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Abstract

Background: Comparative Genomic Hybridization (CGH) with DNA microarrays has many biological applications
including surveys of copy number changes in tumorogenesis, species detection and identification, and functional
genomics studies among related organisms. Array CGH has also been used to infer phylogenetic relatedness
among species or strains. Although the use of the entire genome can be seen as a considerable advantage for use
in phylogenetic analysis, few such studies have questioned the reliability of array CGH to correctly determine
evolutionary relationships. A potential flaw in this application lies in the fact that all comparisons are made to a
single reference species. This situation differs from traditional DNA sequence, distance-based phylogenetic analyses
where all possible pairwise comparisons are made for the isolates in question. By simulating array data based on
the Neurospora crassa genome, we address this potential flaw and other questions regarding array CGH phylogeny.

Results: Our simulation data indicates that having a single reference can, in some cases, be a serious limitation
when using this technique. Additionally, the tree building process with a single reference is sensitive to many
factors including tree topology, choice of tree reconstruction method, and the distance metric used.

Conclusions: Without prior knowledge of the topology and placement of the reference taxon in the topology, the
outcome is likely to be wrong and the error undetected. Given these limitations, using CGH to reveal phylogeny
based on sequence divergence does not offer a robust alternative to traditional phylogenetic analysis.

Background
The field of comparative genomics, particularly in
microbes, has benefited greatly by the proliferation of
whole genome sequences. The advantages of having
sequences from multiple, related organisms range from
improving annotation to characterizing the genetic basis
of major phenotypic differences between strains or spe-
cies [1-4]. While there are organisms for which multiple
sequences from several different strains or species are
available http://www.genomesonline.org/, in many cases
resource limitations restrict the number of sequencing
projects for members of the same genus. An appealing
alternative to characterize sequence polymorphisms
among related organisms is array Comparative Genome

Hybridization (array CGH). This technique is attractive
because microarrays made from genome sequence or
even random DNA fragments from just one individual
can be used to study the phylogenetic relationships
among many closely related species.
Array CGH (aCGH) for two color array platforms uses

DNA samples from a reference individual and a test
individual, each labelled with a different fluorescent dye,
and competitively hybridizes them to an array composed
of immobilized DNA fragments from the reference indi-
vidual [5-8]. This technique has primarily been used to
characterize gene copy number changes and deletion
events and has been applied extensively in the study of
human tumorogenesis and bacterial pathogens [9-14].
The relative ease with which aCGH provides large

amounts of discriminating information between indivi-
duals makes it a very attractive technique to determine
relatedness. Comparisons between aCGH derived trees
and trees based on DNA sequence of one or a few loci
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have supported this assumption [15-18]. However, the
commonly used ribosomal DNA sequences do not
necessarily provide enough resolution at the species and
subspecies level to accurately resolve a tree [19,20].
Indeed, it has been shown that a detailed multi-locus
phylogenetic analysis is often necessary to accurately
resolve a species tree [21-27].
Practitioners of aCGH have inferred evolutionary rela-

tionships using distance methods implemented by pro-
grams such as Cluster, Genespring, and Acuity [28-30].
Several studies have used aCGH to compare bacterial
pathogens and infer relatedness of strains from tradi-
tional cluster analysis [31-37]. A recent study utilized
both human and bovine clustered aCGH data to make
inferences on evolutionary relatedness [38]. Other stu-
dies have applied distance and parsimony techniques to
build phylogenies from their array data [17,39-44].

Another compared MLST to aCGH trees derived by
Bayesian inference [37].
A complicating factor not addressed in these studies is

that typically a single individual is represented on an
array. Having a single reference species or strain is at
odds with traditional sequence based phylogenetic dis-
tance methods, where all pairwise comparisons among
the taxa are used in constructing a species tree. This dif-
ference is illustrated in Figure 1. Having a single refer-
ence (Figure 1B) provides direct comparisons between
all taxa and the reference taxon W, but provides no
direct information about the relationships among the
non-reference taxa X, Y, and Z. The assumption made
for array CGH phylogeny is that the massively parallel
nature of the technique provides sufficient evolutionary
signal to infer the true relationships between all the
taxa, in a manner similar to clustering analysis of gene
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Figure 1 The single reference design. 1A shows an example of a pairwise distance matrix for the tree below the matrix. In 1B the distances of
other taxa to W, typical of a single reference design. Below it is the star topology constructed from these distances when no other information
is available to differentiate distances among X, Y, and Z.
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expression data [28]. A further complication is that
genes absent in the reference strain cannot be included
in the analyses.
In this study we ask, what effect does having a single

reference taxon have on recovering phylogenetic rela-
tionships? What effects do varying amounts of sequence
divergence among taxa have on recovering the “true”
tree? What impact do different tree topologies have?
Does the position of the reference taxon in that topol-
ogy have any importance or do all taxa serve equally
well as the reference? Are distance and parsimony tree
construction methods equivalent when applied to this
type of data?
In order to address these questions, we chose to simu-

late CGH array data to avoid the added complexity of
experimental noise associated with microarray technol-
ogy. We chose the Neurospora crassa genome as a start-
ing point for our simulated data, and evolved the
sequence based on one of three simple topologies using
empirically determined rates of nucleotide substitution.
We modelled a very conservative system- allowing only
nucleotide substitution, not gene gain or loss as that
would complicate the tree-building process to generate
optimal data with a high but realistic amount of phylo-
genetic signal. This in silico approach allowed us to vary
all of the parameters necessary to test these questions, e.
g., tree topology, position of reference taxon, and mean
substitution rate and its variation, which would be
impossible with any single set of empirical data.

Methods
CGH Data Simulation
We chose 70 mer sequences to represent the length of
probes in a standard long oligo array platform because
they have been a popular choice for groups investing in
arrays for their chosen organism [7,45,46]. From the
genome sequence of the filamentous fungus Neurospora
crassa, 70 mer oligonucleotides were designed to pro-
vide hybridization probes for each of the 10,200 ORFs
in the release 3 annotation, with an additional 300
probes devoted to non-coding regions [47-50]. This set
of probe sequences was designated as the ancestral
sequence and, along with a phylogenetic tree specifying
the relationships and genetic distances among the taxa,
was input into the sequence evolution program ROSE
v1.3 to evolve sequences for related taxa [51].
Because not all genes in a genome evolve at the same

rate, empirical data were analyzed to determine an
appropriate distribution of sequence divergence to
evolve our sequences. Based on the whole genome com-
parisons for different yeast species [4,52], a normal
curve with a range of average polymorphisms was
approximated to model sequence heterogeneity among
related taxa across all coding regions. Three values of

polymorphism appropriate for the detection limits of a
70 mer array, were chosen to model the distribution, 5
± 1.44%, 7.5 ± 2.2%, and 10 ± 2.9%. The standard devia-
tion of this distribution was empirically derived from
the publicly available comparative genome analysis of
different yeast species [1].
To simulate variation in evolutionary rate among

genes, for each 70 mer, the branch lengths of the input
tree were multiplied by a scaling factor, randomly drawn
from the distribution of evolutionary rates. By varying
the mean and standard deviation of the distribution of
evolutionary rates, we varied the amount of evolutionary
distance between the taxa of our chosen tree topology.
These parameters were used to evolve sequences for
each of 10,500 genes for each taxon using the Jukes-
Cantor model of evolutionary change, allowing nucleo-
tide substitution but not indels. This simple model of
evolutionary change models a scenario where species
are close relatives and the problem of multiple substitu-
tions at single nucleotide positions is minimal, i.e. where
the signal to noise ratio is highest. The genetic distances
between all pairs of taxa were calculated for each locus
using dnadist from the PHYLIP package v3.6 [53].
These distances are used to approximate DNA-DNA
hybridization levels.
To simulate the use of a microarray based on a single

reference taxon, one species from each tree was chosen
as the reference and only those pairwise comparisons
involving the reference individual were saved, corre-
sponding to the genetic distance from the reference spe-
cies to all other taxa. These distances were combined
into one supermatrix with 10,500 genes for n taxa. This
process is illustrated in Figure 2. This supermatrix repre-
sents the experimental design of a typical single-reference
CGH experiment and was the basis for phylogenetic tree
construction using PAUP version 4.0b10 for unix [54].
Additionally, as a control, sequence alignments for all
taxa were concatenated and used to calculate, using
PAUP, both distance based and parsimony trees.
To evaluate the effect of using much longer oligomers

to construct an array, as with cDNA arrays, a limited
number of simulations were conducted for probes of
500 bases. The results using the longer arrays were not
substantially different from those of the 70 base trials
(see supplemental data).

Tree Construction
To construct a distance tree, a Pearson correlation-
based distance matrix and a Euclidean distance matrix
were derived from the original supermatrix using the
statistical package R (http://www.R-project.org, R Devel-
opment Core Team, 2006). Neighbor-joining was used
to make phylogenetic trees based on these matrices,
employing the minimum evolution criteria in PAUP
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[54]. To convert simulated DNA hybridization levels to
characters with discrete states (0,1), simulated hybridiza-
tion levels above the third quartile, representing the
most divergent genes, were converted to 0 and those
below to 1. This simple discretization method was

amongst the most powerful when considering various
gene categorization methods in our accompanying
experimental analysis and was the simplest to imple-
ment in silico. Maximum parsimony was then used to
infer phylogenetic tree topologies [54].
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Figure 2 Program Flow. The diagram indicates the simulation program flow used to construct the supermatrix, our simulated CGH data matrix.
Variables that can be modified include the number of sequences input, the topology of the tree used, and the amount of divergence among
taxa in the simulated alignment, and the choice of evolutionary model to evolve and calculate genetic distance among taxa (see methods).
Neighbor-Joining (NJ) and Parsimony Majority-Rule (PMR) trees were constructed from the supermatrix.
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Tree to tree distance metric quantification
To assess the outcome of a simulation, we compared the
phylogenetic tree used to produce the data sets to the
phylogenetic tree recovered from the CGH simulation.
Initially, we measured the differences between the input
tree and that produced by the simulation with two tree-
to-tree distance metrics - symmetric distance and agree-
ment subtree - implemented in PAUP [54]. Symmetric
distance (SymD) determines the number of branches
that must be rearranged or collapsed to make two topol-
ogies identical. If the topologies are identical and no
branches need to be moved, the step size is 0. One step
indicates a single collapsed branch and a rearrangement
between two taxa is scored as two steps [55]. The agree-
ment subtree metric, D1, counts the number of taxa
that must be pruned from the trees make their topolo-
gies identical [56].

Cophenetic correlation distributions
Neither the symmetric nor the agreement subtree metric
compares branch lengths between the input and output
trees. To investigate differences in branch length, we
calculated the cophenetic correlation coefficient (CCC,
from the cophenetic.phylo and cor functions implemen-
ted in the R stats and ape packages [57,58]), which mea-
sures how well a tree fits the data used to create it on a
scale of 0 to 1, with 1 indicating a complete fit.
In this work, we used the CCC to compare the tree

topology used to initiate the simulated data set (input
tree) with the distance matrices resulting from the var-
ious CGH analyses. The R functions extrapolate dis-
tances from the branch lengths from the starting
topology to compare to the distance matrix estimated
by the simulation. The converse comparisons, where
tree topologies resulting from simulations are compared
to a distance matrix calculated from the starting topol-
ogy, were very similar to the first comparisons and are
not presented here.

Results
The efficacy of CGH as a phylogenetic method as
judged by two metrics (SymD or D1) varied consider-
ably with topology (balanced, pectinate or empirical
Neurospora), tree building algorithm (NJ with Pearson
or Euclidian distances, or parsimony), and location of
the reference taxon relative to the other taxa (basal or
derived positions). The numerical scores for both tree-
building methods are provided as Additional Files 1 and
2: Tables S1 and S2.
The parameter with the least effect was substitution

rate (5%, 7.5% or 10%). The simplest topology, the
balanced tree, was recovered most successfully. This
special case is not likely to be found in nature, and it

should be noted that permuting the branches individu-
ally may lead to different results. For the other two
topologies, the mixture of close and more distantly
related taxa presented a complication for the different
tree-building algorithms. For both the pectinate topol-
ogy and the Neurospora phylogeny, the relationship of
the reference taxa to its sister taxon was not consistently
well resolved. For the pectinate tree, the output tree dif-
fered from the input tree from between 0 to 8 steps
(SymD) or 0 to 2 for distance D1, with scores growing
progressively worse based on the choice of reference
taxon. For the Neurospora topology, results also vary for
the different reference positions and for the various
tree-building algorithms, with step differences between
input and output trees of 0 to 10, (SymD) or 0 to 4
(D1).
Generally, the parsimony trees were more sensitive to

the changes in average nucleotide substitutions than
those made by the Neighbor-Joining method. When
sequence divergence was high (10%), parsimony phylo-
genies were poorly resolved. At 10% divergence, we
checked the effect of changing the threshold for consid-
ering a hybridization difference to be diverged, that is,
from 1 (present) to 0 (absent). Altering the threshold
from 75% (where the most diverged 25% of the genes
were given a score of 0) to 20%, 50%, 80% or 90%, how-
ever, failed to significantly improve the performance of
parsimony analysis (see Additional File 2: Table S2).
To report the details of our simulation we have orga-

nized the results to feature the input tree topology and
tree-building algorithm. The four major variables tested
in this simulation: tree topology, placement of reference
taxon, tree building algorithm, and substitution rate, are
discussed separately as much as possible given their
inherent interrelationships.

Balanced topology (Figure 3)
Figure 3A shows an eight taxa tree in a balanced topol-
ogy. The balanced topology is the simplest in terms of
the relationships among the taxa because no matter
which taxon is chosen as the reference, it will have a
close sister taxon, a pair of taxa at a middle distance and
two, most distant, taxon pairs. The three distances, sister,
middle and distant, will not change as the reference
taxon changes. Therefore, we expected to find no effect
of choosing different reference taxa and, as can be seen
in Figure 3B-D, the symmetric distances comparing input
and output trees were identical when taxon A or taxon H
was chosen as the reference taxon. This simple topology
is recovered with moderate success with both distance-
based NJ and parsimony tree construction but there are
differences in the efficacy of the different tree construc-
tion algorithms and simulated substitution rates.
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Figure 3 Balanced Topology Results. Figure 3A is a cladogram of an eight taxa balanced tree topology. In our simulation a sequence
alignment was created using this input tree as a guide, where the branch lengths govern the number and pattern of substitutions. A number
randomly drawn from a Gaussian distribution, empirically determined from published yeast genomic data, was used to multiply these branch
lengths to produce a set of genes evolved for a range of substitution rates. The average of each range of substitution rates is indicated under
each column. Figure 3B shows the symmetric distances for 200 simulation runs of the correlation-based NJ analysis evolved at the average
sequence divergence indicated. Columns 1-3 use taxon A as the reference, Columns 4-6 use taxon H. Zero steps indicate perfect agreement
between the input topology and the trees output by the simulation (red portions). One step away indicates a single collapsed branch (orange
portions). A mispairing of two taxa is given a score of two (yellow portions). Scores in subsequent figures are cumulative and color-coded as
indicated in the chart legends. Figure 3C shows the stacked histogram for the symmetric distances from the input topology for 100 replicate NJ
trees calculated with the Euclidean distance metric. The order for reference taxa is the same as above. The stacked histogram in Figure 3D is of
the symmetric distances from the input tree for 100 replicate 50% Majority-Rule Parsimony (PMR) trees. An example of this topology, two steps
away from the reference, is given in Figure 4B.
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NJ with the Pearson and Euclidean distance metric
When NJ was used with the Pearson correlation-based
distance metric to make phylogenetic trees, comparison
of input and output tree topologies by either symmetric
distance or distance D1 showed no difference between
the two topologies, regardless of nucleotide substitution
rate (Figure 3B). When NJ was used with the Euclidean
distance metric, there were discrepancies between the
input and output topologies, but only at the highest rate
of nucleotide substitution (Figure 3C).

Parsimony Analysis
With parsimony analysis (Figure 3D), substitution rate
had a more dramatic effect. At 5% nucleotide substitu-
tion, there was no difference between the input and out-
put topologies in all simulations, but, at substitution
rates of 7.5% and 10% the input tree was recovered in
no more than 8 of 100 simulations. At 7.5% and 10%
sequence divergence, the pair of sister taxa closest to
the reference taxon did not group together in more
than 95% of simulations. Instead, these sister taxa col-
lapsed to the base of the group as a polytomy or they
resolved into separate lineages more than 95% of the
time, as shown in the example in Figure 4A and 4B.

Pectinate topology (Figure 5)
This 12-taxon tree (Figure 5A) shows a modified pecti-
nate form in which at most four taxa have the same
relationships to the other members of the tree, i.e., S1
to S4. Each of these four taxa has a close sister taxon
and then shows increasingly longer distances to four
other taxon pairs. This situation is in marked contrast

to the balanced tree in Figure 3A, where all members
had the same relationships to the other members. To
assess the effect of the position of the reference taxon,
we designated three different taxa as the reference, S1,
S6, and S12 (Figures 5B, C, and 5D).

NJ with the Pearson and Euclidean distance metric
The simulations show that the pectinate topology is not
recovered as frequently as the balanced topology. NJ
using the Pearson correlation-based distance recovered
the input tree most frequently, with almost 2/3 of the
trees 0 steps away. Choice of the reference taxon had a
strong effect with the pectinate tree. For example, with
NJ using Pearson’s correlation distances, the input tree
was recovered at least 95% of the time when the most
basal (S12) or the most derived taxon (S1) were used as
reference, but never when an interior taxon (S6) was
designated as reference (Figure 5B).
With NJ using Euclidean distances, the input topology

was recovered in 100% of simulations when the most
derived taxon was the reference taxon, but almost never
when either an internal (S6) or basal (S12) taxon was
designated as reference (Figure 5C). With NJ using
Euclidean distances and with parsimony, input trees
were recovered 100% of the time when the most derived
taxa were the reference, but never when either internal
or basal taxa were designated the reference taxon. In
fact, use of the basal taxa as reference made the output
trees at least 6 steps different from the input trees with
both NJ using Euclidean distance or parsimony.

Parsimony Analysis
With parsimony analysis, the input topology was recov-
ered in all simulations when the most derived taxon was
the reference, but never when an internal or basal taxon
was so designated (Figure 5D). The parsimony analysis
(Figure 5D) behaved very similarly to the Euclidean-
based NJ analyses (Figure 5C). However, parsimony ana-
lysis was marginally worse than NJ because taxa S1 and
S2 occasionally collapsed into a polytomy with the S3-
S4 pair, Which increased the number of steps between
input and output trees (SymD), as did higher substitu-
tion rates. Example trees are given in Figure 6.

Neurospora topology (Figure 7)
The Neurospora phylogeny is based on observed dis-
tances among species in this genus and is used here as
an example of a natural topology to begin the simula-
tion process [24]. This 11 taxon phylogeny combines
elements of the balanced and pectinate topologies (Fig-
ure 7A in that it contains a mixture of close and dis-
tantly related taxa, some of which are connected with
small internal branches. These features present a chal-
lenge for array CGH tree-building algorithms.

A B

Figure 4 The expected and recovered balanced topologies.
Figure 4A illustrates the eight taxa balanced topology as an
unrooted cladogram. Figure 4B is the Euclidean NJ tree, when taxon
A is the reference, as an unrooted cladogram and is two steps away
according to the symmetric distance from the desired topology in
Figure 4A. It was evolved at 7.5% average nucleotide substitutions.
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Figure 5 Pectinate Topology Results. Figure 5A shows the twelve taxa pectinate topology input into the simulation pipeline. Figure 5B shows
the stacked histograms for the symmetric distances for 200 replicate correlation-based NJ. Columns 1-3 show S1 as the reference taxa, 4-6 show
S6, and 7-9 represent taxon S12. Figure 5C give the stacked histogram for the symmetric distance for the Euclidean distance based NJ trees, 100
replicates. The order for reference taxa is the same as above. Figure 5D gives the corresponding stacked histogram for 100 replicate PMR trees.
Two examples of this topology, six and eight steps away from the reference, are given in Figure 6B and 6C.
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As with the other topologies, we evaluated the effects
of choosing different reference taxa, N. discreta, N.
crassa and N. tetrasperma, in addition to the effects of
different methods of phylogenetic analysis and different
rates of nucleotide substitution. In summary, the phylo-
genetic method had the strongest effect on recovery of
the input topology. NJ with Pearson’s correlation (Figure
7B) performed far better than either the NJ with Eucli-
dean distance or parsimony methods. Neighbor-Joining
with Euclidean distances (Figure 7C) never recovered
the input phylogeny and with parsimony (Figure 7D),
the input tree was almost never recovered.

NJ with the Pearson and Euclidean distance metric
With NJ using Pearson’s correlation (Figure 7B), desig-
nating the basal taxon (N. discreta) as reference resulted
in recovery of the input tree 100% of the time. The same
result was seen when N. tetrasperma was designated
reference, but only 64% of simulations did when N.
crassa A was designated reference. Instead, output trees
were occasionally two to four steps different from the

input tree, resulting from a failure to resolve short inter-
nal branches separating branches among taxa within
clade 2 and by placing the long branch of N. discreta
incorrectly. When N. tetrasperma or N. discreta was the
reference, these short connective branches were resolved
almost 100% of the time. When the nucleotide substitu-
tion rate was increased from 5% to either 7.5% or 10%, a
greater percentage of simulations recovered the input
topology, suggesting that more polymorphisms help dif-
ferentiate those short branches for this distance metric.
With NJ using Euclidean distance, the input topology

was never recovered and the majority of output trees
were 4 or more steps different from the input topology
(Figure 7C). In these trees, many sister taxa relationships
devolved into polytomies when small internal supporting
branches were left unresolved. When N. discreta was
designated as the reference taxon, a higher proportion
of CGH trees were more similar to the input tree -
especially when the nucleotide substitution rate was
lowest. N. crassa A performed most poorly as the refer-
ence with most output trees at least 6 and as many as
10 steps distant from the input tree (Figure 8A and 8B).
When N. tetrasperma was the reference, the short inter-
nal branches remained unresolved, and when either N.
crassa A or N. tetrasperma were the reference taxon,
there was a tendency to erroneously group N. discreta
with clade 3 (Figure 8C). At low mutation rates, N. dis-
creta and N. crassa A performed better as the reference,
although the discrepancies between the input and out-
put trees worsened as the substitution rates increased.
(Figure 8D). Close examination of these trees suggests
that a saturation of polymorphisms made shorter
branches difficult to resolve.

Parsimony Analysis
With parsimony, again the input tree was recovered
only when the most basal taxon, N. discreta, was refer-
ence and then only 22% of the time at 5% nucleotide
substitution and only 3% of the time at 7.5% nucleotide
substitution. When N. crassa A or N. tetrasperma were
designated as reference taxa, parsimony analysis was
unable to correctly place the most divergent taxon, N.
discreta. For these trees, N. discreta was incorrectly
placed in a polytomy within clade 3 instead of outside
of it. With increasing sequence differences, N. discreta
was placed within clade 2 or between clades 1 and 2
(Additional File 3: Figure S1).

Probe Length
Increasing the length of the probe sequence in the
microarray from 70 nt to 500 nt might be expected to
improve the recovery of input topologies by providing
more polymorphisms for phylogenetic analysis. To test
this hypothesis, 25 replicate runs at 10% average

A B

C

Figure 6 The expected and recovered pectinate topologies.
Figure 6A shows the twelve taxon pectinate topology drawn as an
unrooted cladogram. 6B show an example where S12 acts as the
reference for the NJ Euclidean method, it is 6 steps away according
to the symmetric distance from the reference tree in A. C shows
another example tree where S12 is the reference but for the
parsimony algorithm, and is eight steps away. Both 6B and 6C were
evolved at 7.5% average nucleotide substitutions.
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Figure 7 Neurospora Topology Results. Figure 7A gives the topology of the natural phylogeny for the eight conidiating species of
Neurospora, modified from Dettman 2003a. Figure 7B gives the stacked histogram shows the proportion of NJ trees in 200 replicates that are 0
or more steps away from the input topology. The first three columns show the symmetric distance using N. crassa clade A (NcA) as the
reference taxa for the average sequence divergence indicated. Columns 4-6 show the results using N. tetrasperma (tet) as the reference taxa.
Columns 7-9 use N. discreta (disc) as the reference. Figure 7C gives the stacked histogram of the symmetric distance for 100 NJ trees built with
the Euclidean distance metric. No trees were less than 2 or more steps away. Figure 7D gives the stacked histogram showing the proportion of
PMR trees in 100 replicates that are 0 or more steps away from the input topology. Three examples of this topology, between four to eight
steps away from the reference, are given in Figure 8B, 8C, and 8D.
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Figure 8 The expected and recovered Neurospora topologies. Figure 8A is the Neurospora topology drawn as an unrooted phylogram.
Figure 8B shows an example were N. crassa A is the reference for the Euclidean NJ that is 8 steps away from A according to the symmetric
distance. Figure 8C shows an example with N. tetrasperma as the reference for the Euclidean NJ that is 4 steps away from the reference
according to the symmetric distance. Figure 8D shows an example with N. discreta as the reference that is 6 steps away according to the
symmetric distance by the Euclidean NJ method. B, C, and D were evolved at 7.5% average nucleotide substitutions.
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sequence divergence were completed using 500 bases as
the length of the probe for the Neurospora topology.
There was no significant improvement in recovery of
the input topology regardless of which taxon was desig-
nated as the reference taxon with the longer alignments
(Additional File 2: Table S2).

Cophenetic Correlations
To evaluate differences in the branch lengths, irrespec-
tive of topology, of the input and output trees obtained
by NJ using Pearson’s correlation or Euclidean distances,
we determined the cophenetic correlation coefficient
(CCC) for the Neurospora distance trees (Figures 9 and
10). When assayed by topology, NJ with Pearson’s corre-
lation was more successful than the Euclidean in finding
the topologically correct tree. However, when assayed by
the CCC, the Euclidean method was better at estimating
the branch lengths. This result was true not only for the
Neurospora tree, but also for the pectinate tree. For the
balanced tree, the CCC was slightly better for the NJ
using Pearson’s correlation than with Euclidean distance.
The CCC also varied moderately with the choice of
reference taxon and slightly with the percent substitu-
tion rate. Distributions for the other topologies are
included in the Additional Files 4, 5, 6, and 7: Figures
S2, S3, S4, and S5.

Discussion
Array Comparative Genomic Hybridization (array CGH)
is a technique in which the genomic DNAs of a refer-
ence individual and a close relative are hybridized to a
microarray made of probes designed to match the gen-
ome of the reference individual. To assess the appropri-
ateness of using microarray data for phylogenetic
analysis, we asked if having a single reference species, to
which all other taxa must be compared, limits the ability
to accurately recover evolutionary relationships. In our
simulations, to make phylogenies from CGH data, we
used both distance and parsimony phylogenetic meth-
ods. We assessed the effects of tree topology, the posi-
tion of the reference taxon in the topology, the rate of
nucleotide substitution, and the length of microarray
probes. We assessed the difference between the input
and output phylogenies using two tree-to-tree distance
metrics and also assessed the difference in rates of evo-
lution for two topologies as measured from branch
length differences.
Our results show that under specific conditions, using

CGH to quantify inter-genomic sequence variation can
yield data that support the input topology. However, it
is just as common to get a tree with little resemblance
to the true tree. The user would be unaware of this, as
studies often have no prior knowledge of two key para-
meters, the topology and the position of the reference

taxon. Unfortunately, these are the goals that phyloge-
netic inference is designed to determine. CGH, however,
may have a role to play in assessing sequence diver-
gence, by identifying genes that are evolving rapidly, but
that are still present across taxa, that would be good
candidates for multi-locus sequence analysis.

Summary of Simulation Results
Tree topology and the position of the reference taxon
had the greatest effects on successful recovery of the
input tree by CGH. The balanced topology was recov-
ered more successfully than the pectinate or Neuro-
spora topology, probably because all taxa occupy the
same position relative to their neighbors in the
balanced topology. For the pectinate topology, CGH
was most successful with reference taxa in the most
derived position. This result is not unexpected, as the
single reference design of most CGH arrays constricts
the dataset in such a way that discards information
that would resolve irregular distances. In effect it is
similar to constricting multi-dimensional scaling data
to a single plane- that in this case is dictated by the
choice of reference taxon. For the Neurospora topol-
ogy, CGH success was poorest with the reference in a
derived position, but for this topology the analytical
method had a stronger influence than the position of
the reference taxon.
In general, the NJ distance method was more success-

ful at recovering the input topology than was parsimony,
and distance data matrices made using Pearson’s corre-
lation coefficient performed better than those made by
Euclidean distance. For the correlation, in the tree-
building process it was found to be more expedient to
exclude the reference as the correlation method was not
able to cope with the reference taxon’s lack of variability
in the evolved data. However, branch lengths were bet-
ter recovered with NJ using a Euclidean distance matrix
than with the Pearson’s coefficient. While the Pearson’s
correlation is more robust to missing data and is less
sensitive to small variations than Euclidean distance, the
Euclidean potentially preserves more information about
the genetic distance [59].
For parsimony analysis all “species” hybridization

values were binned using a single cutoff, a simple
approach we found adequate for distribution of
sequence polymorphisms simulated here. Modifying the
threshold for assigning shared character states (1,1)
from the 75th percentile to the 80th percentile or higher
occasionally improved the results, but only for some
locations of the reference taxon and topologies.
Varying the rate of nucleotide substitution had little

effect on recovery of the input topology by CGH,
although at high substitution rates parsimony analysis
performed better when the threshold was high for
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Figure 9 The cophenetic correlation of the correlation-based NJ for the Neurospora topology. The distribution of the cophenetic
correlations for Tree 3 using the correlation-based NJ trees. Figures 9A, 9B, and 9C give the distribution of correlations using N. crassa A (NcA) as
the reference for the average sequence divergence shown. Figures 9D, 9E, and 9F use N. tetrasperma (tet) as the reference taxa. Figures 9G, 9H,
and 9I represent reference taxon N. discreta (disc). The average correlation for each set replicates is shown with each distribution.
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Figure 10 The cophenetic correlation of the Euclidean-based NJ for the Neurospora topology. The distribution of the cophenetic
correlations for Tree 3 for 100 replicate Euclidean distance based NJ Trees. Histograms 10A, 10B, and 10C are N. crassa A (NcA) reference based.
Histograms 10D, 10E, 10F are N. tetrasperma (tet) reference based. Histograms 10G, 10H, and 10I represent reference taxon N. discreta (disc). Note
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scoring a hybridization spot as absent. Increasing the
length of the probe from 70 bases to 500 bases had no
substantial effect on recovery of the input topology.
Of particular importance to a correct CGH phylogeny

is the choice of taxa included in the analysis. Taxa with
reasonable distance to each other, avoiding mixtures of
close and more distantly related taxa, are more easily
captured. It is also best to have a reference taxon in the
most basal position of the tree, or second-best the most
derived position. A priori, these two parameters are
never known except in test cases, making CGH proble-
matic for practical use in phylogenetics.

Comparison to other studies using CGH to infer
phylogenetic relationships
Initial studies of CGH for phylogeny include research
with Salmonella typhimurium and Bordetella pertussis
microarrays. For the Bordetella study a parsimony CGH
tree has at least one major difference when compared to
the available MLEE tree [39], the latter being an unreli-
able method as it only determines phenotypes and is
not very reproducible. NJ and Parsimony CGH trees for
Salmonella are also at least one step away from several
sequence trees used for comparison [60].
Other researchers utilizing Bacillus, Streptococcus, and

Ralstonia microarrays report congruence between CGH-
derived topologies constructed using hierarchical clus-
tering, NJ, or Parsimony methods of bacterial clusters or
species groups and DNA sequence trees based on sev-
eral loci or MLEE [41,61,62]. All of these studies high-
light the similarities of their trees to the previously
published work but say little about the differences of
their CGH-based trees to those derived via more tradi-
tional methods though the Streptococcus study found
genetic relatedness only within clonal complexes, not
between them. Though one or two branch rearrange-
ments may not be substantial difference to the
researcher, it demonstrates the limitations of this phylo-
genetic technique by failing to resolve a perfect tree.
It is possible that a CGH phylogeny from a multi-spe-

cies array would better reflect evolutionary distances
among taxa. While answering this question is outside
the scope of this study at least one other, Wan et al
[44], has addressed it. Unlike our study, which focused
on a single species array, Wan et. al analyze the effects
of the composition of a multi-species array and propose
a bias-correction algorithm for uneven species content.
Using both experimental and simulated data for a mixed
Enteroccocus species array they find a CGH tree one
step away from a 5 gene MLST tree of the same species.
In their in silico study they see longer branch lengths
from reference to other taxa in reconstructed trees, as
we do, but stress that the clustering of groups should be
unaffected in most cases.

In a more recent study aCGH data from bovine and
human data as well as simulated data were examined by
the developers of a wavelet based de-noising algorhythm
aimed at quantifying structural variation at the genome
level [38]. Though the authors restricted their study of
evolutionary relatedness to clusters of intra-species data
they expressed an interest in future phylogenetic analy-
sis utilizing their algorithm as a starting point. The large
scale structural variations simulated by the authors were
quite different from the closely related relationships we
chose to model in this work. This different approach to
the same question did not address the factors we found
most pertinent - the topology of underlying tree and
choice of reference taxon.

Conclusions
Our results show that CGH cannot be counted on to
reveal genomic sequence divergence reliably enough to
recover a known phylogeny. Consequently, relying on
this technique to recover an unknown phylogeny is pro-
blematic, particularly when there is no traditional phylo-
geny to compare to or when an existing phylogeny is
based only a few genes or obsolete techniques like MLEE.
The results from our in silico study presented here are

further substantiated by a thorough analysis of experi-
mental data in our accompanying manuscript and by
the various pro-CGH phylogeny papers enumerated
above which detail minor, but significant, differences
between their trees and previously published works.
Given the drawbacks of CGH for phylogeny, resulting

in high uncertainty in the correct topology, it would be
perhaps be more prudent to utilize the cross-taxa CGH
data to identify a set of genes suitable for MLST, those
still present but with a high to moderate amount of var-
iation, then pursue a traditional phylogenetic analysis.
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