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Abstract
Motivation: Biomarker discovery is important and offers insight into potential underlying mechanisms of disease. While existing biomarker 
identification methods primarily focus on single cell RNA sequencing (scRNA-seq) data, there remains a need for automated methods designed 
for labeled bulk RNA-seq data from sorted cell populations or experiments. Current methods require curation of results or statistical thresholds 
and may not account for tissue background expression. Here we bridge these limitations with an automated marker identification method for la-
beled bulk RNA-seq data that explicitly considers background expressions.
Results: We developed mastR, a novel tool for accurate marker identification using transcriptomic data. It leverages robust statistical pipelines like 
edgeR and limma to perform pairwise comparisons between groups, and aggregates results using rank-product-based permutation test. A signal- 
to-noise ratio approach is implemented to minimize background signals. We assessed the performance of mastR-derived NK cell signatures against 
published curated signatures and found that the mastR-derived signature performs as well, if not better than the published signatures. We further 
demonstrated the utility of mastR on simulated scRNA-seq data and in comparison with Seurat in terms of marker selection performance.
Availability and implementation: mastR is freely available from https://bioconductor.org/packages/release/bioc/html/mastR.html. A vignette 
and guide are available at https://davislaboratory.github.io/mastR. All statistical analyses were carried out using R (version ≥4.3.0) and 
Bioconductor (version ≥3.17).

1 Introduction
Biomarkers are biological features that infer the states of cells, 
tissues, or individuals, either diseased or healthy. Biomarkers 
may include molecular features like genes, and proteins which 
can be used in research and clinical settings to provide insights 
into disease diagnosis, prognosis, and treatment. In recent years, 
biomarkers have been identified through various -omics 
approaches, including transcriptomics, proteomics, and metabo-
lomics, providing an improved overview of the molecular land-
scape of the system being studied (Lawlor et al. 2009, Wang 
and Yu 2013, Rodrigues et al. 2016). This influx of omics data 
has advanced the development of computational and bioinfor-
matics methods to identify biomarkers, providing opportunities 
to accelerate biomarker discovery and thereby facilitating diag-
nostic and therapeutic developments for various diseases and 
cancers (Kaur et al. 2021, Lee and Kim 2021, Vlachavas et al. 
2021). However, separating the background signal of the tissue 

microenvironment from the target marker’s signal remains a 
complex problem.

While many recent marker identification methods focus on 
emerging data types such as single-cell RNA sequencing 
(scRNA-seq) or spatial omics data, where disease signals are 
more easily separated from background, bulk RNA-seq 
remains a valuable resource due to its widespread availability, 
cost and already established pool of datasets. Existing tools for 
bulk RNA-seq marker identification, such as edgeR (Robinson 
et al. 2010), limma (Ritchie et al. 2015), or DESeq2 (Love 
et al. 2014), require manual curation of differential expression 
(DE) results, a process that is labor-intensive and prone to 
inconsistencies or biases. In the context of marker identifica-
tion, the package MarkerPen (Qiu et al. 2021) made some 
progress toward automated marker identification. However, it 
is semi-supervised and relies on predefined marker lists, 
thereby limiting their applicability to new datasets.
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Although some scRNA-seq methods can technically be ap-
plied to labeled bulk RNA-seq data, due to the small sample 
sizes in bulk RNA-seq data, machine learning-based approaches 
are generally unsuitable. While for DE-based scRNA-seq meth-
ods, studies indicate they generally do not perform as well as 
DE-based methods specifically designed for bulk RNA-seq data 
(Squair et al. 2021, Heumos et al. 2023), underscoring the need 
for more tailored approaches. Moreover, many of the current 
tools’ workflows often fail to fully utilize the statistical informa-
tion (e.g. P value or fold change) across multiple comparisons 
or datasets. These tools apply a direct intersection of the results, 
and therefore did not account for the effects of tissue-specific 
background expression, leading to nonspecific marker 
identification.

To address these challenges, we developed an R/ 
Bioconductor package mastR (Markers Automated Screening 
Tool in R), offering integration of the following key features as 
a comprehensive framework: (i) an automated workflow that 
integrates statistical information across multiple DE compari-
sons and datasets, (ii) explicit consideration of tissue-specific 
background expression to enhance marker specificity.

mastR builds upon established DE analysis tools [edgeR 
(Robinson et al. 2010) and limma (Ritchie et al. 2015)] by 
implementing a rank-product-based scoring approach to inte-
grate statistical information across multiple DE comparisons. 
This approach is particularly effective in scenarios where 
standard one-vs-all comparisons face limitations, such as 
when the target group shares high similarity with specific 
subgroup(s). While standard workflows might not identify 
markers that distinguish the target group from dissimilar 
groups due to the dominance of the similar subgroup in the 
analysis, mastR's rank-product scoring method assigns bal-
anced weights across all group comparisons. This design 
choice helps mitigate bias introduced by group size differen-
ces and enables the identification of markers that might be 
overlooked in standard approaches. Furthermore, mastR 
incorporates tissue-specific background expression through a 
signal-to-noise ratio (SNR) metric implemented in its marker 
selection algorithm, enhancing the specificity and reliability 
of identified markers. Through validation on both simulated 
and public datasets, we demonstrate that mastR achieves 
high accuracy and computational efficiency while maintain-
ing robustness across diverse experimental contexts. These 
features make mastR valuable for both research applications 
and clinical marker identification where tissue context and 
complex group relationships need to be considered.

2 Methods
mastR’s workflow involves four steps (Fig. 1): (i) build a 
markers pool; (ii) identify the signature of the target group; 
(iii) refine the signature by removing the background signal 
of the sample microenvironment; and (iv) visualizing the 
resulting signature.

2.1 Build a marker pool
The mastR pipeline begins by generating a pool of candidate 
markers. This pool can be compiled either using the functions in 
mastR or by custom curation and selection of marker genes from 
databases or publications. For the former, the R/Bioconductor 
package mastR allows extraction of marker genes specific to im-
mune cell types, relevant pathways, and/or gene sets from existing 

data sources, which can be retrieved via get_lm_sig/get_panglao_-
sig/get_gsc_sig functions in mastR. This includes leukocyte gene 
signature matrices from CIBERSORT [LM7 (Tosolini et al. 
2017) and LM22 (Newman et al. 2015), immune cell signature 
matrices defining 7 and 22 immune cell types, respectively], 
PanglaoDB (scRNA-seq experiments from mouse and human 
that includes marker genes for 25 different immune cell types.) 
(Franzen et al. 2019), and MSigDB (Molecular Signatures 
Database, a collection of annotated gene sets) (Subramanian 
et al. 2005, Liberzon et al. 2015), respectively.

mastR provides gsc_plot function to help visualize the 
overlap of sets of markers. These sets of marker genes can be 
seamlessly merged as the original pool of markers using the 
merge_markers function in mastR, with all marker gene sour-
ces saved in the longDescription attribute. This merged pool 
will be used in subsequent analyses. When the markers pool 
is used in the downstream filtering step, all the marker genes 
in the pool will be preserved as these are determined to be of 
biological significance.

2.2 Identify signature of the target group
To identify group-specific signatures, mastR uses three main 
steps: (i) differential expression analysis (DEA), (ii) feature se-
lection to select highly differentially expressed genes (DEGs) 
based on their rank-product score; and (iii) constraining se-
lected genes within the markers pool (Fig. 1B).

Firstly, DEA is performed using edgeR (Robinson et al. 
2010) and limma (Ritchie et al. 2015) workflow (i.e. filtering, 
normalizing, sample weighting and linear modeling). Given 
the “Group” and “Batch” factors in the data, mastR auto-
matically generates the appropriate design matrix to be used 
during data filtering, normalization, and batch effect correc-
tion. Here, batch factor is used as the fixed effect in linear 
modeling as it was found that the use of batch-corrected data 
rarely improves the analysis of sparse data, whereas batch co-
variate modeling improves the analysis for substantial batch 
effects (Nguyen et al. 2023). mastR allows either raw counts 
or log-normalized data as input with different processing 
pipelines conducted on different types of input. Raw count 
data is filtered by the filterByExpr function in edgeR, normal-
ized using the trimmed mean of M-values (TMM) method 
and analyzed using the “limma voom with treat” pipeline. 
For log-normalized data, genes are filtered by user-defined 
thresholds and “limma trend with treat” method is used. In 
most cases in this study, the log-fold-change (logFC) equal to 
0 was used to perform DE analysis, with the only exception 
being when generating NK cell signature using DICE 
[Database of Immune Cell Expression, Expression quantita-
tive trait loci (eQTLs) and Epigenomics] project (Schmiedel 
et al. 2018) in which case a logFC of 1.5 was used.

Secondly, feature selection is conducted to select genes spe-
cific to the target group across multiple comparisons. The 
probability scoreg is computed by comparing the rank product 
(RP) score RPg with permutated random score rp from boot-
strap approach [Equations (1)–(3)]. The common DE genes 
from n −1 comparisons (where n is the total number of 
groups) are identified and ranked based on the given gene sta-
tistics (e.g. P value, adjusted P-value or log fold change) for 
each comparison. The ranks for each marker gene across all 
comparisons are log-transformed and summed, before a per-
mutation test was applied to bootstrap the null distribution of 
the random RP. The resulting marker genes are ordered by 
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scoreg (with the smaller the values being more significant) and 
filtered by a selected threshold (default as 0.05). 

RPg ¼
Xn − 1

i¼1
ln rankg;i
� �

(1) 

where rankg;i is the rank of gene g in ith list, 

rp ¼
Xn − 1

i¼1
ln rrankg;i
� �n o

(2) 

where rrankg;i is the shuffled rank of gene g in ith list, 

scoreg ¼ P RPg > rp
� �

(3) 

The computation can be summarized as below:

Figure 1. Schematic of the mastR workflow. The workflow of mastR can be divided into four main sections: (A) build markers pool; (B) identify signature 
markers; (C) refine signature by filtering based on background expression and (D) visualize and access signature performance. The mastR workflow 
recommends integrating markers from multiple sources (e.g. PanglaoDB, MSigDB) to form an initial set of markers. mastR then generates a design 
matrix based on the given “Group” and “Batch” factors to be used during data processing and DE analysis. The data processing includes an edgeR data 
filtering and normalization pipeline, and a limma-voom-treat based linear modeling DE approach to compare the target group with all other groups. mastR 
then computes the marker’s RP score based on the ranked product across the DE comparisons and bootstrapped permutation null distribution for further 
feature selection across multiple comparisons. The selected features will be constrained by their intersection with the initial set of markers. mastR 
allows for filtering of genes based on the SNR with a background dataset to remove features with inherent expression in a specific context or disease. 
mastR then provides visualization functions to assess the performance of the signature.
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1) Rank the gene statistics in increasing order (decreasing 
order of klogFCk when statistics is logFC) ) rankg;i: 
rank of gth gene under ith comparison; 

2) Sum log-rank for each gene across comparisons as RPg: 
RP of gth gene; 

3) Independently permute statistics value within each com-
parison relative to gene ID, repeat step (1)–(2) ) rpðkÞg : 
random RP of gth gene; 

4) Repeat step (3) K times, form reference null distribution 
with rp kð Þ

g ðk¼ 1;2; . . . ;KÞ; 
5) Determine the probability associated with each gene 
) scoreg. 

In some marker identification studies, the presence of two 
or more closely related groups in the data pose challenges for 
the identified markers to be effective in distinguishable these 
groups (Burel et al. 2022). To accommodate this situation, 
threshold filtering based on RP can be omitted for the target 
comparison(s) in question by setting parameters “keep.top” 
and “keep.group,” allowing for a greater number of DEGs in 
the targeted comparison(s).

Thirdly, the identified marker genes are limited to those in 
the markers pool (i.e. common genes are retained) as the 
resulting signature. This refinement approach enhances both 
the discriminative power and the precision of the resulting 
signature when there is prior knowledge. When the input 
involves multiple datasets, mastR aggregates the individual 
signature lists identified by each dataset using either a 
“Robust Rank Aggregation (RRA),” “union,” or “intersect.”

The aggregation method “RRA” detects marker genes that 
are consistently ranked higher than stochastically expected 
under the null hypothesis of uncorrelated inputs and assigns 
a significance score to each gene (Kolde et al. 2012). It is rec-
ommended for robust gene selection from large numbers of 
DEGs. The “union” method is recommended for small num-
bers of marker genes identified per dataset; and the 
“intersect” method, is best used in situations characterized by 
high levels of marker intersection.

mastR provides a series of step-by-step functions as well as 
an integrated wrapper function to implement the 
above analyses.

2.3 Refine signature by accounting for 
background expression
To avoid background microenvironment confounding effects, 
mastR can further refine the marker genes by filtering out 
genes with ubiquitous expression. mastR utilizes an approach 
which remove genes with low “SNR” based on Cohen’s d 
(Knapp 1990), which have limited discriminative power be-
tween the group of interest and the “background” or 
“environment” [Equations (4) and (5)]. Considering situa-
tions where the background and signal expressions do not 
originate from the same batch, and that re-normalizing the 
entire data is time-consuming, in order to make the sample 
microenvironment and signal data comparable between 
batches, the relative expression of the genes within the sam-
ples are used to compute SNRs, making “signal” and “noise” 
comparable across datasets.

For DE analysis, we assume genes are not differentially 
expressed (null hypothesis) and the gene expression within 
each sample should follow a normal distribution denoted as 
X�Nðμ;σ2Þ. The parameters, mean (μ) and standard devia-
tion (σ), can be estimated through maximum likelihood 

estimation (MLE). The percentile (accumulated density) for 
each gene in each sample can then be obtained using the 
Gaussian cumulative distribution function (CDF) F xjμ;σ2

� �
, 

and the SNR computed as outlined in Equation (5). 

x̂S ¼ F� 1 0:5jμS; σs
2

� �
; x̂B ¼ F� 1 0:5jμB; σB

2
� �

(4) 

snr ¼
x̂S � x̂B

σB
(5) 

where F� 1 is the inverse CDF function, x̂S represents the 50th 
percentile (median) of a normal distribution fitted to the ob-
served log-transformed gene expression in the signal dataset 
S, x̂B represents the 50th percentile (median) of a normal dis-
tribution fitted to the observed log-transformed gene expres-
sion in the background dataset B, μ is the mean of the normal 
distribution, σ is the standard deviation of the normal distri-
bution, snr is the SNR of each gene.

This crucial step removes the effect of sample purity for the 
identified signature markers. By excluding the marker genes 
with similar expression in the sample microenvironment, the 
SNR approach ensures only the marker genes with robust 
and specific expression patterns in the group of interest are 
retained, leading to a more refined and accurate signature 
marker list.

3 Results
In this study, we evaluated mastR’s performance on both sim-
ulated and biological datasets, with mastR exhibiting high ac-
curacy and robustness (Supplementary Figs S1–S5 and 
Supplementary Tables S3 and S4). Briefly, a natural killer 
(NK) cell specific signature from DICE dataset was identified 
using mastR (Supplementary Fig. S1) and validated in an in-
dependent immune cell dataset (Supplementary Fig. S4), 
showing high specificity for NK cells. The resulting perfor-
mance metric on the simulated data (Supplementary Table 
S3) suggest mastR is highly accurate, have low false discovery 
rates and computationally fast.

We then compared the performance of the mastR-derived 
NK cells signature with existing published NK signatures 
with mastR demonstrating comparable, if not better perfor-
mance in identifying NK cells (Supplementary Fig. S6). 
Assessing the average expression of the unique markers for 
each signature across the cell types, mastR is able to identify 
novel and highly specific marker genes for NK cells 
(Supplementary Fig. S7).

While the focus of this study was to evaluate mastR for 
marker identification in bulk RNA-seq data, we also looked 
at the potential application of mastR for scRNA-seq datasets. 
Here we compared mastR’s performance with Seurat (Hao 
et al. 2021), one of the statistical packages designed for 
scRNA-seq data. Interestingly, mastR performed better than 
Seurat and requires significantly lower computation time 
(Supplementary Table S4).

Till this end, we have assessed mastR for both bulk and 
scRNA-seq data, however it can theoretically be applied to 
all multi-omics data. Moving forward, the aim for this work 
is to validate the performance of mastR using experimental 
data across diverse omics types to improve application and 
generalizability across a range of research contexts.
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