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Abstract

Introduction

We aim to apply deep learning to achieve fully automated detection and classification of the

Cervical Vertebrae Maturation (CVM) stages. We propose an innovative custom-designed

deep Convolutional Neural Network (CNN) with a built-in set of novel directional filters that

highlight the edges of the Cervical Vertebrae in X-ray images.

Methods

A total of 1018 Cephalometric radiographs were labeled and classified according to the Cer-

vical Vertebrae Maturation (CVM) stages. The images were cropped to extract the cervical

vertebrae using an Aggregate Channel Features (ACF) object detector. The resulting

images were used to train four different Deep Learning (DL) models: our proposed CNN,

MobileNetV2, ResNet101, and Xception, together with a set of tunable directional edge

enhancers. When using MobileNetV2, ResNet101 and Xception, data augmentation is

adopted to allow adequate network complexity while avoiding overfitting. The performance

of our CNN model was compared with that of MobileNetV2, ResNet101 and Xception with

and without the use of directional filters. For validation and performance assessment, k-fold

cross-validation, ROC curves, and p-values were used.

Results

The proposed innovative model that uses a CNN preceded with a layer of tunable directional

filters achieved a validation accuracy of 84.63%84.63% in CVM stage classification into five

classes, exceeding the accuracy achieved with the other DL models investigated. Mobile-

NetV2, ResNet101 and Xception used with directional filters attained accuracies of 78.54%,

74.10%, and 80.86%, respectively. The custom-designed CNN method also achieves

75.11% in six-class CVM stage classification. The effectiveness of the directional filters is
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reflected in the improved performance attained in the results. If the custom-designed CNN is

used without the directional filters, the test accuracy decreases to 80.75%. In the Xception

model without the directional filters, the testing accuracy drops slightly to 79.42% in the five-

class CVM stage classification.

Conclusion

The proposed model of a custom-designed CNN together with the tunable Directional Filters

(CNNDF) is observed to provide higher accuracy than the commonly used pre-trained net-

work models that we investigated in the fully automated determination of the CVM stages.

I. Introduction

Every individual has a unique growth and development pattern; there are periods of acceler-

ated and decelerated growth [1, 2]. The success of orthodontic/orthopedic treatment depends

on optimal treatment timing, especially in addressing craniofacial skeletal imbalances. The

optimal treatment timing relies on identifying craniofacial skeletal maturity stages besides the

periods of favorable growth for structures such as mandibular condyles and circum-maxillary

sutures [3–5]. The chronological age is not reliable enough to reflect the actual circumpubertal

growth spurt as it is influenced by gender, ethnicity, genetic profile, and nutrition. Bone age

assessment using radiographic analyses was reported to be more accurate than chronological

age in determining skeletal maturation, growth rate, the peak period of growth, and the

remaining growth potential [6–9]. Hand-wrist radiographs have been a reliable method for

assessing skeletal maturity; however, they require extra radiation exposure [10, 11].

Cervical vertebra maturation (CVM) staging in lateral cephalometric radiographs is an

alternative method to determine skeletal maturation, as lateral cephalometric radiography is

routinely required for orthodontic diagnosis and treatment planning in orthodontic practice

with no additional radiographs required to assess the CVM stages [2, 12]. The validity and reli-

ability of the CVM staging besides its correlation with the hand-wrist method (HWM), have

been supported by multiple studies [10, 12, 13]. The major limitation of the CVM method is

that it is not user-friendly and needs experienced practitioners; researchers reported poor

reproducibility among nonexpert examiners [14]. In contrast, another group reported a satis-

factory level of reliability after specific training on the visual assessment of the CVM stages [15,

16]. Another limitation is that the conventional visual assessment of CVM stages is not inte-

grated with the computerized cephalometric analysis. There have been recent attempts to

develop a computer-assisted classifier; however, the proposed methods require the clinician to

identify 19 or 26 digital landmarks on the cervical vertebra, which still needs to be done manu-

ally, and the accuracy of the classification depends on the identification of these landmarks

[17–19].

The use of Machine-Learning (ML) techniques in the field of medical imaging is rapidly

evolving, and a fully automated diagnostic approach has gained attention with its promise for

reducing human error as well as the time and effort needed for the task [20, 21]. Recently, an

advanced ML method called “deep learning (DL)” has become the most sought-after tool to

solve image pattern recognition and classification problems and has been extensively used in

the medical field [20]. The application of DL to study human growth and development from

radiographs is a promising idea that needs to be explored. The present study aims to apply DL

to develop a fully automated high-performance system to detect and classify the CVM stages.
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The key original contributions of this paper are as follows:

• The custom-designed convolutional neural network (CNNDF) incorporates directional fil-

ters as an initial layer to emphasize the edges of Cervical Vertebrae.

• The convolutional directional filter layer parameters are also updated during the training

process.

• The CNNDF has fewer parameters than the pre-trained networks (MobileNetV2, ResNet101

and Xception) and it does not require data augmentation.

• The directional filter layer improves the classification accuracy of CVM stages not only in

the proposed CNNDF but also in pre-trained networks and the classical SVM method.

II. Material and methods

The data set used in developing our algorithm consists of digitized images of scanned lateral

cephalometric films for subjects aged between 4 and 29 obtained from the American Associ-

ation of Orthodontists Foundation (AAOF) Craniofacial Growth Legacy Collections, an

open data source. Films from Michigan, Bolton Brush, and Iowa Facial Growth Studies

were used in this study [22]. The AAOF legacy collection was collected from growth studies,

so they are longitudinal records. Since we used an open-source dataset, the present study

was granted IRB exempt status (2021–0480) by the Office of Human Subjects Protection at

The University of Illinois at Chicago. All the films were downloaded as jpg files using Fire-

fox FTP software (Mountain View, Calif) and they do not require any special access privi-

leges to access. All cephalometric radiographs included in this study are of adequate quality,

with the second (C2), third (C3), and fourth (C4) cervical vertebrae clearly observable. The

exclusion criteria were limited to poor-quality images or malformations in the head and

neck region.

The images were studied and labeled by an expert Orthodontist Scientist (MHE) with

more than ten years of experience in classifying CVM. Cervical maturation stages were clas-

sified into six stages (CS1- CS6) in keeping with the methodology from previous studies [2,

23]. Cervical Stage 1 (CS1): the inferior borders of vertebral bodies C2 to C4 are flat, and the

third and fourth cervical bodies are trapezoidal. Cervical Stage 2 (CS2): visible notch along

the inferior border of the second cervical vertebra, while the lower borders of the third and

fourth vertebral bodies remain flat with both C3 and C4 retaining a trapezoidal shape. Cer-

vical Stage 3 (CS3): visible notching of the inferior borders of C2 and C3; the inferior border

of C4 remains flat while the C3 and C4 bodies still retain a trapezoidal shape. Cervical Stage

4 (CS4): the inferior borders of vertebral bodies C2 to C4 have obvious concavities along

their inferior surfaces, with the shapes of C3 and C4 bodies being horizontally elongated

rectangular rather than trapezoidal. Cervical Stage 5 (CS5): differentiated from CS 4 based

on the shapes of C3 and/or C4, with these body shapes becoming square. All three cervical

bodies have notches. Cervical Stage 6 (CS6): at least one of the third and fourth cervical bod-

ies has assumed a vertically elongated rectangular morphology. The length of the posterior

border is longer than the inferior border. Besides, the cortical bone appears better delin-

eated at CS 6 than at CS 5.

The main data set was classified into six stages of CVM (CS1-CS6) [2, 12, 23]. Another

improved method of the CVM assessment introduced by Baccetti et al. [24] classified the

CVM into five stages (CVMS I- CVMS V). In the five-stage classification, the CS1 and CS2

stages were merged into a single stage referred to as CVMS I (the lower borders of all the three

vertebrae are flat, with the possible exception of a concavity at the lower border of C2).
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Furthermore, CS3 is denoted as CVMS II. We assessed our model in performing classification

into both five CVM stages (CVMS I- CVMS V) and six CVM stages (CS1-CS6). In this paper,

we examine both the six-stage and five-stage classification problems.

The principal evaluator (MHE) repeated the classification process two weeks later, and the

intra-examiner reproducibility for the cervical vertebral stages was tested by weighted kappa

(wk). The intra-examiner agreement was almost perfect (wk = 0.95). Furthermore, another

evaluator, an Oral and Maxillofacial surgeon (OS), performed the repeated classification pro-

cess, and the inter-examiner agreement was strong (wk = 0.90). The final data set of 1018 clas-

sified images by the principal evaluator (MHE) was used in this study based on the MHE’s

greater experience. In our data set, the number of lateral cephalograms belonging to cervical

stages CS1, CS2, CS3, CS4, CS5, and CS6 were 154, 187, 174, 159, 167, and 177, respectively. In

CVMS classification, CS1 and CS2 classes are merged to form the CVMS I class. CVMS II is

the same as CS3, CVMS III is the same as CS4, and so on.

Data Augmentation for Pre-trained Networks: We note that our proposed CNN with direc-

tional filter layer does not need data augmentation during training. However, pre-trained deep

learning algorithms such as Xception usually require huge training data sets to produce accu-

rate classification results. If the size of the training data set is small, then the Xception model

may overfit the training data and achieve high accuracy on the training data set while perform-

ing poorly on validation and testing data sets. There are several solutions to avoid overfitting

the model to the training data set. These include transfer learning, batch normalization, and

data augmentation. Since our data set is not very large, we use data augmentation and transfer

learning to increase the number of images in our data set to prevent overfitting in the case of

pre-trained networks MobileNetV2, ResNet101, and Xception

To augment the data, new images are created by shifting the RoI images to the right, left, up

and down, and by rotating them clockwise and counterclockwise. Our CVM image data set

has 1018 images. Of these 1018 images, 761 are used in the training set and 257 in the testing

set, respectively. These 257 testing images are set aside to use for the evaluation of the model at

the end. By implementing the augmentation methods, we created 10 additional images out of

each image in the training set. A total of 761×11 = 8371 images is generated using augmenta-

tion for training. The density distribution of the classes is preserved after the augmentation.

The augmented data set is used as a training set only for the pre-trained deep learning algo-

rithms. Again, we emphasize that the proposed CNN with directional filter layer does not need

data augmentation during training.

The data set contains labeled images a large subset of which serves as a training set needed

to develop a deep learning model. Since the edges of the vertebral body shapes are critical in

determining the CVM stage, we decided to investigate a custom-designed innovative deep

learning model that includes tunable preprocessing to emphasize the edges in the input image.

Our deep learning architecture is based on Convolutional Neural Network (CNN), which is a

classifier widely used in image recognition applications. To prepare our data set for training,

the images are first segmented to extract the region of interest. The deep learning architecture

is augmented with a bank of directional filters aimed at improving the accuracy of the classifi-

cation task. The results attest to the improvement in accuracy due to the use of the proposed

augmented architecture.

In the following subsections, we describe the steps of our lateral cephalogram classification

algorithm. We first segment the images to extract the regions of interest using an aggregate

channel feature object detector as described in Subsection II-A. The directional filters used in

this study are described in Subsection II-B; and finally, the custom designed CNN model is

delineated in Subsection II-C.
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A. Image RoI segmentation

We first segment the image and identify the spine (Cervical Vertebrae) region using the so-

called Aggregate Channel Features (ACF) object detector [25]. It is a classical computer vision

method that analyzes a given image in sliding windows using image feature pyramids. This

avoids the process of manually cropping the spine region in each image in the database. The

use of the ACF object detector helps automate the process of preparing images for subsequent

analysis with the deep learning algorithm, thereby making the overall processing computation-

ally more efficient. As a result, the skull, jaw, and irrelevant background regions are removed

before the images are applied to the deep learning algorithm. The ACF object detector auto-

matically extracts the Region of Interest (RoI) in the images thereby reducing the search space

of the deep learning structure.

We trained the ACF object detector using 300 images and applied it to extract relevant RoI

sub-images from the 1018 larger images in our data set. The ACF detector correctly identified

the RoIs in 703 out of the remaining 718 images, yielding an accuracy of 98%. In the remaining

15 images, we manually cropped the ROI before feeding it to our proposed CNNDF model and

pre-trained MobileNetV2, ResNet101, and Xception models. Because all the segmented images

have variable size, they are resized to a common size of 77x35. We note that resizing the images

can be a sensitive operation because it might change the relative dimensions of the vertebrae.

This may impact classification as the fundamental difference between CVM stages is the size and

the curvature of the vertebrae in X-ray images. Therefore, the resizing should be done without

changing the aspect ratio of the image. Next, instead of feeding the resized ROI images directly

to the DL networks, the edges of vertebral bodies in the ROI images are emphasized using eight

directional filters described in [26, 27]. The outputs of directional filters are fed to the DL net-

works. In fact, we make the directional filters the first layer of the DL networks and even update

their parameters during the network training process making the layer parameters tunable.

We review the directional filters in the next subsection.

B. Directional filters

Deep learning structures contain many convolutional filters whose weights are learned during

training. These convolutional filters are initialized with random numbers in general. In this

section, we introduce an initial layer consisting of eight directional filters. We initialize these

filters in such a way that they highlight the edges of X-ray images in eight directions. We

design the initial values of the filters using a Fourier domain method. During the standard

learning process, we also allow the network to update the values of the front-end layer filters.

Outputs of directional filters provide multi-channel inputs to the rest of the deep CNN. Since

we have eight directional filters, we have more input layers than the commonly used three

input layers. In the pre-trained models we investigated, we first use a stage of directional filter-

ing following which we adhere to the available model of the pre-trained network. In designing

the directional filters, we focused on using simple low-order filters that work adequately for

the task. Higher-order filters produce better frequency characteristics but may cause ringing

artifacts at edges in an image.

We used a one-dimensional high-pass prototype filter obtained from a 7-th order half-band

Lagrangian maximally flat lowpass filter with the following transfer function to design the

directional filters [28, 29]:

Hlp zð Þ ¼ 1þ
9

16
z1 þ z� 1ð Þ �

1

16
z3 þ z� 3ð Þ; ð1Þ

with a DC gain of Hlp (ej0) = Hlp (1) = 2.
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The high-pass filter is obtained with the transformation Hhp (z) = Hlp (−z), and the corre-

sponding impulse response of the high-pass filter is

hhp n½ � ¼
1

16
; 0;
� 9

16
; 1;
� 9

16
; 0;

1

16

� �

: ð2Þ

This filter is concatenated with a lowpass filter with impulse response hc [n] = {1,2,1} to

avoid the amplification of noise at high frequencies and the overall frequency response is that

of a band-pass filter:

hbp n½ � ¼ hc � hhp
� �

n½ �; ð3Þ

where � represents the convolution operation. The frequency response Hbp (ejω) of the filter

with impulse response hbp is shown in Fig 1A. The impulse response h0
� of the prototype (hori-

zontal) two-dimensional (2-D) filter obtained from hbp is:

h0
� n1; n2½ � ¼ hbp n1½ �d n2½ � ð4Þ

The 2-D impulse response obtained by rotating h0
� by an angle θ degrees is denoted by hy� .

The filter with impulse response h0
� produces zero-crossings at the location of the vertical

edges. We rotate the impulse response h0
� by θ = −63.43˚, −45˚, −26.56˚, 0˚, 26.56˚, 45˚,

63.43˚, 90˚ to obtain eight filters. Due to our choice of low-order filters, the lower density of

samples in the diagonal direction produces multi-band responses in the case of θ = 45˚ rather

than the bandpass responses observed in the case of θ = 0˚ or 90˚. The frequency response for

θ = 90˚ is shown in Fig 1B. For example, the filter corresponding to 45˚ has the impulse

Fig 1. (a) The frequency response Hbp (ejω) of hbp. The filter has gain of 2 at o ¼ p

2
and 0 at ω = 0 and π, exhibiting a band-pass response. (b)The frequency response Hθ of

the vertical edge filter. This filter h90
� n1; n2½ � ¼ d n1½ �hbp n2½ �. It has a magnitude peak at o2 ¼

p

2
.

https://doi.org/10.1371/journal.pone.0269198.g001
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response

h45
� n1; n2½ � ¼

hbp n1½ � if n1 ¼ n2

0 otherwise

(

which produces zero-crossings corresponding to 45˚ edges.

The coefficients of eight filters are provided in the Supporting information section. The fre-

quency responses of the 2-D filters are shown in Supporting information section. The coeffi-

cients of the directional filters are obtained using the method described in [26]. Instead of

rotating the coefficients of the horizontal filter h0
� using the bilinear interpolation, the authors

propose a method resulting a sparse set of filter coefficients whose sums along the θ = {±26.56˚

±90, ±45˚ ±90, ±63.43˚ ±90} are approximately equal to the coefficients of the horizontal filter.

The filter with θ = 90 is simply the vertical version of the horizontal filter. The 2-D filter

impulse responses corresponding to θ = {0˚, ±26.56˚, ±45˚, ±63.43˚, 90˚} are also available in

[26].

The motivation behind using the directional filters is to start the deep learning model using

our prior domain knowledge. Since the images among the classes are not dramatically different

as in natural images, we estimate that highlighting the edges of the bones more than two direc-

tions will give an advantage to the deep network model. We illustrate the effect of the direc-

tional filters on an instance of cervical vertebrae in Fig 2. These observations motivated our

use of the directional filters (DF) in the proposed method. The performance accuracy with and

without directional filters is examined in Section III.

As a result, eight different channels are created at the output of the directional filters. These

filters are implemented with direct convolution. Outputs of these filters serve as initial esti-

mates in our networks. Instead of starting the initial layer with random numbers, we start the

training process with the directional filters emphasizing edges at different angles.

C. Convolutional Neural Network with Directional Filter (CNNDF) layer

The most efficient and common trainable model to classify the images into a specific number

of classes is the Convolutional Neural Network (CNN) [30, 31]. Fundamentally, convolution

Fig 2. Effect of the directional filters on a ROI of a cervical vertebrae image (leftmost image). Outputs of 0˚, 45˚, and 90˚

filters are shown in the middle left, middle right, and the rightmost figures, respectively.

https://doi.org/10.1371/journal.pone.0269198.g002
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layers are designed to extract the information from the images using a 2-D convolution opera-

tion. The channels created after the convolution layers can contain vital information regarding

the class, and the channels are emphasized or de-emphasized accordingly. In this project, ini-

tially, we decided to use a custom CNN with residual learning to measure the capacity of a DL

model on our data set. More elaborate models–MobileNetV2 [32], ResNet101 [33], and Xcep-

tion [34] are also used for the purpose of comparison. These pre-trained networks are trained

on ImageNet [35] and their performance are presented in ImageNet Challenge [36].

To determine how many layers to use, we try to strike a balance between overfitting and

underfitting. It is common knowledge that there is always a chance that the model may overfit

due to the data set characteristics or the complexity of the model. To achieve better balance, it

is recommended to start from a simple CNN model, then increase model complexity as needed

for better results. Using this strategy, 6 convolutional layers are found to be best suited for our

classification task. However, due to the nature of the convolution layers, the problem of van-

ishing/exploding gradients might arise as the CNN gets deeper. Residual learning is introduced

into the model as skip connection blocks to avoid the vanishing gradient problem [33]. In

addition to the regular convolution layers, a convolution layer with no activation function and

kernel size (1,1) is used to match the filter numbers in the so-called skip connection block.

Batch normalization and dropout layers are key mechanisms adopted after the regular convo-

lution layers to avoid overfitting as the model trains. The non-linear activation function

“ReLU” is adopted after the batch normalization layers. The outputs of these two convolution

layers are added to achieve the final output. Maximum pooling layers are used to decrease the

number of parameters that the model must learn. The architecture of the proposed CNN is

given in Table 1. The first layer consists of directional filters described in Section II.B. We

believe that the directional filters help highlight the details and the differences of the classes

through the layers.

As pointed out above, the initial layer of the CNN consists of directional filters which are

initialized using the filter weights described in Section II.B. During training we also tuned the

directional filters by updating their weights using the backpropagation algorithm. Instead of

initializing these filters with random numbers, we initialize them with coefficients that can

detect edges in different directions. In other words, we use our domain knowledge to guide the

network to achieve the goal of recognizing CVM stages.

The choice of the model components discussed define the final structure of our model. The

overview of our model is given in Fig 3. To find the optimal components, a series of deep

learning models and pre-processing techniques are used. To compare the results; Mobile-

NetV2, ResNet101, Xception, and our own fully connected CNN are used as benchmarks with

various directional filter choices.

III. Results and comparisons

In this section, the results obtained and the comparison between different models with or

without the pre-processing are presented. As mentioned earlier, the proposed method yields

75.11% accuracy for six classes (CS1-CS6). It achieves a higher 84.63% validation accuracy in

5-stage classification (CVMS I-CVMS V). The average accuracy attained and loss incurred in

k-fold cross validation for classification into 5 stages are shown in Fig 4A and 4B, respectively.

For comparison, the k-fold (k = 5) cross validation results for 6-stage classification over the

epochs are depicted in Fig 5A and 5B. In this paper, 5-fold cross-validation is used to ensure

that the model is applicable to any arbitrary data set. In every fold the testing data set and train-

ing data sets are different showing that the model works on any arbitrary testing data set. A

training set which contains 761 images is used. We choose a 4:1 splitting in the 5-fold cross
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validation. Images are split before the augmentation, and then the augmentation is applied.

Therefore, there is no overlap between the training fold and validation fold in any part of the

Table 1. (a) The architecture of our CNN with Directional Filter (CNNDF) layer, and (b) details of the skip connection block.

(a)

Layer Name (type)(kernel size)(filters) Output Shape Connected to

Input (input layer) 77 x 35 x 1

Directional (conv) (7x7)(8) 77 x 35 x 8 Input

Match (DepthwiseConv) (7x7)(8) 77 x 35 x 8 Directional

Dir Leaky Relu (Leaky ReLU) 77 x 35 x 8 Match

Conv_0 (conv) (1x1)(8) 77 x 35 x 8 Input

Batch_0 (batch normalization) 77 x 35 x 8 Conv_0

ADD_1 (add) 77 x 35 x 8 DirLeakyRelu& Batch_0

Max_1 (max pooling 2d) 39 x 18 x 8 ADD_1

Skip_Con_1(skip connection)(N/A)(32) 39 x 18 x 32 Max_1

Max_2 (max pooling 2d) 20 x 9 x 32 Skip_Con_1

Skip_Con_2(skip connection)(N/A)(64) 20 x 9 x 64 Max_2

Max_3 (max pooling 2d) 10 x 5 x 64 Skip_Con_2

Skip_Con_3(skip connection)(N/A)(128) 10 x 5 x 128 Max_3

Max_4 (max pooling 2d) 5 x 3 x 128 Skip_Con_3

Skip_Con_4(skip connection)(N/A)(256) 5 x 3 x 256 Max_4

Flatten (Flatten) 3840 Skip_Con_4

Dense_1 (Dense) 64 Flatten

Batch_11 (batch normalization) 64 Dense_1

Relu_11 (ReLU) 64 Batch_11

Output_Dense (Dense) (Softmax) 5 Relu_11

(b) Skip Connection Block

Layer Name (type) (kernel size)(filters) Connected to

Conv_no (conv) (3x3) (filter no) Max_no

Batch_no (batch normalization) Conv_no

Relu_no (ReLU) Batch_no

Dropout_no (dropout) Relu_no

Conv_skip_no (conv) (1x1) (filter no) Max_no

Batch_skip_no (batch normalization) Conv_skip_no

ADD_no (add) Dropout_no & Batch_skip_no

https://doi.org/10.1371/journal.pone.0269198.t001

Fig 3. The overview of our image processing pipeline: Given an input raw image I, we detect the RoI using ACF object detector, I = ACF(I), extract the RoI segment

using cropping, S = Seg(I), and feed the cropped image into the network to obtain the classification results.

https://doi.org/10.1371/journal.pone.0269198.g003
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training process. We do not use any data augmentation during the training of the proposed

CNN model with directional filters. Data augmentation is used only to train pre-trained mod-

els (MobileNetV2, ResNet101 and Xception).

As seen from the Figs 4 and 5, the model performs better on 5-stage classification than on

6-stage classification. This difference should be interpreted with a closer look at the two-class

classification for CS1 and CS2. It is observed that the difference between images of CS1 and

CS2 is the curvature in vertebrae in CS2 which is not a strong differentiator and makes the

error in distinguishing CS1 and CS2 high. This is the key reason why the accuracy is lower for

6-stage classification compared with 5-stage classification (CVMS I-CVMS II). We found that

Fig 4. Training and validation accuracy and losses for 5-stage classification. The accuracies (a) and losses (b) of CNN model with the directional filters obtained by

averaging 5 folds are shown.

https://doi.org/10.1371/journal.pone.0269198.g004

Fig 5. Training and validation accuracy and losses for 6-stage classification. The accuracies (a) and losses (b) of CNN model with the directional filters obtained by

averaging 5 folds are shown.

https://doi.org/10.1371/journal.pone.0269198.g005
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classification based on Baccetti et al.’s 5-stage CVM classification [24] provides more reliable

results in all the networks that we investigated.

The confusion between CS1 and CS2 originates primarily but not entirely from the curva-

ture difference between C1 and C2. The posture of the subjects also influences the decision. If

an X-ray image obtained from a CS1 subject is inclined slightly downwards, there is a chance

that this image is predicted as CS2 because of the posture. As a result, Baccetti et al.’s 5-stage

classification is also adopted for classification in this paper. The detailed validation accuracy

results of every fold are shown in Fig 6. The accuracy percentage is validated in every fold,

which confirms the validity of the model.

To evaluate the model on the testing data set, the confusion matrices of both 5-class and

6-class problems are shown in Fig 7. Since the model is validated over 5 folds, 5 different con-

fusion matrices are obtained per classification and averaged. The average confusion matrix of

5-stage classification is shown in Fig 7A. For example, we had 39 CVMS I images in our test

set. We correctly predicted 35.6 of these images (non-integer value is obtained due to averag-

ing of 5 experiments); 2.4 of 39 images are classified as CVMS II; 0.6 images are predicted as

CVMS III, 0.4 images are classified as CVMS IV, respectively. Other rows of the matrices are

obtained in a similar manner. In the case of 6-stage classification, CS1 and CS2 classes have the

lowest accuracy as shown in the first two rows of the confusion matrix in Fig 7B. We observe

that the proposed model makes most of the misclassifications between neighboring classes.

To further evaluate the proposed method and possibly improve the model, we compare our

method with other pre-trained models. MobileNetV2 [32], ResNet101 [33] and Xception [34]

networks are used for comparison. In addition, a classical approach, Support-Vector Machine

(SVM) with a Radial Basis Function (RBF) kernel is used for comparison.

To see the effect of using directional filters, we first implemented all the models without the

Directional Filters (DF). As shown in Table 2, the accuracy of the model that uses the CNNDF

is higher than that of models that do not use DFs in both 5-class and 6-class classifications,

which emphasizes the impact of the directional filters.

Fig 6. Validation accuracy of our custom CNN model with the directional filters over 5 folds. Five different folds

were used for testing the model. The behaviors of the trainings are consistent with one another. The final accuracy is

above 83%.

https://doi.org/10.1371/journal.pone.0269198.g006
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The best result with 84.63% accuracy is obtained in 5-stage classification problem with our

custom CNNDF model. Resnet101 and MobileNetV2 with the 8 directional filters do not

reach even 80% accuracy, achieving 74.10% and 78.54%, respectively, in 5-stage CVM classifi-

cation. The well-known Xception network [34] derived from InceptionV3 [37] yields 80.86%

accuracy, with performance closest to our CNNDF. Our CNNDF clearly outperforms other

well-known image classification networks in terms of the accuracy of the classification results.

The pre-trained models are developed to classify natural scene images and objects; their use in

medical image analysis may not be as effective in classifying natural scenes. The other signifi-

cant result from Table 2 is the classification result for 6-stage classification. The best perfor-

mance is obtained when our CNNDF is used (75.1% accuracy). Moreover, our CNNDF has

only 715 K parameters. MobileNetV2, the simplest algorithm among the DL networks that we

considered, has 2.2 M parameters. As a result, CNNDF is also the most efficient in terms of the

number of trainable parameters and it does not require any data augmentation. The other net-

works are much larger in size, and they require data augmentation for training. The SVM with

the RBF kernel produces inferior results compared with the deep learning based methods and

much lower accuracy than that of CNNDF.

Receiver Operating Characteristic (ROC) curve is a tool to measure the performance of a

given ML model. It utilizes two different parameters: True Positive Rate (TPR) and False Posi-

tive Rate (FPR). These two parameters are defined as:

TPR ¼
TP

TP þ FN
FPR ¼

FP
FPþ TN

where TP, FP, FN, TN are True Positive, False Positive, False Negative, and True Negative val-

ues, respectively. The ROC is a plot of TPR vs FPR at different threshold levels to show how

well the model performs the given classification task. A related measure to assess the perfor-

mance of the model is the Area Under Curve (AUC) derived from ROC. AUC assumes a value

between 0 and 1, which a value close to 1 indicates that a reliable performance is achieved by

the model. ROC can be generalized and extended to multiple classes using “one class vs rest”

strategy, where one selected class is labeled as Class 1 while the remaining classes are together

labeled as Class 0. This process is repeated for all five classes; therefore, five different ROCs are

Fig 7. Average confusion matrices after fivefold testing for (a) 5-stage classification and (b) 6-stage classification are shown.

https://doi.org/10.1371/journal.pone.0269198.g007
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obtained. Based on these ROCs, the corresponding AUCs are calculated. The ROC plots and

the corresponding AUC values are given in Fig 8.

It is also worth noting that although our proposed model achieves 84.6% accuracy, the

AUC values are all above 0.9. This is due to the adoption of “one vs rest” methodology.

Although the model functions as the multi-class classifier, the ROC curves are obtained by

using two alternate classes created by “one vs rest” distinction.

In addition to AUC values, precision, recall and F1 score values of 5-class classification and

6-class classification are given in Table 3A and 3B, respectively. Table 3A and 3B show that

5-stage classifier is effective in classifying the stages.

The impact of the directional filters are clearly visible in the fully connected CNN with

seven convolutional layers because the recognition accuracy significantly increased from

80.75% to 84.63%. To establish the statistical significance of the improvement due to the use of

DF, the p-value is calculated. If the p-value is smaller than the alpha level, a defined threshold

for p-value chosen here to be 0.01, we reject the observed findings as arising from the null

hypothesis. The null hypothesis (H0) is that the observed accuracy of the fully connected CNN

model does not improve with the use of DF, whereas the alternative (H1) is that the CNN

model performance improves with the DF.

Table 2. The accuracy comparison of the various ML models investigated. Every ML model was tested with and without the directional filters. The results are shown in

a table for comparison. Fully connected CNN with the Directional Filters (CNNDF) outperforms every other combination.

Classes

Models

Filters

MobileNetV2 ResNet101 Xception SVM CNNDF

5 Classes (CVMS I–CVMS V) With Directional Filters 78.54% 74.10% 80.86% 69.85% 84.63%

Without Directional Filters 76.01% 72.40% 79.42% 71.68% 80.75%

6 Classes (CS1 –CS6) With Directional Filters 69.92% 68.64% 71.44% 60.21% 75.11%

Without Directional Filters 66.98% 66.85% 70.71% 59.05% 72.37%

https://doi.org/10.1371/journal.pone.0269198.t002

Fig 8. ROC curves and the corresponding AUC values. The curves are plotted TPR vs FPR one selected class against the remaining classes.

https://doi.org/10.1371/journal.pone.0269198.g008
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To obtain the p-value, the testing data set is divided into 7 subsets to increase the sample

number. Each subset contains 30 images. The image distribution is set up according to the ini-

tial density of the classes. A normal distribution is fitted to the subset accuracy histograms for

both hypotheses, and its properties are calculated. The means of the normal distributions of

null and alternative hypotheses were computed as 0.778 and 0.826, respectively. Also, the stan-

dard deviations of two distributions are calculated as 0.0762 and 0.0633, respectively, and the

p-value is much smaller than the alpha level of 0.01. To conclude, the null hypothesis is

rejected with this p-value, i.e., the alternative H1, that the CNN model with the directional fil-

ters improves performance, is accepted. With the strong evidence obtained from the accuracy

results and the p-value, we state that the use of the directional filters improved the perfor-

mance since it helps the model with a prior knowledge on the difference among the classes.

IV. Discussion

The most common skeletal maturity indicators are skeletal maturation of hand and wrist and

Cervical Vertebrae Maturation (CVM) stages. The hand-wrist method (HWM) has not

changed significantly since Greulich and Pyle (GP) published their atlas in 1950. GP method

compares the patient’s radiograph with an atlas of representative ages and determines the bone

age [38]. Another scoring method introduced by Tanner-Whitehouse (TW2) is based on

examining 20 specific bones [39]; both methods are tedious, and for orthodontic practice,

time-consuming; besides it needs additional radiation exposure [40, 41]. Evaluation of CVM

stages on the lateral cephalometric radiograph is preferred in clinical practice because it elimi-

nates additional radiography [2]. However, the CVM stages methods are influenced by experi-

ence and training [42, 43]. The AAOF collection was used to develop the CVM classification

methods and to study the correlation between CVM development stages and growth. It is sig-

nificant to state that no previous studies have been published specifically for applying Artificial

Intelligence to CVM development staging using the AAOF legacy collection.

With the recent advances in AI, the automated diagnosis and interpretation of medical

images are rapidly evolving aiming to increase accuracy, decrease variability and eliminate the

Table 3. Performance metrics of the classes for both classification task. Recall, Precision and F1 Score are calcu-

lated for every class in both classification tasks. 5-stage classification (a) contains higher values than 6-stage classifica-

tion (b).

a

Metrics

Class

Recall Precision F1 score

CVM I 0.913 0.899 0.906

CVM II 0.633 0.705 0.667

CVM III 0.640 0.605 0.622

CVM IV 0.803 0.757 0.779

CVM V 0.804 0.823 0.813

b

Metrics

Class

Recall Precision F1 score

CS1 0.528 0.599 0.561

CS2 0.562 0.550 0.556

CS3 0.774 0.671 0.719

CS4 0.758 0.724 0.741

CS5 0.685 0.765 0.723

CS6 0.747 0.789 0.767

https://doi.org/10.1371/journal.pone.0269198.t003
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tediousness of the task [44]. Determination of the growth and development by AI is a field that

needs to be explored. This study aimed to develop a fully automated pipeline for the determi-

nation of the CVM stages.

There have been a few attempts to develop computer-assisted methods to determine CVM

stages; Baptista et al. developed a semi-automated method for CVM in 2011 [18]. They located

and measured the 20 landmarks on every cephalogram. They constructed three classification

models based on Naive Bayes (NB) and achieved 90% with one stage deviation. Their study

showed us that using a pattern classification method can help orthodontics identify the CVM

staging and achieve high accuracy. Amasya et al. compared different ML models on the CVM

degrees classification [19]. Their model requires manual labeling and marking of 26 landmarks

on the cervical vertebrae for manual extraction of the image feature; then ML clinical decision

support system used the numerical values of the features to determine the CVM stage. They

have developed five different ML models to compare the results; Logistic Regression (LR),

Decision tree (DT), Random Forest (RF), Artificial neural network (ANN), Support vector

machine (SVM). Similarly, Kok et al. defined 19 reference points on the cervical vertebrae,

took 20 different linear measurements and compared seven different algorithms: k-nearest

neighbors(k-NN), NB, DT, ANN, SVM, LR, and RF [17]. Both studies have concluded that the

most stable and accurate performance is achieved when ANN is used as the main model. This

may lead us to the ANN’s impact on the classification task; therefore, using a deep learning

model on the determination of the CVM degree on the lateral cephalograms is a decent idea.

Until the work of Makaremi et al., the use of a DL model to determine the six CVM stages

has not been investigated. They have proposed a DL model to determine the cervical vertebrae

maturation degree using only an entropy filter [45]. Their model consists of two convolution

layers followed by a max-pooling layer, one convolution layer followed by a max-pooling

layer, and a fully connected neural network with a hidden layer. The CNN model of [45]

achieves an accuracy of 70% on the 6-stage classification in our dataset. We could not make a

comparison with the work of Makaremi et al. in their dataset because we do not have access to

it. The entropy filter is used to measure the attributes of distributions of the pixel values of X-

ray images. However, entropy filters are not trainable in their model. One of the significant

aspects of the work by Makaremi et al is to use entropy filters to help the DL model capture the

context of the lateral cephalograms. That motivated us to examine the use of directional filters,

which emphasize the CV edges in the cephalograms, in aiding the feature selection in subse-

quent deeper layers of the CNNDF structure.

Other X-ray image classification examples include [41, 46, 47]. Lee et al. constructed a fully

automated DL system to analyze the hand, wrist radiographs and perform Bone Age Assess-

ment (BAA), which indicates the growth [41]. They built a complete preprocessing system

where they categorize, standardize, segment, and label the X-ray images to prepare the data

set. The preprocessed and annotated training data set is fed into a variant of the Inception Net-

work, the Google-Net [46]. Lee et al. attempted to create the first fully automated BAA using a

DL model. A similar study is carried out by Tajmir et al. [47].

Our model shows high accuracy in classifying the CVM images into 5 classes (CVMS

I-CVMS V), higher than the accuracy of classification into 6 stages. Baccetti et al. classified the

CVM into 5 stages based on analysis of 6 consecutive observations of untreated subjects [24];

their findings revealed that no statistically significant discrimination exists between CS 1 and

CS 2. The presence of a concavity at the lower border of the second cervical vertebra was not a

distinctive feature of CVS 2 when compared with CVS 1 [24]. Therefore, they merged two for-

mer prepubertal stages (CS 1 and CS 2) into one stage. This merged Cervical Vertebral Matu-

ration Stage is referred to as CVMS I. The peak in mandibular growth will occur not earlier

than one year after this stage; hence the clinician can wait for one year at least for a
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radiographic re-evaluation to start treatment with a functional appliance [24]. Both six and

five stages of CVM classification methods showed a high correlation with the middle phalanx

of third finger ossification stages [46]. Classification into both six and five stages are usable in

daily clinical practice as both can discriminate between prepubertal, circumpubertal, and post-

pubertal stages. [2, 12, 23, 24, 46, 48]. Therefore, BAA can be examined with classification

either into 5 different classes (CVMS I-CVMS V) or into 6 classes (CS1-CS6), as measured and

compared in this paper. It is noted that a fully connected CNN with 6 convolutional layers

model with the directional filters shows good performance in classification into 5 classes,

achieving 84.63% accuracy on the testing data set.

The use of directional filters as a preprocessing layer improves the accuracy in CVM classi-

fication problem. However, this approach may not be applicable to an arbitrary object recogni-

tion problem but is suitable in applications where strengthening edge information aids

classification. Our aim is to use our domain knowledge to guide the network by introducing

the directional filters which emphasize the edges of the cervical vertebrae. Since the difference

between CVM stages are determined according to the edges and curvatures of cervical verte-

brae, we use the directional filter based-edge detector layer to improve the performance of the

deep neural network. Our CNN with the directional filters (CNNDF) provides better results

than pre-trained networks such as Xception. We believe that the strong performance of our

method stems from the initial layer of directional filters. We also show that using a trainable

preprocessing layer improves the accuracy result in the CVM image classification task.

Another aspect of this model is the number of images that we use in our database. We used

higher number of images than the Makaremi et al.’s study [45] and our data consisted of longi-

tudinal consecutive cephalometric observations.

V. Conclusion

This paper presents a deep learning model with novel tunable pre-processing to classify lateral

cephalograms into CVM stages. A custom-designed CNNDF model with eight tunable direc-

tional filters is introduced. Directional filter layer significantly improved the accuracy of the

CNNDF and the other pre-trained networks in CVM stage classification problem. The p-value

calculation reveals the significance of performance improvement due to the directional filters.

Our experimental results shows that the proposed CNNDF model performs better that other

pre-trained DL models. The CNNDF produces the best result compared with the pre-trained

MobileNetV2, ResNet101, and Xception models, with or without the directional filters. Our

method achieved an 84.63% and 75.1% in five- and six-class CVM stage classification prob-

lems, respectively, on the testing data set. The proposed CNNDF model can be used as an

effective tool for determining the skeletal maturity stage and treatment timing, especially for

clinicians with less experience; furthermore, it could have multiple forensic applications.
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