
RESEARCH ARTICLE

Optimal reduction and conversion of range-

difference measurements for positioning

M. HouID*

Department of Engineering, University of Hull, Hull, United Kingdom

* m.hou.2022mail@gmail.com

Abstract

For positioning an object with m references, there are m−1 linearly independent range differ-

ences and measuring them is essential. However, none of m(m−1) possible range differ-

ences should be considered redundant unless their measurements are free of noise and

locations of the references are exactly known. From all available range-difference measure-

ments, m range measurements are obtained for positioning based on the least squares prin-

ciple. The problem formulation treats missing and weighted range-difference

measurements simultaneously. The exact relationships among several formulations of least

squares positioning are established. A numerical example illustrates the results.

Introduction

Positioning an energy-emitting or reflecting object is an intensively studied topic due to its

importance in wide applications [1]. Often it is based on the principle of time differences of

arrival (TDOA), which means use of indirect measurements of range differences between the

object at an unknown location and references at known locations. Positioning with TDOA

measurements is different but closely related to that using time of arrival (TOA) measurements

with or without a bias. With all possible range measurements between each object pair, posi-

tioning multiple objects is possible [2].

Positioning an nD object with m references requires m> n and up to m(m−1) range differ-

ences can be formed, but only m−1 of them are linearly independent. Due to noise effects,

measurements of all available range differences should be used for positioning in applications.

This work shows how to combine all available TODA measurements to form m TOA measure-

ments for least squares positioning. Examinations of least squares criteria of several types of

TOA and TDOA measurement equations establish equivalent and other exact relationships

among these positioning formulations. The cases of positioning with missing and weighted

TDOA measurements are treated inclusively in this work.

Investigation on the underlying problem is important from both theoretical and practical

viewpoints. This kind of study answers the question of whether or not different TODA and

TOA formulations are equivalent for positioning, and provides simplified equations for algo-

rithm development and implementation in applications.
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Related work

For positioning an nD object with m known references, most methods have used m TOA equa-

tions or m−1 TODA equations for positioning, and normally the minimum number of refer-

ences m = n + 1 is assumed. In the majority of TDOA methods, measurements of the

remaining possible (m−1)2 range differences are unused or assumed to be unavailable.

In an early study [3], a large number of TDOA measurements with the minimum number

of references were combined to form TODA triads for improvement on positioning. Optimal-

ity of the combination was not addressed nevertheless.

The problem of TDOA denoising [4] is to find a range-measurement vector for generation

of an ideally structured TDOA measurement matrix closest to the original noise-corrupted

same matrix by least squares. This problem is related but not equivalent to the TDOA position-

ing problem directly addressed in the current study.

The problem formulation in the current study avoids the assumptions on skew symmetry

of the noise-corrupted TDOA measurement matrix, and on Gaussian distribution of the noise

[4, 5]. This allows a more general coverage of noise conditions and consideration of up to m(m
−1) TDOA measurements rather than half of them. Normally missing and weighted TDOA

measurements are treated separately, for instance, in [4, 6], but simultaneously in the current

study.

The focus of this work is on optimal conversion of range-difference equations rather than

solving them. This is because, assuming exact solvability, closed-form solutions are known for

positioning with m biased TOA measurements [7–12], and with m − 1 TDOA measurements

[13–15]. As well known, m TOA measurements can be trivially converted to m − 1 TDOA

measurements, although optimality of such a conversion is unclear. In real applications,

closed-form solutions offer fine approximations, and can also be used to initiate an iterative

algorithm for improving the solutions. These methods can be applied to the m TOA or further

m − 1 TDOA measurement equations converted from possible m(m − 1) range-difference

equations studied in the current work.

Notations

All considered quantities are real numbers. Scalars are lowercase letters, (column) vectors and

matrices are boldfaced lowercase and uppercase letters respectively. Set {ai} contains elements

with a known number, and they can form a vector a = [ai]. The vector of ones is denoted by e.

A = [ai,j] is a matrix of a known size with aij being its element in the ith row and jth column.

Diagonal matrix Da has elements of a on its diagonal, and De is the identity matrix I. A0, trA,

rankA and A+ are the transpose, trace, rank and Moore-Penrose inverse of A respectively. The

norm of a is jaj ¼
ffiffiffiffiffiffi
a0a
p

, and that of A is jAj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðA0AÞ

p
. Denoted by A � B is the entry-wise

multiplication, namely Hadamard product of the two matrices of the same size. A ¼ A1
2ð Þ
0A1

2 is

a positive semi-definite matrix decomposed by its square root (matrix). A = USV0 is the singu-

lar value decomposition of A with U0U = I, V0V = I, and diagonal matrix S consisting of (non-

negative) singular values of A. Denoted by arg minx f(x) is the argument of the minimum of a

scalar function, namely x minimizing f(x). Denoted by ni � N ð�n; s2
nÞ is a random variable ni

satisfying the Gaussian distribution with mean �n and variance s2
n. Similarly, n � N ð�n;SnÞ

stands for a Gaussian random vector with mean �n and variance matrix Sn.

Problem formulation

Denote the matrices of range differences and their measurements by R = [rij] and T = [τij],

respectively. On the TDOA principle, noisy measurements {τij} of range differences {rij} are
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described by scalar equations

tij ¼ rij þ nij; i; j ¼ 1; 2; � � � ;m; i 6¼ j; ð1Þ

where nij is a random variable with zero mean, m the number of references, and rij = ri − rj the

difference of ranges rk = |p − pk| for k = i, j, from an unknown object p to known references pi

and pj. If p is of dimension n, m> n is required. To have a unique p in the noise-free case, {pi}

are assumed to be non-coplanar, namely they are not located in an (n − 1)D linear subspace.

Likely not all m(m − 1) measurements in (1) are available in applications even under the

assumption that, without loss of generality, all m references have been used in generation of

the measurements. Available measurements may also be weighted according to a priori knowl-

edge of noise statistics. To consider cases of missing and weighted measurements simulta-

neously, define a masking matrix as

E ¼ ½eij�; eij ¼

wij; tij � available;

0; tij � missing;

8
<

:
ð2Þ

where weight wij> 0, and in the case of non-weighting wij = 1.

Weights {wij} in (2) could be chosen as the components of the inverse variance matrix of

noise {nij} in (1). This resembles the treatment of measurement noise in the Kalman filtering.

However, the problem considered in this study is not the problem of tracking a moving target

because, if any, dynamics of object p is not considered in the current study. Hence, positioning

an object based on the equivalent range equations is generally not the minimum variance esti-

mation intended with a Kalman filter.

Based on all available range-difference measurements and possibly also with weighting,

positioning an object is to find a least squares solution of p to the matrix equation

E � T ¼ E � R: ð3Þ

The objective of this study is to convert (3) which may have up to m(m − 1) range-difference

equations to m range equations. The conversion is optimal in the sense of least squares.

In the case where no range-difference measurement is weighted or missing, the scalar equa-

tions in (1) are identical to the matrix equation in (3) except that the noise terms in the former

are set to be zero in the latter. In general, (3) is a compact notation of (1) by setting the

unknown noise to be zero but with simultaneous consideration of weighted and missing mea-

surements. Clearly, (3) does not normally have an exact solution for p, and hence an estima-

tion of p is sought in respect to least squares of (3).

Linear dependence of {rij} and properties of E
Range differences {rij} are clearly related to each other, and linear independence of a subset of

them is defined conventionally.

Definition 1 fril jl
g for il, jl 2 {1, 2, . . ., m} and l = 1, 2, . . ., k with an arbitrary integer k> 0,

are said to be linearly independent from each other if
Pk

l¼1
alril jl

¼ 0 implies coefficient αl = 0 for
all l.

Range difference rij can be expressed as a linear combination of any m − 1 linearly indepen-

dent elements in {rij} for i, j = 1, 2, . . ., m. It is easy to verify that among others, {ri + 1,1}, {r1,i

+ 1} or {ri + 1, i} for i = 1, 2, . . ., m − 1, consists of m − 1 linearly independent elements. Clearly,

in general, noise-corrupted range-difference measurements {τij} are linearly independent from

each other.
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Masking matrix E is non-negative, namely none of its components is negative. Also, E 6¼ 0

because at least two range-difference measurements are available under the necessary condi-

tion m> n for unique positioning of an nD object with m references. If every reference has

been used in the generation of TDOA measurements, for all i, the ith row and column of E

cannot be simultaneously zero. This amounts to, for at least one j,

eij þ eji 6¼ 0; i ¼ 1; 2; � � � ;m: ð4Þ

The case eij + eji = 0 for a particular i and all j, corresponds to non-use of the ith reference,

which can be handled by dropping pi and reducing number m by one in (1). As implied in (4),

measurements of m − 1 linearly independent range differences are automatically available in

(3).

Pseudo range-measurement vector τ and properties of companion

matrix �E
Define a companion matrix of E as

�E ¼ ðE0Eþ EE0Þ � I � E � E � ðE � EÞ0; ð5Þ

and a pseudo range measurement vector as

τ ¼ �Eþ�τ ; �t ¼ ðE � E � T � ðE � E � TÞ0Þe; ð6Þ

where �Eþ is the Moore-Penrose inverse of �E, and e the vector of ones.

In the special case where all m(m − 1) measurements in (1) are available and no weighting

is applied to them, it is ready to obtain the simplifications E = ee0 − I, �E ¼ 2m I � 1

m ee
0

� �
and

t ¼ 1

2m T � T0ð Þe.

Companion matrix �E is obviously symmetric, and �E 6¼ 0 due to E 6¼ 0. To explore its prop-

erties, some basic definitions related to matrix irreducibility are needed. These properties are

important for reduction and conversion of the weighted range difference matrix equation in

(3).

Definition 2 (Definition 6.2.25 [16]) Square matrix A = [ai,j] is said to be irreducibly diago-

nally dominant if

a. it is irreducible, namely it is not similar to a block upper triangular matrix by permutation.

b. it is diagonally dominant, namely |aii|� ∑i6¼j|aij| for all i;

c. there is an i such that |aii|> ∑i6¼j|aij|.

Theorem 1

a. �E is diagonally dominant;

b. �E is positive semi-definite;

c. jE � xe0 � ex0ð Þj ¼ j�E 1
2xj for arbitrary x;

d. �E is irreducible;

e. rank½ �E; �τ � ¼ rank �E ¼ m � 1.
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Equivalence and optimality of range and range-difference

equations

In terms of an arbitrary vector x of dimension m, define a matrix as

Tx ¼ xe0 � ex0 ð7Þ

which has the same structure as R, in fact R = Tr with range r = [ri]. For least squares position-

ing, exact relationships among (3) and the following three equations

�E
1

2τ ¼ �E
1

2r; Tτ ¼ R; τ ¼ rþ �re ð8Þ

with �r ¼ e0ðτ � rÞ=m, are shown in the next theorem.

Theorem 2 There are two least squares positioning equivalences:

argmin
p
jE � T � Rð Þj

2
¼ argmin

p
j�E

1

2ðτ � rÞj2; ð9Þ

argmin
p
jTτ� Rj

2
¼ argmin

p
jτ � r � �rej2: ð10Þ

For arbitrary p, r, and E, the following relations hold

j�E
1

2ðτ � rÞj=j�E
1

2j � jτ � r � �rej � jτ � r � rej � jτ � rj: ð11Þ

The significance of Theorem 2 lies in establishment of the equivalence of matrix Eq (3) and

that in (8) to the vector equations in (8) respectively through (9) and (10) for least squares posi-

tioning. Although further equivalence between (9) and (10) cannot be established, (11) implies

that if a p diminishes jτ � r � �rej considerably, it is a superb approximation of (9), and con-

firms the supremacy of τ ¼ rþ �re over τ ¼ rþ re and τ ¼ r for determination of p by the

least squares principle.

Corollary 1 The denoising problem has the general solution

argmin
x
jE � ðT � TxÞj

2
¼ τ � re ð12Þ

with an arbitrary r.
The result presented in Corollary 1 was first obtained in [4], and now given without impos-

ing any particular assumptions on T in (1) and E in (4). Theorem 2 and Corollary 1 indicate

exactly the relationship between the positioning and denoising problems. Basically, for posi-

tioning p ¼ argminpjE � ðT � TrÞj
2
, while for denoising, x ¼ argminxjE � ðT � TxÞj

2
. In gen-

eral, jE � ðT � TrÞj
2
6¼ jE � ðT � Tτ� reÞj

2
, and the equality holds if p satisfies τ ¼ rþ re for

some r. Note that normally τ ¼ rþ re is not exactly solvable for p and r.
It is well known that biased TOA equations are often described by τ ¼ rþ re with r repre-

senting the clock bias between the transmitter and receiver. Interestingly, in τ ¼ rþ �re, �r is

specified as the average of the difference between {τi} and {ri}. As implied in the proof of Theo-

rem 2, �r is actually the least squares solution of r to τ ¼ rþ re.

Theoretical verification

Some primary results on matrix irreducibility are needed for proving Theorem 1.

Lemma 1 (Corollary 6.2.27 [16]) An irreducibly diagonally dominant matrix is non-singular.
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Lemma 2 (Proposition 1.1 [17]) If A1 and A2 are irreducible, A12 6¼ 0 and A21 6¼ 0, then
� A1 A12

A21 A2

�

is irreducible.

Proof of Theorem 1

Direct calculations give

�E ¼ D�e �
�Ee �

�E0e; ð13Þ

where �Ee ¼ ½e2
ij�, and D�e is the diagonal matrix formed by �e ¼ ½�ei� with

�ei ¼
X

j6¼i

ðe2

ij þ e2

jiÞ; i ¼ 1; 2; � � � ;m: ð14Þ

Obviously, �E is symmetric, and diagonally dominant, which is a). It is also at least positive

semi-definite which is part of b) due to

jE � ðxe0 � ex0Þj2 ¼ jE � Txj
2
¼ x0�Ex � 0 ð15Þ

following from some simple properties of Hadamard products [16], such as

A � B ¼ B � A; ðA � BÞ � C ¼ A � B � C; ð16Þ

and identities

E � Tx ¼ DxE � EDx; trðDxADyB
0Þ ¼ x0ðA � BÞy ð17Þ

for arbitrary vectors x and y, and arbitrary matrices A, B and C, all with compatible dimen-

sions. This verifies c) due to the existence of decomposition �E ¼ �E 1
2ð Þ
0�E 1

2. It also leads to b)

because of rank deficiency of �E in view of �Ee ¼ 0 from (13). Moreover, �τ 0e ¼ 0 follows from

the skew symmetry of E � E � T � ðE � E � TÞ0, which implies rank½ �E; �τ � < m. A deductive

verification of irreducibility of �E and rank �E ¼ m � 1 in the following completes the proof of

d) and e).

Denote E by Em and �E by �Em, and set E1 ¼
�E1 ¼ 0. For m = k> 0,

Ekþ1 ¼

Ek ec;kþ1

e0r;kþ1
0

2

4

3

5 ð18Þ

with

ec;kþ1 ¼ e1;kþ1 � � � ek;kþ1 �
0
; ð19Þ

�

er;kþ1 ¼ ekþ1;1 � � � ekþ1;k �
0
; ð20Þ

�

and

�Ekþ1 ¼

�Ek þD�ekþ1
� �ekþ1

� �e 0kþ1
�ekþ1

2

4

3

5; ð21Þ

where �ekþ1 ¼ ½e2
i;kþ1
þ e2

kþ1;i� for i = 1, . . ., k, and �ekþ1 is given in (14) for i = m = k + 1. Clearly,

�E2 is irreducible and rank �E2 ¼ 1 due to �e2 ¼ �e2 ¼ e2
12
þ e2

21
6¼ 0 in view of (4).
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Suppose �Ek is irreducible and rank �Ek ¼ k � 1 for k> 2. Trivially, irreducibility of �Ek

implies the same of �Ek þD�ekþ1
. In view of (14), �ekþ1 6¼ 0 and �ekþ1 6¼ 0, which ensures irreduc-

ibility of �Ekþ1 according to Lemma 2. Moreover, �Ek þD�ekþ1
is irreducibly diagonally dominant,

and hence non-singular according to Lemma 1. This verifies rank �Ekþ1 � k, where the inequal-

ity cannot hold nevertheless because �Ekþ1e ¼ 0 follows from (13).

Proof of Theorem 2

By definition, the left side of (9) specifies least squares solutions to (3). Using (6), (16), (17), De

= I, and some simple properties of the trace of matrix products, the following is obtained

jE � ðT� RÞj2

¼ jE � Tj2 � 2trððE � TÞ0ðDrE � EDrÞÞþ

trðDrðE
0Eþ EE0ÞDr � E

0DrEDr � DrE
0DrEÞ

¼ jE � Tj2 � 2r0�τþr0�Er

¼ jE � Tj2 � �τ 0�Eþ�τþj�E
1

2r� �E
1

2�Eþ�τ j2

ð22Þ

¼ jE � Tj2 � τ0�Eτþj�E
1

2ðτ � rÞj2: ð23Þ

Completing the square in (22) has used �E ¼ �E 1
2ð Þ
0�E 1

2 and �τ ¼ �E�Eþ�τ due to c) and e) of Theo-

rem 1 respectively. The second term in (22) and that in (23) are obtained from

j�E 1
2
�Eþ�τ j2 ¼ �τ 0�Eþ�τ , symmetry of �E (and hence �Eþ), and �Eþ�E�Eþ ¼ �Eþ. Since the first two terms

in (23) are independent of p, the equivalence in (9) is then proved.

Direct calculations produce

jTτ � Rj
2
¼ jðτ � rÞe0 � eðτ � rÞ0j2

¼ 2mðτ � rÞ0ðτ � rÞ � 2ðτ � rÞ0eðτ � rÞ0e

¼ 2mðjτ � rj2 � m�r2Þ

¼ 2mjτ � r � �rej2

ð24Þ

which verifies the equivalence in (10).

From �Ee ¼ 0 (and hence e0�Ee ¼ 0) and �E ¼ �E 1
2ð Þ
0�E 1

2, �E 1
2e ¼ 0 follows. Consequently, �E 1

2ðτ �
rÞ ¼ �E 1

2ðτ � r � reÞ for arbitrary p and r. By setting r ¼ �r and noticing Ab|� |A||b| for arbi-

trary A and b, the first inequality in (11) is verified. Setting partial differentiation

@jτ � r � rej2=@r ¼ 0 leads to r ¼ �r , which implies jτ � r � rej � jτ � r � �rej for arbitrary p

and r, and hence confirms the second inequality. From this, the third inequality follows

immediately.

Proof of Corollary 1

Noting R = Tr and from (23) with Tx replacing R, it is ready to have

argmin
x
jE � T � Txð Þj

2
¼ argmin

x
j�E

1

2ðτ � xÞj2:

The general least squares solution of x to �E 1
2ðτ � xÞ ¼ 0 is

x ¼ �E 1
2ð Þ
þ�E 1

2τ þ y;
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where y is arbitrary but subject to �E 1
2y ¼ 0. Considering singular value decomposition �E 1

2 ¼

US1
2V0 and hence �E ¼ USV0, it is ready to verify

�E
1

2

� �þ
�E

1

2τ ¼ �E
1

2

� �þ
�E

1

2�Eþ�τ ¼ �Eþ�τ ¼ τ:

Recalling �E 1
2e ¼ 0 and rank �E 1

2 ¼ m � 1, y must be parallel to E, which leads to the general

expression y ¼ � re with r being an arbitrary scalar.

Illustrative example

A numerical example of 3D positioning is used to illustrate the developed results. When used

for illustrating effects of different sets of range and range-difference equations on positioning,

simulated datasets are considered most effective than practical datasets. This is because noise

levels for range-difference measurements and inaccuracy of the reference locations could be

easily set and examined in numerical examples. It is however not the case in a real setup where

inaccuracies of the measurements and reference locations are coupled with the uncertainty of

the object location.

Let four references be located precisely at ½ �p1; �p2; �p3; �p4� ¼ ½ 0; I �, but inexactly known as

pi ¼ �pi þ ni with noise vector ni � N ð0; s2
pIÞ. Measurements of range differences are pro-

duced according to τij = rij + nij in (1) with rij = ri−rj and rk ¼ jp � �pkj for k = i, j and noise var-

iable nij � N ð0; s2
nÞ. An object is with its coordinates randomly generated within range (1, 10)

as

p ¼ 9:8115 6:0293 1:1923 �
0
: ð25Þ

�

The standard deviations are set as σp = 0.1% and σn = max{|rij|} × 1%. For instance, one simula-

tion run produced reference and measurement matrices as

p1 p2 p3 p4½ �¼

� 0:0006 1:0002 0:0010 � 0:0009

0:0015 � 0:0005 1:0003 0:0002

0:0027 � 0:0014 0:0012 0:9993

2

6
6
6
4

3

7
7
7
5
;

T¼

0 0:8177 0:4903 0:0568

� 0:8502 0 � 0:3522 � 0:7858

� 0:5027 0:3437 0 � 0:4278

� 0:0676 0:7765 0:4345 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

:

As expected, since the noise levels are low, deviations of {pi} from f�pig are insignificant, and

also due to rij = −rji, T is approximately skew symmetric.

To find the object position, the unconstrained multivariable minimization algorithm

fminsearch in MATLAB has been used. In numerical minimization, referring to Theorem
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2, the squared forms of the criteria

aÞ jE�ðT� RÞj; bÞ j�E
1

2ðτ � rÞj; cÞ jTτ � Rj;

dÞ jτ � r� �rej; eÞ jτ � r� rej fÞ jτ � rj
ð26Þ

were used, and the initial estimate of (p, r) was taken as ðp=2;�r=2Þ in each simulation run.

Fig 1 indicates the geometric setup for positioning a 3D object with four references. Table 1

shows the estimates of the object position in 50 runs of simulations under the noise conditions

stated above for the reference locations and rage-difference measurements. The estimates

using the squared criteria (26a) and (26b) are very close to each other, while those using crite-

ria (26b) to (26e) are indistinguishable from each other. Due to r = − 11.81 on average over the

50 simulation runs, the estimates using the squared criteria (26f) are too poor to be useful.

This value of r should not be interpreted as a clock bias because the generation of the ranges

and their noisy measurements had not introduced an offset in each run of the simulations. In

fact, even if introduced, a bias in TOA measurements cannot be recovered from TDOA

measurements.

The best and worst estimates are determined with respect to jp � p̂j which cannot be evalu-

ated in real applications nevertheless. Worst cases of the randomly generated reference loca-

tions and range difference measurements ought to be responsible for worst estimates of p in

Table 1. This is because the evaluations of criteria (26b) to (26e) have generated insignificant

values at level 10−7 which corresponds to level 10−14 produced by least squares. As expected, if

no noise is added to the reference locations and range-difference measurements, all estimates,

Fig 1. Geometric setup for positioning a 3D object with four references.

https://doi.org/10.1371/journal.pone.0273617.g001
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except for those using (26f), recover p up to a computational error at the level of 10−14 close to

the machine epsilon 10−16.

It is interesting to know how availability of measurements affects estimations. Consider the

following three cases of availability of range-difference measurements in T = [τij], where no

weighting is applied to available measurements:

Case 1: [τij] for all i and j 6¼ i (12 measurements);

Case 2: [τij] for all i and j> i (6 measurements);

Case 3: τ12, τ14, τ23 and τ24 (4 measurements).

In Table 2, three averaged values of each minimization criterion and estimation error corre-

spond to the above three cases. On average, use of more measurements is shown to have better

estimations. This indicates, as expected, that all available range-difference measurements

should be used for positioning. Use of different squared criteria in (26), except for (26f), in

minimization has produced estimations of the object position with similar or identical

Table 1. Estimation of the object position using algorithm fminsearch with initial estimate ðp=2; �r=2Þ and use

of noise corrupted references and measurements of all range differences.

position estimation p̂ jp � p̂j criterion & value

best [9.7939, 5.9975, 1.2346] 0.06 (26a) 1.06 × 10−2

mean [10.0746, 6.1680, 1.2261] 1.93 (26a) 1.88 × 10−2

worst [16.1242, 9.7248, 1.8867] 7.35 (26a) 2.33 × 10−2

best [9.8219, 6.0204, 1.2209] 0.03 (26b) 5.33 × 10−7

mean [10.1188, 6.1966, 1.2329] 1.21 (26b) 6.66 × 10−7

worst [13.7830, 8.3322, 1.5230] 4.60 (26b) 7.45 × 10−7

best as above as above (26c) 0.97 × 10−7

mean (26c) 2.59 × 10−7

worst (26c) 1.18 × 10−7

best as above as above (26d) 0.48 × 10−7

mean (26d) 1.27 × 10−7

worst (26d) 0.59 × 10−7

best as above as above (26e) 1.34 × 10−7

mean (26e) 1.39 × 10−7

worst (26e) 0.56 × 10−7

best [0.4381, 0.2926, 0.1767] 11.04 (26f) 1.68

mean [0.4362, 0.2926, 0.1772] 11.04 (26f) 1.68

worst [0.4345, 0.2928, 0.1781] 11.04 (26f) 1.68

https://doi.org/10.1371/journal.pone.0273617.t001

Table 2. Evaluations of least squares criteria and estimation errors over 50 simulation runs with averaged values

in a bracket corresponding to cases 1, 2 and 3 of measurement availability.

evaluation of criteria in (26) estimation error jp � p̂j
(26a) = (1.88, 1.16, 0.68) × 10−2, (1.53, 2.52, 4.91)

(26b) = (6.66, 4.96, 3.15) × 10−7, (1.21, 2.17, 3.58)

(26c) = (2.59, 2.70, 2.49) × 10−7, (1.21, 2.17, 3.58)

(26d) = (1.30, 1.35, 1.25) × 10−7, (1.21, 2.17, 3.58)

(26e) = (1.39, 1.54, 1.56) × 10−7, (1.21, 2.17, 3.58)

(26f) = (1.68, 1.68, 1.68), (11.04, 11.04, 11.04)

https://doi.org/10.1371/journal.pone.0273617.t002
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averaged errors of jp � p̂j in all case of measurement availability. This shows the desired close

performances of minimizing the biased range Eq (8) and minimizing the original range-differ-

ence Eq (3) by least squares. The poor performance with (26f) indicates unsuitability of the

range equation τ ¼ r for positioning.

Concluding remarks

Given m references, following the procedure in [18] on the basis of processing individually

received signals, up to m(m − 1)/2 TDOA measurements could be made available. The proce-

dure in [19] on the basis of processing each pair of received signals could produce up to

m(m − 1) TDOA measurements. The current work has proposed a general method for use of

these multiple TDOA measurements for positioning.

While weighted least squares positioning has been considered in this work, it has not

addressed issues of selection of weighting coefficients. As widely used, for instance in [5, 6]

among others, an obvious choice of weightings is the inverse variances of the measurement

noise components, which could be obtained from a processor of generating TDOA measure-

ments such as those in [18, 19].

Minimizing the difference between the noise-corrupted TDOA measurement matrix and

the well-structured matrix formed by a range-measurement vector is the denoising problem

explored in [4]. The current work directly addresses the problem of minimizing TDOA equa-

tions with respect to the object location and automatically obtains the range red-measurement

vector. The current focus is on positioning in a general setting with a simultaneous treatment

of missing and weighted TDOA measurements. The current work has however not considered

the issue of eliminating outlier measurements as examined in [4] and comprehensively

explored in [20].

A numerical example has been used to illustrate the theoretical results presented in this

paper. To evaluate effectiveness of the proposed method in real applications, an experiment

could be designed. It would need a high-precision positioning system for referencing, and

apply the method to a low-precision TDOA dataset. A practical application of the results in

this paper could be in wireless sensor networks [21] with massive low-cost miniature sensors

often randomly deployed in a geographical area, where a sensor could be localized by using a

huge number of TDOA measurements from references including already localized sensor

nodes [22].
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