Interestingly, StrainPhlAn analysis detected clear strain-level, but not species-level,
differences in Actinomyces odontolyticus and Actinomyces graevenitzii between the
caries and healthy participants (Fig. 2). Besides the taxonomic alterations, analysis of the
cooccurrence network also indicated distinct patterns of interbacterial interactions in

FIG 5 Classifier used to distinguish ECC children from healthy controls. (a) The mRMR method was used to identify the ECC-associated
markers. Sequential subsets were generated at five-species intervals. For each subset, the error rate was estimated using a
leave-one-out cross-validation of a linear discrimination classifier. Using only the seven marker species as predictors, the SVM model
exhibited predictive performance that was already comparable to the performance of the model derived from the optimum (highest
value of the Matthews correlation coefficient) subset. (b) The relative abundances of seven marker species among the H2H group, the
H2C group, and the caries group are shown in a box plot. (c) Receiver operating characteristic (ROC) curves for the ECC group and
healthy controls; 95% confidence intervals (CIs) are indicated by error bars. (d) The probability of caries determined by the classifier
among the H2H group, H2C group, and caries group is shown in a box plot. (e) ROC curves for the H2H group and H2C group.
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the saliva communities under healthy and ECC conditions (Fig. 3). For example, the
main genera in the cooccurrence network were Bacteroides spp. and Prevotella spp.
under the healthy condition, whereas Streptococcus spp. and Prevotella spp. were the
main genera under the ECC condition.

Our analyses also revealed a prominent divergence between the caries and healthy
groups at various functional levels. Functions related to carbohydrate metabolism were
enriched in the ECC group, as revealed by the results of the gene profile, the KEGG
orthology profile (Fig. 4a), and the eggNOG profile (Fig. 4b). This mirrored previous
findings that enhanced carbohydrate activity in oral microbiota was a contributing
factor of caries pathogenesis (32). In the membrane transport pathway, the phospho-
transferase system was enriched in the ECC children (Fig. 4c), which indicated that
transmembrane transport and phosphorylation were more active in this group. In the
carbohydrate metabolism pathway, the citrate cycle (TCA cycle) was enriched in the
healthy children, while glycolysis/gluconeogenesis was enriched in the ECC group. This
result suggested that anaerobic metabolism of sugar was more active in the oral cavity
of children with caries. At the module level, multiple metabolic components were
enriched in the ECC group, including the AI-2 transport system, the PTS system,
glucitol/sorbitol-specific II component, and nucleotide sugar biosynthesis (Table S5).
Quorum sensing is an important mechanism underlying biofilm formation during the
development of dental caries (32), which reportedly involves signal molecule
autoinducer-2 (AI-2) in the interbacterial interaction (33, 34). While AI-2 is a quorum
signaling component in some microbes, in other species the protein also harbors
different activities (35) that may be implicated in caries development. The ABC trans-
porter and two-component signal transduction system (TCS) regulates the expression
of genes according to local environmental changes, which in turn influences bacterial
competence, survival, and virulence. Moreover, the dramatic reduction of cell motility
modules (Fig. 4b) in the ECC group could also be attributed to the increased biofilm
formation in the ECC group, as inhibition of bacterial motility promotes biofilm forma-
tion (36).

Despite these findings, more research is needed to elucidate the precise mecha-
nisms of oral microbiota in caries pathogenesis. Recent studies have shown that iron
deficiency in young children is a risk factor for ECC (37), and this finding was confirmed
in animal experiments (38). Our data revealed that iron complex transport was an
enriched function in caries-free children, which was in agreement with previous results
(Table S5). Other transport modules more enriched in the healthy group than in the
caries group included sulfate transport, putrescine transport, and microcin C transport
pathways (Table S5). It has been suggested that decreased activity of transporter
proteins may lead to the accumulation of metabolic compounds, such as sugars and
acids, and contribute to dental caries (37–39).

Our findings enabled us to propose a model to explain the roles of some microbes
in caries pathogenesis (Fig. 6). It is known that dental plaque biofilms produce acids
from carbohydrates that contribute to caries onset (40). Development of dental caries
is a gradual process in which the first stage is characterized by oral biofilm formation
and bacterial adhesion (41). Cariogenic bacteria, such as Streptococcus mutans, produce
a GTF that synthesizes extracellular polysaccharides (EPSs) (42). The EPSs, especially
water-insoluble glucans, play a critical role in dental plaque formation and biofilm
stability, as these molecules allow cariogenic bacteria to adhere to enamel surfaces (43).
The biofilm phenotype is regulated by its density-dependent quorum sensing (QS)
system, which consists primarily of the competence stimulating peptide (CSP) and
two-component signal transduction system (TCS) (44). In addition to biofilm formation,
the CSP-mediated QS system also affects its acidogenicity and aciduricity (44). The PTS
system is responsible for recognition, transmembrane transport, and phosphorylation
of water-soluble glucans (45). When sugar is frequently consumed, glycolysis and
acidification often ensue. F-type H� ATPase and chaperonin GroEL may enhance the
acidogenicity and acidurance of the cariogenic bacteria (46, 47). In the acidogenic
stage, the acidogenic and aciduric bacteria rapidly propagate, whereby the deminer-
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alization/remineralization balance is tilted toward net mineral loss and leads to dental
caries. In the aciduric stage, more aciduric bacteria, such as Streptococcus mutans and
Lactobacillus spp., become dominant and aggravate the symptoms. As such, environ-
mental acidification is a main contributor to caries development.

In summary, our results present differences in the oral microbial communities of
healthy preschoolers and those with caries at various taxonomic and functional levels.
As demonstrated by other microbiota association studies, understanding such complex
and delicate relationships is crucial for the prevention and treatment of these diseases.
Nevertheless, to better understand the microbial contribution in caries development,
metatranscriptome analyses are needed and may provide additional evidence in elu-
cidating the roles of taxonomic and functional variables in the oral microbiota.

Our conclusions from this study are as follows. (i) A microbiome gene catalogue
from children with caries was constructed for the first time. (ii) Preschool children with
dental caries and their healthy counterparts exhibited differences in oral microbiomes
and functional profiles. (iii) The results demonstrate that multiple Prevotella spp. and
Veillonella spp. are associated with dental caries and that the potential functional
differences between children with caries and caries-free children are mainly distributed
on carbohydrate metabolism functions/pathways. (iv) A panel of seven species was
developed to predict the onset of caries.

MATERIALS AND METHODS
Study subjects. Twenty-five children with severe ECC (decayed, missing, or filled tooth surfaces

[dmfs] � 8) and 19 caries-free (dmfs � 0) preschoolers, aged 45 to 73 months, were recruited in the

FIG 6 Taxonomic and functional characterization of oral microbiota in child caries. A schematic diagram shows the main functions
of the oral microbes that are associated with caries. Red text denotes enriched functions in children with caries.

Oral Microbiome Alterations in Early Childhood Caries

November/December 2019 Volume 4 Issue 6 e00450-19 msystems.asm.org 11

https://msystems.asm.org


study. Their diagnoses were made by a dentist at the Affiliated Hospital of Stomatology, Zhejiang
University School of Medicine, according to the International Caries Detection and Assessment System II
(ICDAS-II) (48). Written informed consent was obtained from the parents or other guardians of all
participants prior to enrollment. The study was approved by the ethical committee of the Affiliated
Hospital of Stomatology, Zhejiang University School of Medicine. We obtained consent to publish from
the participant (or legal parent or other guardian for children) to report individual patient data, including
images, videos, voice recordings, etc.

Exclusion criteria were as follows: (i) children with �18 teeth, (ii) children who received antibiotics or
fluoride treatment in the prior 3 months, and (iii) children who suffered active bacterial or viral infections
in other parts of the body (49).

Saliva sampling and isolation of bacterial genomic DNA. All subjects were asked not to eat or
drink 2 h before sampling, which was performed in the morning. To minimize stimulation of salivation,
saliva needed to be kept in the mouth for 3 min. Subjects were then instructed to drool into sterile
cryogenic vials for 3 min. Each saliva sample was pipetted into a sterile 1.5-ml Eppendorf tube, which was
snap-frozen in liquid nitrogen and stored at �80°C. Bacterial genomic DNA was extracted using the
QIAamp DNA mini kit (Qiagen, Hilden, Germany) as previously described (10). To reduce contamination
by human DNA, every 4 �g DNA was incubated with 160 �l MBD-Fc-bound beads from a NEBNext
microbiome DNA enrichment kit (New England Biolabs, Inc., Ipswich, MA, USA). The enriched microbial
DNA samples were purified by ethanol precipitation. DNA concentration and sizes were determined
using NanoDrop and agarose gel electrophoresis. The resulting DNA samples were stored at –20°C until
further processing.

Illumina sequencing. The metagenomic DNA libraries were constructed according to the Illumina
TruSeq DNA sample prep v2 guide. The library insert sizes were checked using a DNA LabChip 1000 kit
on a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). All libraries were sequenced on a
HiSeq 2000 instrument with the PE100 mode (Illumina, San Diego, CA, USA).

Quality control of reads. The following steps were used for quality control: (i) remove reads with
more than 5 ambiguous bases and 50 low-quality bases (low quality indicated by a Phred quality score
of less than 2), (ii) trim low-quality base tails of reads (low quality indicated by a Phred quality score of
less than 2), and (iii) remove reads that were mapped to the human genome (HG19) by SOAPaligner 2.1
(50) using default parameters. The percentage of human reads accounted for, on average, 28% of the
total sequencing data after the human DNA removal step. The microbial yield was apparently higher than
the 20% to 30% proportion of microbial reads reported previously (19, 51).

Genome assembly, gene prediction, and gene catalogue construction. We carried out a two-
round assembly strategy to improve the read utility ratios. For the first round, SOAPdenovo (52) (version
2.04) was used to assemble reads de novo for each sample, with parameters “�d 1 –M 3 –F” at k-mers
ranging from 39 to 63, before the contigs with the longest N50 value were selected. For the second round,
unused reads were selected by aligning clean reads with SOAPaligner 2.1 (50), prior to being repeatedly
assembled with the same parameters at k-mer 59. MetaGeneMark (53) (prokaryotic GeneMark.hmm
version 3.5) was used to predict open reading frames (ORFs) in contigs. The program predicted 3,086,934
ORFs with a length cutoff of 100 bp, and the total length of the ORFs was 1,548,170,042 bp. In light of
the possibility that some low-abundance microbes were not detected in the limited sequencing data, we
combined the previously public gene set from HOMD (http://www.homd.org/ftp/all_oral_genomes/
20160329/) (54) to build a nonredundant oral gene catalogue for further analyses. This nonredundant
gene catalogue was established by cd-hit-v4.6.1 (55) with parameters “�c 0.95 –aS 0.9 –r 0.” Redundant
ORFs sharing 95% identity or greater and 90% coverage or greater were removed, resulting in a
nonredundant gene catalogue composed of 2,200,443 genes.

Profiling of microbial taxa and genes. Organism and gene abundance were calculated according
to previous studies (20, 56, 57). Briefly, clean reads were aligned against reference genomes and by
SOAPalign2.21 with the parameters “�r 2 –m 100 –�1000.” Matched paired-end reads were chosen for
further abundance calculation and then assigned to two types: (i) multiple reads that aligned to more
than one species and (ii) unique reads that matched only one species. For species S, abundance Ab(S)
could be divided into unique abundance Ab(U) and multiple abundance Ab(M). We then calculated Ab(S)
as follows:

Ab�S� � Ab�U� � Ab�M�
Ab�U� � U ⁄ l

Ab�M� � (�
i�1

M

Co � �M�) ⁄ l

Co �
Ab(U)

� i�1
N Ab(U)

For each species (S), U and M are the number of unique and multiple reads, respectively, and l is the
average genome length of species S. For each multiple read in {M}, there is a species-specific coefficient
Co, and the N is the number of aligned species of this read.

Likewise, this method was also used to calculate gene abundance.
MGS identification. To cluster genes into metagenomic species (MGS), we applied the method

described by Le Chatelier et al. (56), Qin et al. (20), and Nielsen et al. (57). First, gene markers with
differential abundances were identified using wilcox.test in R (FDR � 0.07, Wilcoxon rank sum test
corrected by the Benjamini and Hochberg method). Next, we clustered the marker genes using a
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Spearman’s correlation coefficient (rho) of �0.9 according to their abundances across all the individuals.
After removal of clusters with fewer than 25 genes, a second hierarchical clustering was performed with
the Spearman’s correlation coefficient between the mean abundance of genes in each cluster and a new
threshold of 0.8. The final gene clusters were called MGS.

Strain-level analysis. StrainPhlAn was used for strain-level profiling. For each sample, clean reads
were first mapped against the MetaPhlAn2 markers by Bowtie2 (58) to generate the consensus sequence,
which represented the most abundant strain for each species in a sample. Similarly, the consensus
sequences of public reference genomes of strains for each species were obtained by aligning the markers
to these genomes. Finally, the extracted consensus sequences of references and samples were multiply
aligned by MUSCLE (59), and the phylogenetic trees were built by RAxML (60) (parameters: �m GTRCAT
and �p 1234).

Gene function analysis. Protein sequences were aligned to the KEGG gene database (KEGG release
71 July 2014) (61) and eggNOG v4.0 (62) by BLAT with parameters “�prot �out � blast8 �minIden-
tity � 30 �minScore � 60.” The best hit was selected for each gene based on score and identity. The
abundances of eggNOG and KEGG orthologs were calculated as the sum of the abundances of all genes
annotated to that ortholog.

Samples were functionally profiled using HUMAnN2 (http://huttenhower.sph.harvard.edu/humann2)
(63). HUMAnN2 used the MetaCyc pathway database (https://metacyc.org/download.shtml) and MinPath
to identify a parsimonious set of pathways which explain observed reactions in the community.

Cooccurrence network. To construct the metacommunity cooccurrence network, we first removed
species with relative abundances of less than 0.01%. The Spearman correlation coefficients between
species were computed using R, and all the P values were adjusted for multiple testing using the
Benjamini and Hochberg false discovery rate (FDR)-controlling procedure. The cooccurrence networks
were generated based on correlation coefficients (�0.6) and FDR (�0.05) for correlation and visualized
by Cytoscape 3.0.2. Network properties were calculated with the igraph package.

Association analysis between microbes and clinical variables. To identify significant associations
between oral microbial and phenotypic variables (see Table S1 in the supplemental material), we applied
a statistical program of Multivariate Association with Linear Model (MaAsLin; https://huttenhower.sph
.harvard.edu/maaslin) (64). In this study, age, gender, and BMI were included as potential confounders in
each model. To test the association for each species, we first filtered low-abundance species and
confined our analysis to 205 species that had relative abundances of �0.01% and were present in more
than 10 individuals. These 205 species accounted for, on average, 99.3% of microbial reads. The
percentage of each species was arscine-square-root transformed by taking the arcsine of the square root
of the proportional value of each species. For MetaCyc pathways, the same filtering criteria were used,
and a total of 315 pathways were further associated with different factors using MaAsLin. In each analysis,
the false discovery rate was controlled at a q value of 0.1 using the Benjamini and Hochberg method
(p.adjust package in R).

Classifier construction. We used an SVM (support vector machine) (R 3.1.3; the e1071 R package) to
build the classifier for ECC. The differentially abundant species (P � 0.01) were chosen as features. To
filter out redundant features, the mRMR algorithm (65) (the sideChannelAttack R package) and the
leave-one-out cross-validation LDA (linear discriminant analysis) (the paleoMAS R package) were applied.
The feature set which has the highest Matthews correlation coefficient (MCC) was chosen to build the
SVM classifier. The receiver operating characteristic (ROC) figures were drawn by using the pROC R
package.

Statistical analyses. To detect significant differences in relative abundance of metagenomics
features, the nonparametric Wilcoxon test (wilcox.test package in R) was performed. The FDR was
calculated using the Benjamini and Hochberg method (p.adjust package in R).

Data availability. The Illumina raw read data have been deposited at the National Center for
Biotechnology Information (NCBI) under accession number SRP103050.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00450-19.
FIG S1, PDF file, 0.8 MB.
FIG S2, PDF file, 0.7 MB.
TABLE S1, XLSX file, 0.02 MB.
TABLE S2, XLSX file, 0.01 MB.
TABLE S3, XLSX file, 0.04 MB.
TABLE S4, XLSX file, 0.8 MB.
TABLE S5, XLSX file, 0.01 MB.
TABLE S6, XLSX file, 0.01 MB.
TABLE S7, XLSX file, 0.01 MB.
TABLE S8, XLSX file, 0.01 MB.

ACKNOWLEDGMENTS
This study was supported by the National Natural Science Foundation of China

(81371142, 31970111, 31670118), by 2011 China State Key Clinical department grants,

Oral Microbiome Alterations in Early Childhood Caries

November/December 2019 Volume 4 Issue 6 e00450-19 msystems.asm.org 13

http://huttenhower.sph.harvard.edu/humann2
https://metacyc.org/download.shtml
https://huttenhower.sph.harvard.edu/maaslin
https://huttenhower.sph.harvard.edu/maaslin
https://www.ncbi.nlm.nih.gov/sra/SRP103050
https://doi.org/10.1128/mSystems.00450-19
https://doi.org/10.1128/mSystems.00450-19
https://msystems.asm.org


by the Natural Science Foundation of Zhejiang Province, China (grant no. LY17H140004,
LGF18H140004, and LQ19H140002), and by the General Project of Health and Family
Planning Commission of Zhejiang Province (2016KYA118).

We declare that we have no competing financial interests.

REFERENCES
1. Bradshaw DJ, Lynch RJ. 2013. Diet and the microbial aetiology of dental

caries: new paradigms. Int Dent J 63(Suppl 2):64 –72. https://doi.org/10
.1111/idj.12082.

2. Andlaw RJ. 1960. The relationship between acid production and enamel
decalcification in salivary fermentations of carbohydrate foodstuffs. J
Dent Res 39:1200 –1209. https://doi.org/10.1177/00220345600
390061401.

3. Arunkumar KV. 2016. Orbital infection threatening blindness due to
carious primary molars: an interesting case report. J Maxillofac Oral Surg
15:72–75. https://doi.org/10.1007/s12663-015-0801-6.

4. Moschos MM, Brouzas D, Mezitis M, Zachariadis N. 2005. Visual loss
due to a carious tooth. Lancet 366:1504. https://doi.org/10.1016/
S0140-6736(05)67602-7.

5. Romagna A, Troeltzsch M, Birkenmaier C, Schwartz C, Suchorska B,
Zausinger S. 2018. Oral cavity infection: an underestimated source of
pyogenic spondylodiscitis? J Neurol Surg A Cent Eur Neurosurg 79:
218 –223. https://doi.org/10.1055/s-0037-1608823.

6. Aoyagi S, Oda T, Wada K, Nakamura E, Kosuga T, Yasunaga H. 2018.
Infective endocarditis associated with atopic dermatitis. Int Heart J
59:420 – 423. https://doi.org/10.1536/ihj.17-078.

7. Anonymous. 2016. Global, regional, and national incidence, prevalence,
and years lived with disability for 310 diseases and injuries, 1990-2015:
a systematic analysis for the Global Burden of Disease Study 2015.
Lancet 388:1545–1602. https://doi.org/10.1016/S0140-6736(16)31678-6.

8. Wang X. 2018. The fourth national oral health epidemiological survey
report. People’s Medical Publishing House, Beijing, China.

9. Jiang W, Zhang J, Chen H. 2013. Pyrosequencing analysis of oral micro-
biota in children with severe early childhood dental caries. Curr Micro-
biol 67:537–542. https://doi.org/10.1007/s00284-013-0393-7.

10. Jiang W, Ling Z, Lin X, Chen Y, Zhang J, Yu J, Xiang C, Chen H. 2014.
Pyrosequencing analysis of oral microbiota shifting in various caries
states in childhood. Microb Ecol 67:962–969. https://doi.org/10.1007/
s00248-014-0372-y.

11. Xu L, Chen X, Wang Y, Jiang W, Wang S, Ling Z, Chen H. 2018. Dynamic
alterations in salivary microbiota related to dental caries and age in
preschool children with deciduous dentition: a 2-year follow-up study.
Front Physiol 9:342. https://doi.org/10.3389/fphys.2018.00342.

12. Yang F, Zeng X, Ning K, Liu KL, Lo CC, Wang W, Chen J, Wang D, Huang
R, Chang X, Chain PS, Xie G, Ling J, Xu J. 2012. Saliva microbiomes
distinguish caries-active from healthy human populations. ISME J 6:1–10.
https://doi.org/10.1038/ismej.2011.71.

13. Yang F, Ning K, Chang X, Yuan X, Tu Q, Yuan T, Deng Y, Hemme CL, Van
Nostrand J, Cui X, He Z, Chen Z, Guo D, Yu J, Zhang Y, Zhou J, Xu J. 2014.
Saliva microbiota carry caries-specific functional gene signatures. PLoS
One 9:e76458. https://doi.org/10.1371/journal.pone.0076458.

14. Caufield PW, Li Y, Dasanayake A. 2005. Dental caries: an infectious and
transmissible disease. Compend Contin Educ Dent 26:10 –16.

15. Marchant S, Brailsford SR, Twomey AC, Roberts GJ, Beighton D. 2001. The
predominant microflora of nursing caries lesions. Caries Res 35:397– 406.
https://doi.org/10.1159/000047482.

16. Tanzer JM, Livingston J, Thompson AM. 2001. The microbiology of
primary dental caries in humans. J Dent Educ 65:1028 –1037.

17. Loesche WJ. 1986. Role of Streptococcus mutans in human dental decay.
Microbiol Rev 50:353–380.

18. Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. 2017. Microbial
strain-level population structure and genetic diversity from metagenomes.
Genome Res 27:626–638. https://doi.org/10.1101/gr.216242.116.

19. Human Microbiome Project Consortium. 2012. A framework for hu-
man microbiome research. Nature 486:215–221. https://doi.org/10
.1038/nature11209.

20. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J,
Wu L, Zhou J, Ni S, Liu L, Pons N, Batto JM, Kennedy SP, Leonard P, Yuan
C, Ding W, Chen Y, Hu X, Zheng B, Qian G, Xu W, Ehrlich SD, Zheng S, Li
L. 2014. Alterations of the human gut microbiome in liver cirrhosis.
Nature 513:59 – 64. https://doi.org/10.1038/nature13568.

21. Human Microbiome Project Consortium. 2012. Structure, function and
diversity of the healthy human microbiome. Nature 486:207–214.
https://doi.org/10.1038/nature11234.

22. Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg
B, Nielsen J, Backhed F. 2013. Gut metagenome in European women
with normal, impaired and diabetic glucose control. Nature 498:99 –103.
https://doi.org/10.1038/nature12198.

23. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI.
2006. An obesity-associated gut microbiome with increased capacity for
energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature
05414.

24. Teng F, Yang F, Huang S, Bo C, Xu ZZ, Amir A, Knight R, Ling J, Xu J. 2015.
Prediction of early childhood caries via spatial-temporal variations of
oral microbiota. Cell Host Microbe 18:296 –306. https://doi.org/10.1016/
j.chom.2015.08.005.

25. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. 2005. Defining the
normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732.
https://doi.org/10.1128/JCM.43.11.5721-5732.2005.

26. Xu H, Hao W, Zhou Q, Wang W, Xia Z, Liu C, Chen X, Qin M, Chen F. 2014.
Plaque bacterial microbiome diversity in children younger than 30 months
with or without caries prior to eruption of second primary molars. PLoS One
9:e89269. https://doi.org/10.1371/journal.pone.0089269.

27. Head DA, Marsh PD, Devine DA. 2014. Non-lethal control of the cario-
genic potential of an agent-based model for dental plaque. PLoS One
9:e105012. https://doi.org/10.1371/journal.pone.0105012.

28. Downes J, Munson MA, Radford DR, Spratt DA, Wade WG. 2002.
Shuttleworthia satelles gen. nov., sp. nov., isolated from the human
oral cavity. Int J Syst Evol Microbiol 52:1469 –1475. https://doi.org/10
.1099/00207713-52-5-1469.

29. Camelo-Castillo A, Novoa L, Balsa-Castro C, Blanco J, Mira A, Tomás I.
2015. Relationship between periodontitis-associated subgingival micro-
biota and clinical inflammation by 16S pyrosequencing. J Clin Periodon-
tol 42:1074. https://doi.org/10.1111/jcpe.12470.

30. Hollis DG, Wiggins GL, Weaver RE. 1969. Neisseria lactamicus sp. n., a
lactose-fermenting species resembling Neisseria meningitidis. Appl Mi-
crobiol 17:71–77.

31. Cartwright KA, Stuart JM, Jones DM, Noah ND. 1987. The Stonehouse
survey: nasopharyngeal carriage of meningococci and Neisseria lac-
tamica. Epidemiol Infect 99:591– 601. https://doi.org/10.1017/s0950268
800066449.

32. Peterson SN, Snesrud E, Schork NJ, Bretz WA. 2011. Dental caries
pathogenicity: a genomic and metagenomic perspective. Int Dent J
61(Suppl 1):11–22. https://doi.org/10.1111/j.1875-595X.2011.00025.x.

33. McNab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ. 2003.
LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls
carbohydrate metabolism and biofilm formation with Porphyromonas
gingivalis. J Bacteriol 185:274 –284. https://doi.org/10.1128/jb.185.1.274
-284.2003.

34. Huang Z, Meric G, Liu Z, Ma R, Tang Z, Lejeune P. 2009. luxS-based
quorum-sensing signaling affects biofilm formation in Streptococcus
mutans. J Mol Microbiol Biotechnol 17:12–19. https://doi.org/10.1159/
000159193.

35. Rezzonico F, Duffy B. 2008. Lack of genomic evidence of AI-2 receptors
suggests a non-quorum sensing role for luxS in most bacteria. BMC
Microbiol 8:154. https://doi.org/10.1186/1471-2180-8-154.

36. Guttenplan SB, Kearns DB. 2013. Regulation of flagellar motility during
biofilm formation. FEMS Microbiol Rev 37:849 – 871. https://doi.org/10
.1111/1574-6976.12018.

37. Iranna Koppal P, Sakri MR, Akkareddy B, Hinduja DM, Gangolli RA, Patil
BC. 2013. Iron deficiency in young children: a risk marker for early
childhood caries. Int J Clin Pediatr Dent 6:1– 6. https://doi.org/10.5005/
jp-journals-10005-1176.

38. Eshghi A, Kowsari-Isfahan R, Rezaiefar M, Razavi M, Zeighami S. 2012.
Effect of iron containing supplements on rats’ dental caries progression.
J Dent (Tehran) 9:14 –19.

Wang et al.

November/December 2019 Volume 4 Issue 6 e00450-19 msystems.asm.org 14

https://doi.org/10.1111/idj.12082
https://doi.org/10.1111/idj.12082
https://doi.org/10.1177/00220345600390061401
https://doi.org/10.1177/00220345600390061401
https://doi.org/10.1007/s12663-015-0801-6
https://doi.org/10.1016/S0140-6736(05)67602-7
https://doi.org/10.1016/S0140-6736(05)67602-7
https://doi.org/10.1055/s-0037-1608823
https://doi.org/10.1536/ihj.17-078
https://doi.org/10.1016/S0140-6736(16)31678-6
https://doi.org/10.1007/s00284-013-0393-7
https://doi.org/10.1007/s00248-014-0372-y
https://doi.org/10.1007/s00248-014-0372-y
https://doi.org/10.3389/fphys.2018.00342
https://doi.org/10.1038/ismej.2011.71
https://doi.org/10.1371/journal.pone.0076458
https://doi.org/10.1159/000047482
https://doi.org/10.1101/gr.216242.116
https://doi.org/10.1038/nature11209
https://doi.org/10.1038/nature11209
https://doi.org/10.1038/nature13568
https://doi.org/10.1038/nature11234
https://doi.org/10.1038/nature12198
https://doi.org/10.1038/nature05414
https://doi.org/10.1038/nature05414
https://doi.org/10.1016/j.chom.2015.08.005
https://doi.org/10.1016/j.chom.2015.08.005
https://doi.org/10.1128/JCM.43.11.5721-5732.2005
https://doi.org/10.1371/journal.pone.0089269
https://doi.org/10.1371/journal.pone.0105012
https://doi.org/10.1099/00207713-52-5-1469
https://doi.org/10.1099/00207713-52-5-1469
https://doi.org/10.1111/jcpe.12470
https://doi.org/10.1017/s0950268800066449
https://doi.org/10.1017/s0950268800066449
https://doi.org/10.1111/j.1875-595X.2011.00025.x
https://doi.org/10.1128/jb.185.1.274-284.2003
https://doi.org/10.1128/jb.185.1.274-284.2003
https://doi.org/10.1159/000159193
https://doi.org/10.1159/000159193
https://doi.org/10.1186/1471-2180-8-154
https://doi.org/10.1111/1574-6976.12018
https://doi.org/10.1111/1574-6976.12018
https://doi.org/10.5005/jp-journals-10005-1176
https://doi.org/10.5005/jp-journals-10005-1176
https://msystems.asm.org


39. Kleemola-Kujala E, Räsänen L. 1979. Dietary pattern of Finnish children
with low high caries experience. Community Dent Oral Epidemiol
7:199 –205. https://doi.org/10.1111/j.1600-0528.1979.tb01216.x.

40. Tanner AC, Kent RL, Jr, Holgerson PL, Hughes CV, Loo CY, Kanasi E,
Chalmers NI, Johansson I. 2011. Microbiota of severe early childhood
caries before and after therapy. J Dent Res 90:1298 –1305. https://doi
.org/10.1177/0022034511421201.

41. Zhao W, Li W, Lin J, Chen Z, Yu D. 2014. Effect of sucrose concentration
on sucrose-dependent adhesion and glucosyltransferase expression of S.
mutans in children with severe early-childhood caries (S-ECC). Nutrients
6:3572–3586. https://doi.org/10.3390/nu6093572.

42. Koo H, Xiao J, Klein MI, Jeon JG. 2010. Exopolysaccharides produced by
Streptococcus mutans glucosyltransferases modulate the establishment
of microcolonies within multispecies biofilms. J Bacteriol 192:
3024 –3032. https://doi.org/10.1128/JB.01649-09.

43. Chen L, Ren Z, Zhou X, Zeng J, Zou J, Li Y. 2016. Inhibition of Strepto-
coccus mutans biofilm formation, extracellular polysaccharide produc-
tion, and virulence by an oxazole derivative. Appl Microbiol Biotechnol
100:857– 867. https://doi.org/10.1007/s00253-015-7092-1.

44. Senadheera D, Cvitkovitch DG. 2008. Quorum sensing and biofilm for-
mation by Streptococcus mutans. Adv Exp Med Biol 631:178 –188.
https://doi.org/10.1007/978-0-387-78885-2_12.

45. Deutscher J, Francke C, Postma PW. 2006. How phosphotransferase
system-related protein phosphorylation regulates carbohydrate metab-
olism in bacteria. Microbiol Mol Biol Rev 70:939 –1031. https://doi.org/
10.1128/MMBR.00024-06.

46. Quivey RG, Jr, Kuhnert WL, Hahn K. 2000. Adaptation of oral streptococci
to low pH. Adv Microb Physiol 42:239 –274. https://doi.org/10.1016/
S0065-2911(00)42004-7.

47. Matsumi Y, Fujita K, Takashima Y, Yanagida K, Morikawa Y, Matsumoto-
Nakano M. 2015. Contribution of glucan-binding protein A to firm and
stable biofilm formation by Streptococcus mutans. Mol Oral Microbiol
30:217–226. https://doi.org/10.1111/omi.12085.

48. Ismail AI, Sohn W, Tellez M, Amaya A, Sen A, Hasson H, Pitts NB. 2007. The
International Caries Detection and Assessment System (ICDAS): an inte-
grated system for measuring dental caries. Community Dent Oral Epidemiol
35:170–178. https://doi.org/10.1111/j.1600-0528.2007.00347.x.

49. Ling Z, Kong J, Jia P, Wei C, Wang Y, Pan Z, Huang W, Li L, Chen H, Xiang
C. 2010. Analysis of oral microbiota in children with dental caries by
PCR-DGGE and barcoded pyrosequencing. Microb Ecol 60:677– 690.
https://doi.org/10.1007/s00248-010-9712-8.

50. Li R, Li Y, Kristiansen K, Wang J. 2008. SOAP: short oligonucleotide
alignment program. Bioinformatics 24:713–714. https://doi.org/10.1093/
bioinformatics/btn025.

51. Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simón-Soro A,
Pignatelli M, Mira A. 2012. The oral metagenome in health and disease.
ISME J 6:46 –56. https://doi.org/10.1038/ismej.2011.85.

52. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y,
Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung
DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam
TW, Wang J. 2012. SOAPdenovo2: an empirically improved memory-
efficient short-read de novo assembler. Gigascience 1:18. https://doi.org/
10.1186/2047-217X-1-18.

53. Noguchi H, Park J, Takagi T. 2006. MetaGene: prokaryotic gene finding
from environmental genome shotgun sequences. Nucleic Acids Res
34:5623–5630. https://doi.org/10.1093/nar/gkl723.

54. Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. 2010.

The Human Oral Microbiome Database: a web accessible resource for
investigating oral microbe taxonomic and genomic information. Data-
base (Oxford) 2010:baq013. https://doi.org/10.1093/database/baq013.

55. Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics 22:
1658 –1659. https://doi.org/10.1093/bioinformatics/btl158.

56. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida
M, Arumugam M, Batto J-M, Kennedy S, Leonard P, Li J, Burgdorf K,
Grarup N, Jorgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M,
Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal
EG, Brunak S, Clement K, Dore J, Kleerebezem M, Kristiansen K, Renault
P, Sicheritz-Ponten T, de Vos WM, Zucker J-D, Raes J, Hansen T, Bork P,
Wang J, Ehrlich SD, Pedersen O, MetaHIT Consortium. 2013. Richness of
human gut microbiome correlates with metabolic markers. Nature 500:
541–546. https://doi.org/10.1038/nature12506.

57. Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S,
Plichta DR, Gautier L, Pedersen AG, Le Chatelier E, Pelletier E, Bonde I,
Nielsen T, Manichanh C, Arumugam M, Batto J-M, Quintanilha Dos
Santos MB, Blom N, Borruel N, Burgdorf KS, Boumezbeur F, Casellas F,
Doré J, Dworzynski P, Guarner F, Hansen T, Hildebrand F, Kaas RS,
Kennedy S, Kristiansen K, Kultima JR, Léonard P, Levenez F, Lund O,
Moumen B, Le Paslier D, Pons N, Pedersen O, Prifti E, Qin J, Raes J,
Sørensen S, Tap J, Tims S, Ussery DW, Yamada T, Renault P, Sicheritz-
Ponten T, Bork P, Wang J, Brunak S, Ehrlich SD. 2014. Identification and
assembly of genomes and genetic elements in complex metagenomic
samples without using reference genomes. Nat Biotechnol 32:822– 828.
https://doi.org/10.1038/nbt.2939.

58. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bow-
tie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923.

59. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accu-
racy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi
.org/10.1093/nar/gkh340.

60. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis
and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.
https://doi.org/10.1093/bioinformatics/btu033.

61. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG
resource for deciphering the genome. Nucleic Acids Res 32:D277– 80.
https://doi.org/10.1093/nar/gkh063.

62. Jensen LJ, Julien P, Kuhn M, von Mering C, Muller J, Doerks T, Bork P.
2008. eggNOG: automated construction and annotation of orthologous
groups of genes. Nucleic Acids Res 36:D250 – 4. https://doi.org/10.1093/
nar/gkm796.

63. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL,
Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O,
Kelley ST, Methe B, Schloss PD, Gevers D, Mitreva M, Huttenhower C.
2012. Metabolic reconstruction for metagenomic data and its applica-
tion to the human microbiome. PLoS Comput Biol 8:e1002358. https://
doi.org/10.1371/journal.pcbi.1002358.

64. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA,
Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE,
Xavier RJ, Huttenhower C. 2012. Dysfunction of the intestinal micro-
biome in inflammatory bowel disease and treatment. Genome Biol
13:R79. https://doi.org/10.1186/gb-2012-13-9-r79.

65. De Jay N, Papillon-Cavanagh S, Olsen C, El-Hachem N, Bontempi G,
Haibe-Kains B. 2013. mRMRe: an R package for parallelized mRMR en-
semble feature selection. Bioinformatics 29:2365–2368. https://doi.org/
10.1093/bioinformatics/btt383.

Oral Microbiome Alterations in Early Childhood Caries

November/December 2019 Volume 4 Issue 6 e00450-19 msystems.asm.org 15

https://doi.org/10.1111/j.1600-0528.1979.tb01216.x
https://doi.org/10.1177/0022034511421201
https://doi.org/10.1177/0022034511421201
https://doi.org/10.3390/nu6093572
https://doi.org/10.1128/JB.01649-09
https://doi.org/10.1007/s00253-015-7092-1
https://doi.org/10.1007/978-0-387-78885-2_12
https://doi.org/10.1128/MMBR.00024-06
https://doi.org/10.1128/MMBR.00024-06
https://doi.org/10.1016/S0065-2911(00)42004-7
https://doi.org/10.1016/S0065-2911(00)42004-7
https://doi.org/10.1111/omi.12085
https://doi.org/10.1111/j.1600-0528.2007.00347.x
https://doi.org/10.1007/s00248-010-9712-8
https://doi.org/10.1093/bioinformatics/btn025
https://doi.org/10.1093/bioinformatics/btn025
https://doi.org/10.1038/ismej.2011.85
https://doi.org/10.1186/2047-217X-1-18
https://doi.org/10.1186/2047-217X-1-18
https://doi.org/10.1093/nar/gkl723
https://doi.org/10.1093/database/baq013
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1038/nature12506
https://doi.org/10.1038/nbt.2939
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1093/nar/gkh063
https://doi.org/10.1093/nar/gkm796
https://doi.org/10.1093/nar/gkm796
https://doi.org/10.1371/journal.pcbi.1002358
https://doi.org/10.1371/journal.pcbi.1002358
https://doi.org/10.1186/gb-2012-13-9-r79
https://doi.org/10.1093/bioinformatics/btt383
https://doi.org/10.1093/bioinformatics/btt383
https://msystems.asm.org

	Oral Microbiome Alterations Associated with Early Childhood Caries Highlight the Importance of Carbohydrate Metabolic Activities
	RESULTS
	Sample collection, sequencing, and quality control. 
	Shifts of the oral microbiomes in preschoolers with caries. 
	Strain-level variations of the caries and healthy subjects. 
	Cooccurrence networks of saliva microbiota under healthy and ECC conditions. 
	Functional profiles of caries and healthy subjects. 
	Host factors associated with some microbial taxa and pathways. 
	Disease classification based on oral microbiota profiles. 

	DISCUSSION
	MATERIALS AND METHODS
	Study subjects. 
	Saliva sampling and isolation of bacterial genomic DNA. 
	Illumina sequencing. 
	Quality control of reads. 
	Genome assembly, gene prediction, and gene catalogue construction. 
	Profiling of microbial taxa and genes. 
	MGS identification. 
	Strain-level analysis. 
	Gene function analysis. 
	Cooccurrence network. 
	Association analysis between microbes and clinical variables. 
	Classifier construction. 
	Statistical analyses. 
	Data availability. 


	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

