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Abstract
Background: The coronavirus disease 2019 (COVID-19) spreads rapidly
across the globe,seriously threatening the health of people all over the world.To
reduce the diagnostic pressure of front-line doctors, an accurate and automatic
lesion segmentation method is highly desirable in clinic practice.
Purpose: Many proposed two-dimensional (2D) methods for sliced-based
lesion segmentation cannot take full advantage of spatial information in the
three-dimensional (3D) volume data, resulting in limited segmentation perfor-
mance.Three-dimensional methods can utilize the spatial information but suffer
from long training time and slow convergence speed. To solve these problems,
we propose an end-to-end hybrid-feature cross fusion network (HFCF-Net) to
fuse the 2D and 3D features at three scales for the accurate segmentation of
COVID-19 lesions.
Methods: The proposed HFCF-Net incorporates 2D and 3D subnets to extract
features within and between slices effectively. Then the cross fusion module is
designed to bridge 2D and 3D decoders at the same scale to fuse both types
of features. The module consists of three cross fusion blocks, each of which
contains a prior fusion path and a context fusion path to jointly learn better lesion
representations.The former aims to explicitly provide the 3D subnet with lesion-
related prior knowledge, and the latter utilizes the 3D context information as the
attention guidance of the 2D subnet, which promotes the precise segmentation
of the lesion regions. Furthermore, we explore an imbalance-robust adaptive
learning loss function that includes image-level loss and pixel-level loss to tackle
the problems caused by the apparent imbalance between the proportions of the
lesion and non-lesion voxels,providing a learning strategy to dynamically adjust
the learning focus between 2D and 3D branches during the training process for
effective supervision.
Result: Extensive experiments conducted on a publicly available dataset
demonstrate that the proposed segmentation network significantly outperforms
some state-of -the-art methods for the COVID-19 lesion segmentation, yielding
a Dice similarity coefficient of 74.85%. The visual comparison of segmentation
performance also proves the superiority of the proposed network in segmenting
different-sized lesions.
Conclusions: In this paper, we propose a novel HFCF-Net for rapid and accu-
rate COVID-19 lesion segmentation from chest computed tomography volume
data. It innovatively fuses hybrid features in a cross manner for lesion segmen-
tation, aiming to utilize the advantages of 2D and 3D subnets to complement
each other for enhancing the segmentation performance. Benefitting from the
cross fusion mechanism,the proposed HFCF-Net can segment the lesions more
accurately with the knowledge acquired from both subnets.
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1 INTRODUCTION

Coronavirus disease 2019 (COVID-19) caused by
severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), was first discovered in December 2019
and then rapidly spread to many countries around the
world in early 2020.1–3 Since the coronavirus can be
spread by droplets, aerosols, and other methods,4 the
COVID-19 is highly infectious. According to statistics
from the Center for Systems Science and Engineering of
Johns Hopkins University,as of December 21,2020,191
countries and regions all over the world have reported a
total of more than 76 million confirmed cases and about
1.69 million patients have died from coronavirus.5

The typical clinical manifestations of COVID-19
patients mainly include fever, cough, shortness of
breath, loss of taste, and smell, usually accompanied
by pneumonia.1,6 Presently, real-time reverse transcrip-
tion polymerase chain reaction (RT-PCR) is the main-
stream method for diagnosing coronavirus pneumonia,
but it has the disadvantages of time-consuming detec-
tion and a high false-negative rate in the early stages
of the disease.7 In contrast, computed tomography (CT)
imaging is relatively easy to perform rapid scanning.
It can more directly observe the lesions of lungs with
high-resolution three-dimensional (3D) images for dis-
ease diagnosis.8 Some studies have also shown that CT
imaging can serve as the supplement of RT-PCR detec-
tion to support early detection of COVID-19.6,9,10 The
Guidelines for the Diagnosis and Treatment of Pneu-
monia Caused by COVID-19 (fifth edition) issued by the
Chinese government have included the clinical manifes-
tations of CT images in the diagnostic criteria.

In the diagnosis process, it is essential for doctors to
observe the visual representations of the anatomy pro-
vided by medical images.11,12 However, manual obser-
vation is labor-intensive and time-consuming work.
Research indicates that an experienced radiologist can
only interpret about four chest CT scans per hour.13

Meanwhile, the infected regions exhibit various mani-
festations, such as ground glass shadow and lung con-
solidation, also accompanied by irregular shapes and
fuzzy boundaries caused by low contrast,which may fur-
ther pose challenges for the precise lesion detection and
aggravate the burden of doctors.8 Therefore,a fast auto-
segmentation computer-aided diagnosis tool of COVID-
19 lesions is urgently needed in the clinic applications
since accurate segmentation of lesion regions is of
value not only in facilitating the diagnosis but also in
assessing the severity and prognosis of the disease.14

In recent years, as a continuously developing
emerging technology, deep learning has achieved

remarkable results in many aspects of the medical
field.15 Some studies have applied deep learning net-
works to the segmentation of pneumonia lesions, result-
ing in better performance consequently. The current
methods for COVID-19 lesion segmentation mainly
include two-dimensional (2D)-based and 3D-based seg-
mentation methods. The 2D-based segmentation meth-
ods explore 2D convolutional neural networks (CNNs)
to predict the lesion region of each slice in CT vol-
ume data.16–22 For example, Wang et al.11 proposed a
novel noise-robust learning framework based on self -
ensembling of 2D CNN for slice-by-slice segmentation.
Fan et al.17 designed a semi-supervised lung infection
segmentation deep network (Semi Inf -Net) for CT slices.
Laradji et al.18 trained a 2D weakly supervised CNN with
the transformation-consistency constraints for increas-
ing robustness. Yao et al.19 presented an unsupervised
pixel-level anomaly modeling framework with the 2D U-
Net backbone. Although these deep networks for lesion
segmentation in slices have achieved better results, 2D
networks cannot leverage the inter-slice spatial informa-
tion, which leads to limited performance improvement.

The 3D-based segmentation approaches can effec-
tively exploit the 3D spatial information of segmented
tissues to produce more accurate label maps. However,
most of the current studies focused on lesion segmen-
tation in slices, while very little attention has been paid
to the segmentation of 3D infection regions in CT vol-
ume data.23–25 There are two main reasons for this:
(1) long training time and convergence difficulties; and
(2) high computational cost and memory consumption.
Under limited hardware resource,the image size of input
data is often reduced to ensure the successful run-
ning of 3D networks,which unavoidably causes the loss
of global information and affects segmentation perfor-
mance. Therefore, it is still a challenging task to employ
3D networks to segment lesions of COVID-19.

To address the above issues,we propose a novel end-
to-end hybrid-feature cross fusion network (HFCF-Net)
for the COVID-19 lesion segmentation of CT volume
data. The proposed network integrates 2D and 3D sub-
nets, which can effectively extract features within and
between slices,and then uses the cross feature fusion to
enhance the interaction of both subnets. Specifically, we
first split the 3D data into 2D slice sequences and input
them to 2D and 3D branches to be processed, respec-
tively. Next, considering the complementarity between
features of two subnets that can be exploited to enhance
the useful information of lesion segmentation, the two
output maps from each layer of 2D and 3D decoders
are regarded as complementary guidance information
and transferred to their own complementary decoder in
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turn, aiming to boost the ability of the entire network to
perceive lesion information. Fusing 2D features can uti-
lize the fast convergence characteristics of the 2D sub-
net to help the 3D subnet reduce optimization burden.
Meanwhile,with the guidance of the contextual informa-
tion extracted by the 3D subnet,the segmentation perfor-
mance of the 2D subnet can be well improved.Moreover,
within an end-to-end system, both branches are jointly
optimized during the training process to achieve the
precise location and segmentation of infection regions.
The proposed HFCF-Net has been evaluated on a pub-
licly available dataset and achieved superior perfor-
mance compared with the state-of -the-art segmentation
networks.

In summary, the main contributions of this paper are
as follows:

1. We propose a novel end-to-end HFCF-Net to achieve
the lesion segmentation of COVID-19. The proposed
network designs a cross fusion module to take advan-
tage of 2D and 3D subnets to complement each other,
avoiding the problems of missing inter-slice informa-
tion of the 2D network and slow convergence of the
3D network. To our best knowledge, there has been
no work investigating the hybrid-feature (intra- and
inter-slice features) fusion in COVID-19 segmenta-
tion so far.

2. We design a novel network consisting of a 2D
multi-scale subnet and a 3D lightweight subnet to
effectively probe the intra- and inter-slice features
for lesion segmentation. Specifically, the 2D subnet
incorporates an aggregate interaction module and a
Res2Net global module to improve the segmentation
quality,and the 3D subnet adopts a lightweight design
to reduce computation without information loss.

3. We propose a novel imbalance-robust adaptive learn-
ing loss function with an adaptive learning strat-
egy. The proposed loss function not only supervises
the whole network from both image- and pixel-level
aspects to alleviate the imbalance of positive and
negative examples but also transfers the learning
emphasis of the network adaptively to avoid interfer-
ence from subnets, thus obtaining a better optimiza-
tion result.

The rest of this paper is organized as follows. Sec-
tion 2 introduces details of the proposed HFCF-Net.The
experiments and results are given in Section 3. Finally,
we further present our discussion and conclusion in
Sections 4 and 5, respectively.

2 MATERIALS AND METHODS

The proposed HFCF-Net for lesion segmentation is
shown in Figure 1 and summarized as follows: (1)
decompose the 3D volume data to 2D slice sequences
and then input them into the 2D multi-scale subnet to

extract lesion features within slices; (2) input the 3D vol-
ume data into the 3D lightweight subnet to extract spa-
tial lesion features; (3) feed features of both 2D and 3D
decoders to the cross fusion module in turn for integrat-
ing 2D and 3D information to improve the lesion seg-
mentation.

In this section, we firstly describe three modules in
our network, including the 2D multi-scale subnet, the 3D
lightweight subnet, and the cross fusion module. Next,
we present a novel loss function with an adaptive learn-
ing strategy.

2.1 The design of 2D multi-scale
subnet

The layout of the proposed 2D subnet is given in
Figure 1. We employ the “encoder–decoder” structure
similar to the U-Net26 but strengthen it in two aspects.
Firstly, different from the original network that directly
concatenates features from the encoder and decoder,
we utilize the aggregate interaction module (AIM)27 to
integrate the multi-scale semantic features from neigh-
boring encoder stages to replace skip connection to
lessen the gap between the current encoder stage
and symmetrical decoder stage, contributing to a bet-
ter fusion process. Secondly, we introduce the Res2Net
module28 in the high-level stages of the decoder, where
the module evenly splits the input feature maps into
four subsets along the channel dimension and sends all
the subsets except for the first one to the hierarchical
residual-like connected convolutional operators. Then,
the first feature subset and other convolutional outputs
are concatenated to fuse information altogether. This
aims to implicitly explore intra-stage multi-scale feature
representations to generate abundant scale-specific
information for further refining the segmentation results.

In addition, we replace the typical deconvolution lay-
ers with a 1 × 1 convolution layer followed by a bilin-
ear interpolation to recover the feature resolution, which
can avoid the grid effect and decrease the parame-
ter number. As a result, the 2D subnet can efficiently
capture multi-scale information embedded in the slices
to enhance the representation ability of features for
achieving better segmentation performance.

2.2 The design of 3D lightweight
subnet

Generally, 3D networks often suffer from high com-
putational cost and Graphics Processing Unit (GPU)
consumption caused by a large number of net-
work parameters, which limits the depth of networks
that is crucial for performance gains.29 To make
full use of the spatial context information under the
limited hardware conditions for boosting the seg-
mentation performance, we design a 3D lightweight
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F IGURE 1 The overall architecture of the proposed hybrid-feature cross fusion network (HFCF-Net). It contains a 2D multi-scale subnet, a
3D lightweight subnet, and a cross fusion module

subnet with low computational cost to further explore the
segmentation of the original 3D data. The proposed 3D
lightweight subnet is shown in Figure 1.

Inspired by the great performance of 3D U-Net, we
also use a similar backbone to design a lightweight
backbone with two important aspects. First, consider-
ing the limitation of memory and model complexity, we
explore a lightweight 3D U-Net by reducing the number
of convolution kernels.Compared with the original 3D U-
Net where the number of filters is doubled layer by layer,
we adjust the filter setting, keeping the number of filters
invariable in the shallow stages and halving the num-
ber of filters in the deep stages to avoid the degradation
of high-resolution information. Consequently, the num-
ber of filters for each stage changes from the original
setting, that is, {32, 64, 128, 256, 512} to the new setting,
that is, {32, 64, 64, 128, 256}.

Second, since reducing the number of filters may
affect the extraction of global contextual information,we
design a dilated residual (DilRes) block at the bottle-
neck layer of the encoder–decoder structure to atten-
uate the global information loss. Most studies used a
simple downsampling operation on the feature maps to
get a wider receptive field for enhancing the global infor-
mation representation. However, many stacked pooling
layers may make the high-level feature maps too small
to reserve the segmentation target for generating the
global guidance information. Compared with the down-
sampling operation, dilated convolutions can expand
receptive field without losing resolution through inserting

holes into the familiar convolution operation.30 It not only
obtains a wider receptive field by setting the dilated rate
to capture the global context but also maintains the rela-
tive spatial position of the feature maps required for pre-
cise segmentation. Specially, the proposed DilRes block
mainly consists of two components. One component is
a 3 × 3 × 3 plain convolution that transforms input fea-
ture maps Fin to intermediate feature maps Finter to cap-
ture local features.The other component is a successive
dilated convolution operation with a residual connection
that takes Finter as input and extracts the long-range con-
textual information. Three dilated convolutions with dif-
ferent dilation rates (1, 2, and 4) are stacked to expand
the receptive field further, and a residual connection is
used to fuse Finter with the output feature maps obtained
through three successive dilated convolutions to facili-
tate the training.

Since the DilRes block is built upon the top-level
feature maps with relatively low resolution, it cannot
bring additional computational overheads. Furthermore,
all intermediate feature maps inside the dilated convo-
lution block have the same resolution as input feature
maps Fin due to without using pooling operations, not
causing too much information loss.

2.3 The design of cross fusion module

Although 3D networks can exploit rich spatial informa-
tion along the z dimension, there exists an apparent
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F IGURE 2 Illustration of the cross fusion block (CFB). Take the CFB1 as an example. In the prior fusion path, the 2D feature maps OD4
2D

is

transmitted to the 3D decoder layer and fused with the 3D feature maps ID3
3D

. In the context fusion path, the 3D feature maps OD3
3D

is transmitted

to the 2D decoder layer and fused with the corresponding 2D feature maps ID3
2D

. Bs, C, H, and W: the batch size, channel number, height, and

width of 2D feature maps; Bsʹ, Cʹ, Dʹ, Hʹ, and Wʹ: the batch size, channel number, depth, height, and width of 3D feature maps

imbalance between the voxel numbers of the lesion and
non-lesion regions of a 3D image. This can cause the
loss of negative samples (non-target) to dominate the
total loss, which provides misleading information and
overwhelms the positive feedback of the target, result-
ing in the inefficient training process.31 In contrast, the
imbalance problem inside the slices is not as severe as
that of 3D images so that 2D networks spend less train-
ing time and converge faster than 3D networks,while 2D
networks neglect useful spatial information to prevent
the further improvement of its performance. To address
these dilemmas, we propose fusing 3D and 2D sub-
nets to jointly utilize their own characteristics to comple-
ment each other for obtaining better lesion segmenta-
tion maps.

We design a cross fusion module to fuse both types of
features at the same scale for producing more discrim-
inative fusion feature maps. Figure 1 shows the struc-
ture of the cross fusion module that consists of three
fusion blocks to bridge each layer of decoders from 2D
and 3D subnets for obtaining better ability of perceiving
lesions and segmentation performance. Figure 2 shows
the details of the fusion block, which contains two cross
paths, that is, a prior fusion path and a context fusion
path.

In the prior fusion path, we regard 2D feature maps
as auxiliary features and fuse them with 3D feature
maps at the same scale, aiming to utilize the intra-slice
information to provide the 3D subnet with prior lesion
knowledge and improve the efficiency of 3D feature
extraction. In the meantime, the 3D feature maps can
be used as a kind of context attention to boost the abil-
ity of the 2D subnet in perceiving the context informa-
tion. To this end, the context fusion path is proposed to

combine the context information captured by the 3D fea-
ture maps as auxiliary knowledge with the feature maps
of 2D decoder, providing the context attention guidance
and enhancing the segmentation precision of the 2D
subnet.

We define the ith cross fusion block as CFBi . Ii2D and
Oi

2D denote the input and output feature maps of the ith
decoder layer (i = 1, 2, 3, 4 from shallow layer to deep
layer) in the 2D subnet, respectively. Similarly, Ii3D and
Oi

3D (i = 1, 2, 3) are the input and output feature maps
of the ith decoder layer in the 3D subnet, respectively.

As shown in Figure 2, for the first fusion block CFB1,
the output feature maps O4

2D from the 2D subnet and
the input feature maps I33D from the 3D subnet are the
inputs of prior fusion path. We expect that incorporating
the intra-slice feature maps with prior lesion information
would promote the exploration efficiency of the 3D sub-
net. However, the 2D feature maps O4

2D and the 3D fea-
ture maps I33D have different sizes. Hence, the dimen-
sion transformation is performed to make the 2D fea-
ture maps O4

2D have the same size as I33D, and then the
feature maps would pass through a convolution layer to
refine weights, shown as follows

F = Conv
(
Tran

(
O4

2D

))
(1)

where “Tran”represents dimension transformation oper-
ations, including channel adjustment and matrix trans-
position, and “Conv” indicates a convolution operation.
The obtained feature maps F has the same size as the
feature maps I33D. Then we employ sigmoid activation
functions to get the intra-slice attention maps and fuse
them with I33D to provide the coarse lesion location by
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highlighting potential infection regions, shown as

Opri = Conv
(

sigmoid (F) + I33D

)
. (2)

In the context fusion path, the output feature maps
O3

3D and the input feature maps I32D are the inputs of this
path.The dimension of O3

3D is also adjusted to the same
size as the feature maps I32D by the dimension transfor-
mation. Then we apply a sigmoid activation function to
each slice of the transformed feature maps Tran(O3

3D) to
obtain attention maps, which accentuate lesion regions
and reduce the response of interference regions for
the feature maps I32D. Subsequently, the resulted feature
maps are fused with the input feature maps I32D to retain
intra-slice context information but highlight the lesion
regions using the inter-slice lesion context information.
These operations are formally shown as follows:

Ocon = I32D + I32D ⊗ sigmoid
(
Tran

(
O3

3D

))
, (3)

where ⊗ represents the element-wise multiplication.
In this way,we obtained the 3D features Opri combined

with prior information and the 2D features Ocon fused
with 3D context information. Then they would be fed to
the follow-up layers to perform feature extraction.

The whole network was trained based on contextual
information from the original 3D data and sufficient fea-
ture representations within slices from the 2D branch.
At the same time, cross fusion can also enable the net-
work to fuse 2D and 3D information in turn, avoiding the
attenuation of 2D or 3D features caused by information
fusion in single direction.With the guidance of the fusion
information generated by efficient interaction, the prob-
lem of spatial information missing in the 2D subnet and
the imbalance problem existing in the 3D subnet have
also been well mitigated, which can gradually boost the
segmentation performance with the increase of iteration
times.

2.4 Imbalance-robust adaptive learning
loss

The total loss function proposed for training our HFCF-
Net includes the loss L2D−GT between the 2D prediction
maps and the 2D ground truth ones, the loss L3D−GT
between the 3D prediction maps and the 3D ground
truth ones, and the consistency loss LFusion−GT between
the fusion maps and the 3D ground truth ones. The
three losses adopt the same form of loss function.
For more efficient training, we design the loss function
from two innovative perspectives. First, the proposed
loss function combines the binary cross-entropy loss
(BCE) Lbce and reweighted Dice loss Lreweighted−Dice to
make use of their advantages to alleviate the imbalance
phenomenon existing in the data. Second, we utilize an

adaptive learning strategy to adjust the learning atten-
tion between 2D and 3D subnets in the training pro-
cess. Our motivation lies in the fact that the well-trained
2D subnet can provide prior information of lesion loca-
tion for the 3D subnet, avoiding network degeneration
caused by the wrong optimization direction.

Since the lesions often only occupy a small region of
the lung,segmentation results tend to be strongly biased
toward the background when the network is trained with
the cross-entropy loss function. The Dice loss function
can effectively tackle this problem by implicitly estab-
lishing a balance between foreground and background
classes.11 However, we also encounter an imbalance
problem on the size of lesions. In some cases, the large
lesions could be about 20–50 times bigger than the
small ones, but the Dice loss treats equally lesions with
different sizes, and the networks tend to miss small-
sized targets. Shirokikh et al.32 have proposed a loss
function reweighting strategy to promote the detection
quality by increasing the weight of small lesions.Inspired
by the work of Shirokikh et al., we propose a novel
reweighted Dice loss function for assigning the larger
weights for small lesions. To address the twofold imbal-
ance, the proposed loss function is composed of the
global (image-level) loss and the local (pixel-level) loss,
that is, reweighted Dice loss Lreweighted−Dice and BCE
loss Lbce

L = Lreweighted−Dice + Lbce = 1 −
2
∑

i wipiyi∑
i wi

(
p2

i + y2
i

)

− (yi logpi + (1 − yi) log (1 − pi)) , (4)

where pi denotes the ith pixel of the prediction probabil-
ity map,yi is the ith element of the corresponding ground
truth binary mask, and wi is the assigned weight.

The overall loss function of the network consists of
three losses, that is,L2D−GT,L3D−GT,and LFusion−GT.The
three losses are calculated according to the loss func-
tion in Equation (4).If 2D and 3D representation learning
deserves equal attention, the two branches may inter-
fere with each other to affect their own performance
when they are trained together. Therefore, we adopt a
learning strategy to transfer the learning focus between
subnets adaptively by controlling the loss weights of the
two subnets with parameter 𝛼, and the overall loss func-
tion is defined as

Ltotal = 𝛼L2D−GT + (2 − 𝛼) L3D−GT + LFusion−GT, (5)

where 𝛼 = 1 − (T∕Tmax)2 is the adaptation factor,Tmax is
the total number of iterations, and T is the current itera-
tion.

The total loss function is designed to first focus
on training the 2D subnet and then gradually pay
attention to training the 3D subnet, which is achieved by
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the adaptation factor 𝛼. 𝛼 automatically decreases with
the increase of the training epochs, which means that
the optimization focus of the total loss function trans-
fers from 2D representation learning to 3D representa-
tion learning. In the initial stage of training, both subnets
may have poor performance due to without sufficient
feature fusion. However, due to the fast convergence of
the 2D subnet, it first produces relatively better perfor-
mance during the training process. With the proceed-
ing of cross feature fusion, the 3D subnet can obtain
reliable prior information about lesion location from 2D
features and thus learn more discriminative representa-
tions about proper infection regions directly, which can
significantly improve the training efficiency. During the
process of training, the emphasis of the network trans-
forms from intra-slice feature representation learning
to exhaustive volumetric information exploration, thus
improving the segmentation accuracy.Different from the
conventional learning network, this strategy allows both
subnets with different goals to be trained in a synergetic
manner instead of performing a blind optimization pro-
cess at the beginning to result in worse performance.

2.5 Dataset and data preprocessing

We evaluated our network on a publicly accessible
COVID-19-20 dataset,33 which was provided by the
Multi-National NIH Consortium for CT AI in COVID-19
via the NCI The Cancer Imaging Archive (TCIA) pub-
lic website (https://www.cancerimagingarchive.net/)34

for the COVID-19 Lung CT Lesion Segmentation
Challenge-2020.35 The dataset contained 199 cases for
training and 50 cases for online validation. Since the
challenge was over,we only got the ground truth annota-
tions of the training set, but without true labels of online
validation cases. Therefore, we conducted our experi-
ments based on the 199 cases of training set. The size
of CT scans was 512 × 512 × (39–361), and the voxel
size was all 1 × 1 × 1 mm3. For efficient training, the
3D CT scans were preprocessed and then input to the
network. For highlighting the anatomical structures and
removing the irrelevant issues, we truncated the original
intensity values of CT scans into [-1200 HU, 300 HU],
which means to set the value above 300 to 300 and
below -1200 to -1200. Then, the CT scans were further
normalized to the standard normal distribution with z-
score to avoid the influence of outliers.

In the training stage, we randomly cropped each
3D volume image into many patches with a size of
32 × 256 × 256 as 3D input data, instead of using rough
linear interpolation to resize the image, which can retain
more information. In our experiments, the overall 199
cases were divided into the training and testing sets.
The training set contained 150 CT scans, and the test-
ing set had 49 scans. To evaluate the efficacy of our
network compared to other networks, we adopted the

fivefold cross-validation on the training set for adjust-
ing hyper-parameters, and the results obtained on the
testing set with the optimum value of hyper-parameters
were compared.

3 EXPERIMENTS AND RESULTS

3.1 Experimental settings

3.1.1 Implementation details

We implemented our HFCF-Net using Pytorch with an
Nvidia Tesla T4 GPU. All experiments were performed
on the same environment. During the training process,
we first separately pre-trained the 2D and 3D sub-
nets, and then the weights of the pre-trained networks
were used to initialize 2D and 3D encoders of the pro-
posed HFCF-Net. The other parts were initialized with
the Kaiming initialization36 that considers the nonlinear-
ity of Rectified Linear Units (ReLU) to help with conver-
gence of deep networks. All network weights of HFCF-
Net were learned via the Adam optimizer with a weight
decay of 0.0005. The batch size is set to 2. The initial
learning rate was set to 0.0001 and decayed accord-
ing to the polynomial schedule lr = lr × (1 − T∕Tmax)0.9.
Moreover, we employed online data augmentation tech-
niques, including random flipping and random rotating,
to further alleviate the risk of overfitting. For a fair com-
parison, all compared networks were implemented on
the same computer,and conducted the hyper-parameter
optimization. The hyper-parameter values are listed in
Table S2 and the optimization details can be found in
Figures S3–S12.

3.1.2 Evaluation metrics

For evaluating the validity of the proposed HFCF-Net,
we chose the fusion output as the final prediction result
Spre. The similarity between the final prediction result
Spre and the ground truth G was quantified by five
widely adopted metrics, that is, Dice similarity coeffi-
cient (Dice), intersection over union (IoU), the 95th per-
centile of Hausdorff distance (HD95), sensitivity (Sen),
and specificity (Spe).

The Dice and IoU are statistics used to gauge the sim-
ilarity of two samples by calculating the ratio of the inter-
section area to the total area, computed as:

Dice =
2 × |||Spre ∩ G||||||Spre + |G|+ ∈

|||
(6)

IoU =

|||Spre ∩ G||||||Spre ∪ G|||
(7)

where∈ is a smoothing factor to avoid zero denominator.

https://www.cancerimagingarchive.net/
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TABLE 1 Quantitative evaluation results of different segmentation networks

Network Dice↑ IoU↑ HD95↓ Sen↑ Spe↑
FLOPs
(GFLOPs)

Param
(M)

Training
time (h)

V-Net (3D)40 0.6650 0.5112 8.4323 0.7054 0.9975 750.982 45.596 20

U-Net (3D)39 0.6858 0.5407 3.7606 0.8109 0.9975 1895.000 16.320 25

ConResNet (3D)14 0.7065 0.5697 3.6469 0.7860 0.9985 583.593 19.300 17.2

2.5D-Net37 0.6502 0.5012 3.5543 0.8254 0.9971 / / /

U-Net26 0.6124 0.4512 3.3811 0.7653 0.9967 40.081 17.266 3.5

U2-Net38 0.5794 0.3949 4.3187 0.6299 0.9969 37.540 44.009 3

COPLE-Net11 0.6231 0.4590 3.2408 0.7359 0.9969 11.148 10.521 2.5

Inf -Net17 0.6304 0.4622 3.4295 0.6734 0.9975 6.381 30.337 2.5

Eff -Net20 0.6113 0.4451 4.6188 0.6328 0.9976 7.729 24.430 2

Weakly-Net18 0.5940 0.4286 5.6558 0.6227 0.9975 73.402 134.266 3

HFCF-Net 0.7485 0.6068 3.1764 0.8358 0.9990 798.374 33.670 18

Abbreviations:Dice,Dice similarity coefficient;FLOPs,floating point operations;HD95,95th percentile of Hausdorff distance;GFLOPs,giga floating point of operations;
HFCF-Net, hybrid-feature cross fusion network; IoU, intersection over union; Sen, sensitivity; Spe, specificity; Param, parameter number.
The bold values means the best performance.

The HD evaluates the segmentation quality and a
smaller value of the HD indicates better segmentation
results.The HD is computed by the following expression:

HD = max
{

maxs∈S̄pre
ming∈Ḡ‖s − g‖2,

× maxg∈Ḡmins∈S̄pre
‖g − s‖2

}
(8)

where S̄pre and Ḡ denotes the set of lesion bound-
ary points of the prediction result and the ground truth,
respectively.

HD95 is similar to HD, and utilizes the 95th percentile
of the distances instead of the maximal value in Equa-
tion (8). The purpose of using this metric is to eliminate
the impact of outliers.

Besides,we also introduced other two metrics to mea-
sure the complexity of the network, that is, floating point
operations (FLOPs) and parameter number (Param).

3.2 Comparison of segmentation
performance

To validate the efficacy of the proposed network in
COVID-19 lesion segmentation, we considered nine
state-of -the-art and classical networks for comparison,
including: (1) COPLE-Net11 that employs the squeeze-
and-excitation block and Atrous Spatial Pyramid Pool-
ing (ASPP) module to extract features and integrates
a self -ensembling training framework to promote the
robustness against noise;(2) Inf -Net17 that uses reverse
attention module to explore discriminative infection
regions and adopts a parallel partial decoder to gen-
erate the global map; (3) a weakly supervised seg-
mentation network (Weakly-Net)18 based on spatial

transformation consistency; (4) a modified lightweight
U-Net with EfficientNetB7 backbone (Eff -Net)20; (5)
2.5D segmentation network (2.5D-Net)37 that decom-
poses the 3D segmentation problem into three indepen-
dent 2D segmentation problems; (6) two-level nested
U-structure network (U2-Net)38; (7) ConResNet14 that
designs the context residual module to explicitly per-
ceive 3D context to boost the network’s ability; (8)
2D U-Net26; (9) 3D U-Net39; (10) V-Net.40 Note that
2D networks adopted the same training manner as
the original papers did, that is, using only slices with
lesions for training. In the testing phase, the compared
networks were evaluated on all slices of the testing
set.

Table 1 shows the quantitative performance com-
parison of these networks on the testing set. It can
be observed that the proposed HFCF-Net consistently
achieved the best performance among the compared
networks in five performance metrics in the COVID-19
lesion segmentation task. Compared to the ConResNet
with the greatest Dice score across other networks, our
network improved the Dice score by 4.20%. The perfor-
mance improvement is mainly attributed to the hybrid-
feature fusion between two branches, which provides
reliable feature representation and effective information
exchange process. It should be noted that 3D segmen-
tation networks (V-Net,3D U-Net,ConResNet) achieved
better Dice and IoU scores, and improved the average
Dice score by 7.73% compared to 2D networks.

Figure 3 shows the training loss and validation Dice
curves of all compared networks. It can be observed that
our proposed HCHF-Net achieved the largest validation
Dice score. Meanwhile, the training iterations of 3D net-
works (proposed HCHF-Net, V-Net, 3D U-Net, and Con-
ResNet) are much more than 2D networks, which indi-
cates the slow convergence of 3D networks. Figure 4
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F IGURE 3 Training loss and validation Dice curves of the compared networks. (a) Training loss curves of 2D networks; (b) validation Dice
curves of 2D networks; (c) training loss curves of 3D networks; (d) validation Dice curves of 3D networks

shows visual comparison results of some representative
segmentation networks. Obviously, the results obtained
by our network are most close to the ground truth.
In contrast, other networks provided some unsatisfac-
tory results, including fuzzy boundaries and incomplete
shapes. It is worth noting that the 3D networks per-
formed better in locating small lesions and segmenting
complete lesions than 2D networks. Besides, although
the 2.5D-Net achieved a competitive performance in
the quantitative comparison, it gave uncompetitive visual
results, which exhibit some fragmented regions and
unsmooth boundaries. This is mainly because that the
ability of 2D convolutional kernels to handle the context
information is weak and the limited context information
does not bring significant improvement. We conducted
an additional experiment to compare the performance
of different 2.5D networks and 3D network. The results
can be found in Table S1 and Figure S1.

To further better compare the performance of differ-
ent networks in dealing with lesions at different scales,

we split testing images into three groups based on
the proportion of lesions: large lesion group contain-
ing the cases with lesion proportion greater than 0.02,
medium lesion group between 0.02 and 0.005,and small
lesion group smaller than 0.005. We listed the quantita-
tive evaluation results in Table 2 and visualized the 3D
structure of segmentation results in Figure 5. The quan-
titative results show that our network had a better per-
formance than others, especially in the segmentation
of small and medium lesions. It shows that HFCF-Net
achieved the highest Dice score of 69.83%, 71.89%,
and 84.73% in the segmentation of small, medium, and
large lesions, respectively. Compared to other networks
with the best Dice score, our HFCF-Net improved the
Dice score by 4.20%, 6.68%, and 3.58% in different-
sized lesion segmentation tasks, respectively. Besides,
HFCF-Net also outperformed other networks in the 3D
visual comparison, demonstrating our network’s supe-
riority in segmenting different-sized lesions. It should
be noted that our network obtained such a significant
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F IGURE 4 Visual comparison of lung lesion segmentation results from different networks. From left to right: (a) computed tomography (CT)
image, (b) ground truth, (c) the proposed hybrid-feature cross fusion network (HFCF-Net), (d) COPLE-Net, (e) Inf -Net, (f) 2.5D-Net, (g)
ConResNet, and (f) 3D U-Net

TABLE 2 Quantitative comparison results of segmentation networks dealing with different-sized lesions

Small lesion Medium lesion Large lesion
Network Dice IoU HD95 Sen Dice IoU HD95 Sen Dice IoU HD95 Sen

V-Net (3D)40 0.6164 0.4667 13.0539 0.6094 0.6372 0.4803 7.1947 0.7582 0.7451 0.6051 1.0469 0.9143

U-Net (3D)39 0.6467 0.5066 7.1682 0.7476 0.6044 0.4567 4.0483 0.8077 0.7843 0.6487 0.6914 0.9051

ConResNet
(3D)14

0.6270 0.4730 6.0972 0.7422 0.6452 0.5038 3.1777 0.7917 0.8115 0.7135 0.5834 0.8285

2.5D-Net37 0.6138 0.4693 4.2922 0.7759 0.6166 0.4593 2.4144 0.8584 0.7135 0.5710 0.6413 0.8975

U-Net26 0.5701 0.4243 5.0424 0.6766 0.5734 0.4201 2.2579 0.8162 0.6263 0.4732 0.9951 0.8769

U2-Net38 0.4884 0.3424 6.6258 0.5106 0.5584 0.4014 2.1475 0.7282 0.6756 0.5174 0.7500 0.8603

COPLE-Net11 0.5717 0.4238 5.1161 0.6502 0.5951 0.4377 2.4657 0.7791 0.6669 0.5118 0.9607 0.8679

Inf -Net17 0.5482 0.3948 5.9282 0.5743 0.6521 0.4929 1.6291 0.7474 0.7382 0.5897 0.6290 0.8390

Eff -Net20 0.5245 0.3733 6.8818 0.5214 0.6496 0.4898 1.8255 0.7462 0.7377 0.5903 0.7408 0.8113

Weakly-Net18 0.5065 0.3561 8.4835 0.6284 0.4689 0.4689 2.5002 0.7567 0.7383 0.5937 0.7528 0.8352

HFCF-Net 0.6983 0.5547 3.9752 0.7951 0.7189 0.5733 2.1817 0.8626 0.8473 0.7373 0.4171 0.9074

Abbreviations:Dice,Dice similarity coefficient;HD95,95th percentile of Hausdorff distance;HFCF-Net,hybrid-feature cross fusion network; IoU, intersection over union;
Sen, sensitivity.
The bold values means the best performance.

performance gain without increasing too much compu-
tational burden that was much less than that of 3D
U-Net.

3.3 Effectiveness of cross fusion
module

The major contribution of our study is to design a
cross fusion module to achieve the hybrid-feature fusion

and information exchange between both subnets for
improving segmentation performance. To verify the
effectiveness of this module, we performed ablation
experiments on three variants: baseline, HFCF-Net-
A, and HFCF-Net-B. They refer to HFCF-Net without
cross feature fusion, HFCF-Net without prior fusion, and
HFCF-Net without context fusion, respectively.The com-
parison results of two single subnets (2D and 3D sub-
nets) and four fusion networks on the testing set were
listed in Table 3. It reveals that only summing two types
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F IGURE 5 Visual comparison of segmentation networks dealing with different-sized lesions. Large lesions: case I; medium lesions: case II;
small lesions: case III. For each case, the seven rows show the 3D segmentation visualization maps of (a) ground truth, (b) hybrid-feature cross
fusion network (HFCF-Net), (c) COPLE-Net, (d) Inf -Net, (e) 2.5D-Net, (f) ConResNet, and (g) 3D U-Net, respectively

TABLE 3 Performance comparison of 2D subnet, 3D subnet, three hybrid-feature cross fusion network (HFCF-Net) variants, and HFCF-Net

Final
feature
fusion

Prior
fusion

Context
fusion Dice IoU HD95 Sen Spe

2D subnet × × × 0 .6379 0.4736 3.1780 0.7802 0.9965

3D subnet × × × 0 .7087 0.5567 3.5191 0.8278 0.9978

Baseline √ × × 0.7264 0.5896 3.7179 0.7636 0.9992

HFCF-Net-A √ × √ 0.7318 0.5997 3.4297 0.7997 0.9989

HFCF-Net-B √ √ × 0 .7344 0.5968 3.2743 0.8073 0.9988

HFCF-Net √ √ √ 0.7485 0.6068 3.1764 0.8358 0.9990

Abbreviations: Baseline, HFCF-Net without cross feature fusion; Dice, Dice similarity coefficient; HD95, 95th percentile of Hausdorff distance; HFCF-Net-A, HFCF-Net
without prior fusion; HFCF-Net-B, HFCF-Net without context fusion; IoU, intersection over union; Sen, sensitivity; Spe, specificity.
The bold values means the best performance.

of feature maps to complete feature fusion without infor-
mation exchange can help the baseline network achieve
a larger Dice score but a worse HD95 score. The rea-
son may be that this simple feature fusion was unable
to handle noises generated from both subnet features,
resulting in disturbing the fusion effect. Afterward, grad-
ually incorporating the cross fusion module, the HFCF-
Net achieved a substantial performance improvement

in all metrics. Specifically, compared with the network
using prior fusion alone (HFCF-Net-A) and the one
using context fusion alone (HFCF-Net-B), our network
achieved better results (improving Dice by 1.67%, HD95
by 0.2533, sensitivity by 3.61% compared to HFCF-Net-
A; improving Dice by 1.41%, HD95 by 0.0979, sensitivity
by 2.85% compared to HFCF-Net-B). The performance
gains indicate that the cross feature fusion indeed
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F IGURE 6 Visualization of the final fusion feature maps and transferred feature maps. From left to right: (a) ground truth, (b) final fusion
feature maps with cross feature fusion, (c) final fusion feature maps without cross feature fusion, (d) 2D transferred feature maps, and (e) 3D
transferred feature maps

effectively employed bidirectional information flow at
different scales to simultaneously enhance the feature
processing capability of the two subnets to boost seg-
mentation accuracy. Moreover, the cross fusion manner
and end-to-end training can accumulate the learned fea-
ture context and jointly optimize the 2D and 3D sub-
nets,which can fully explore the hybrid features for better
segmentation.

In Figure 6, to clearly show the efficacy of cross fea-
ture fusion, we visualized the final fusion feature maps
with or without cross feature fusion, and 2D and 3D
transferred feature maps (obtained by computing the
summation of multiple channels of feature maps from
the last prior fusion path and the last context fusion
path, respectively). It can be observed that both trans-
ferred feature maps highlighted the infected regions.
Meanwhile, the 3D transferred feature maps contained
rich context information, and the 2D feature maps

mainly presented the intra-slice location information
of lesions. The fusion feature maps obtained through
cross feature fusion of both 2D and 3D transferred
features explored more discriminative features than
the feature maps of the network without fusion, which
is beneficial for accurate recognition of the infected
regions.

We also displayed the segmentation results obtained
by these variants in Figure 7. It shows that the results
produced by our network are the closest to the ground
truth.The network without cross feature fusion tended to
ignore the small lesions and generated unsatisfied seg-
mentation boundaries. As the repeated cross fusion of
learned intra- and inter-slice information, the segmenta-
tion results were gradually improved.Adding the context
fusion path can solve subtle segmentation faults, and
involving the prior fusion path can further promote seg-
mentation precision.
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F IGURE 7 Visualization of segmentation results produced by hybrid-feature cross fusion network (HFCF-Net) and its variants. From left to
right: (a) computed tomography (CT) images, (b) ground truth and segmentation results produced by (c) HFCF-Net, (d) HFCF-Net without
context fusion, and (e) HFCF-Net without both fusion

3.4 Effectiveness of 2D and 3D subnets

In the 2D subnet, we introduced aggregate interaction
modules and Res2net modules to capture rich multi-
scale information. In the 3D subnet, we improved the
original 3D U-net to be a lightweight backbone with two
important aspects, that is, adjusting the convolutional
kernel number and inserting a DilRes block. To con-
firm the effectiveness of these designs, we conducted

ablation experiments with different configurations for 2D
and 3D subnets.

First, the proposed 2D subnet was compared with
three networks (i.e., the network without AIM, the one
without Res2Net, and the baseline network without both
modules),as shown in Table 4.Compared with the base-
line network, the introduction of both modules can both
help the 2D subnet achieve better performance. In terms
of the Dice indicator, using the Res2Net alone improved
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TABLE 4 Quantitative evaluation results of aggregate interaction module (AIM) and Res2Net blocks

Network AIM Res2Net Dice IoU HD95 Sen Spe

Baseline × × 0.6124 0.4512 3.3811 0.7653 0.9967

2D subnet × √ 0.6271 0.4692 3.2852 0.7709 0.9967

2D subnet √ × 0.6237 0.4592 3.2295 0.7790 0.9966

2D subnet √ √ 0.6379 0.4736 3.1780 0.7802 0.9965

Abbreviations: Dice, Dice similarity coefficient; HD95, 95th percentile of Hausdorff distance; IoU, intersection over union; Sen, sensitivity; Spe, specificity.
The bold values means the best performance.

TABLE 5 Quantitative evaluation results of filter number reduction and dilated residual (DilRes) block

Network
Filter
reduction

DilRes
block Dice IoU HD95 Sen Spe FLOPs Param

Baseline × × 0.6858 0.5407 3.7606 0.8109 0.9975 1.895T 16.320M

3D subnet √ × 0 .6679 0.5248 4.2179 0.7688 0.9980 1.560T 5.70M

3D subnet √ √ 0.7087 0.5567 3.5191 0.8278 0.9978 1.582T 11.012M

Abbreviations:Dice,Dice similarity coefficient;FLOPs,floating point operations;HD95,95th percentile of Hausdorff distance;IoU,intersection over union;Sen,sensitivity;
Spe, specificity; Param, parameter number.
The bold values means the best performance.

TABLE 6 Results of ablation experiments with different loss functions

Lreweighted-Dice Lbce

Adaptive
strategy Dice IoU HD95 Sen Spe

× √ × 0.7308 0.5822 3.7189 0.7964 0.9982

√ × × 0.7370 0.5985 3.5077 0.8097 0.9981

√ √ × 0 .7422 0.6034 3.3632 0.8243 0.9990

√ √ √ 0.7485 0.6068 3.1764 0.8358 0.9990

Abbreviations: Dice, Dice similarity coefficient; HD95, 95th percentile of Hausdorff distance; IoU, intersection over union; Sen, sensitivity; Spe, specificity.
The bold values means the best performance.

the score by 1.47%, and using the AIM module alone
improved it by 1.13%. When combining both modules,
the 2D subnet earned a considerable improvement of
2.55% compared to the baseline network.

Second, the proposed 3D subnet was compared with
the baseline network without filter number adjustment
and the DilRes block, and the 3D subnet with only filter
number adjustment, as shown in Table 5. It shows that
when reducing the filter number, the 3D subnet obtained
a worse segmentation result compared to the base-
line network. Then with the adding of the DilRes block,
the 3D subnet improved the Dice by 2.29%, and also
reduced the computation and parameter number com-
pared to the baseline network.

3.5 Effectiveness of imbalance-robust
adaptive learning loss

To alleviate the imbalance problem,HFCF-Net proposed
a new loss function that combined both the BCE func-
tion and reweighted Dice loss function, accompanied by
an adaptive learning strategy. We conducted ablation
experiments to quantitatively investigate the impact of
the loss function and adaptive learning strategy. Table 6

shows the evaluation results with different loss func-
tions. For the BCE function Lbce, the specificity is 0.01%
higher than that of the reweighted Dice loss function
Lreweighted−Dice, but the sensitivity is 1.33% lower than
that of Lreweighted−Dice. It confirms that when the num-
ber of lesion pixels is far less than that of background
pixels, Lbce made the prediction more biased toward the
background, and Lreweighted−Dice can effectively improve
the performance degradation caused by this imbalance.
Compared to only using Lbce, using both loss func-
tions (Lbce and Lreweighted−Dice) improved the Dice score
by 1.14%, the specificity by 0.08%, and the sensitiv-
ity by 1.79%. Finally, when combined with the adaptive
learning strategy, the entire proposed network further
achieved a Dice score of 74.85% and a sensitivity of
83.58%.

Figure 8 shows the validation Dice curves of the
2D subnet, 3D subnet, and our HFCF-Net. Obviously,
the 2D subnet had a faster convergency speed but a
lower accuracy than the 3D subnet. The HCHF-Net
had a convergency speed similar to the 2D subnet
but reached a higher accuracy than the 3D subnet.
It demonstrates that ensembling both subnets and
incorporating feature interaction can help the network
promote the effectiveness and efficiency of training.
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F IGURE 8 Validation Dice curves of our hybrid-feature cross
fusion network (HFCF-Net) versus the 2D subnet and 3D subnet
within 20k iterations

4 DISCUSSION

4.1 Brief summary and result analysis

Automatic lung lesion segmentation plays an essen-
tial role in clinical diagnosis to help doctors implement
follow-up treatment. In this study, we propose an end-to-
end COVID-19 lesion segmentation network that inno-
vatively combines 2D and 3D networks to take their
advantages to complement each other by fusing hybrid
features in turn. We conduct extensive experiments to
validate the effectiveness of our network. Compared
with existing studies, the proposed HFCF-Net not only
learns the feature representations of the intra-slice
lesions via 2D multi-scale subnet, but also explores the
inter-slice contextual information via 3D lightweight sub-
net, outperforming other state-of -the-art networks on
the segmentation of lesions with different scales and
shapes.

To better understand the performance improvement,
we combine experimental results with clinical practice
to analyze the efficacy of our network. The most com-
monly used clinical data are 3D volume data, such as
CT and magnetic resonance imaging. The reason may
be that 3D data contains more information than 2D data,
which is more conducive to analyzing pathological fea-
tures. In the diagnosis process, doctors often need to
observe many consecutive slices to get the final diagno-
sis results. Otherwise, if doctors only observe a single
slice image, it is easy to cause doctors to misdiagnose.

Our experimental results also indicate that 2D net-
works often mistakenly identify some small lesion
regions as normal tissues since some lesions with low
contrast often appear grayish-white and look very similar
to normal tissues in the lung. But in the 3D case, the 3D
networks can determine whether low contrast regions
belonging to the lesions are true lesions based on the
adjacent slices, as the lesions usually only occupy a
small number of slices,while normal tissues run through

the entire lung. Meanwhile, with the supplement of the
consistent information between slices, the 3D networks
can also improve the segmentation of some lesions with
fuzzy boundaries.

Therefore, the performance gains are mainly con-
tributed to the improvement of segmentation results
of small lesions and fuzzy boundaries. Once the seg-
mentation performance of these two types of objects
is improved, the overall segmentation accuracy can be
increased by a great margin.

4.2 Applying segmentation network to
non-COVID cases

Extensive experiments have been conducted to confirm
the superior performance of our network in terms of
COVID cases. To verify whether our HFCF-Net can be
employed in clinical practice, we evaluated our network
and other competitive networks on the normal cases
and common pneumonia (CP) cases of the Covid-19-
CT dataset,41 which are constructed from cohorts from
the China Consortium of Chest CT Image Investigation.
Since non-COVID data do not contain any COVID-19
lesion annotations, conventional segmentation metrics
cannot be used to evaluate these networks. Therefore,
we adopted the pixel accuracy (PA) and area under the
receiver operating characteristic curve (AUC) to assess
the segmentation performance of the compared net-
works on non-COVID data. PA is a metric to explicitly
gauge segmentation accuracy by calculating the pro-
portion of correctly predicted pixels in the segmentation
maps. AUC is used to implicitly measure the ability of
segmentation networks to extract discriminative COVID-
19 features. To calculate the AUC value, we employed a
pre-trained COVID-19 classification network42 to gener-
ate the class probability (normal and COVID) of the lung
lesion maps produced by the compared segmentation
networks on non-COVID data.

We selected some competitive 2D and 3D networks,
that is, Inf -Net, COPLE-Net, Eff -Net, and ConResNet, to
perform the segmentation experiments on non-COVID
data. Considering that the previous 2D networks may
produce a higher false-positive rate when facing non-
COVID data, we retrained 2D networks with all slices
of data to conduct a comprehensive comparison, and
these networks were denoted as Inf -Netʹ, COPLE-Netʹ,
Eff -Netʹ.

The quantitative results listed in Table 7 shows that
our network yielded relatively high performance. The PA
of CP and normal cases, and AUC are 0.9993, 0.9997,
and 0.8038, respectively. Our network obtained the best
value among all networks in terms of the PA of CP
cases and outperformed most compared networks in
terms of the PA of normal cases.Since the PA values of
all networks are relatively close, the performance differ-
ence among networks cannot be clearly reflected. The
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TABLE 7 Comparison of segmentation results on non-COVID
cases

Pixel
accuracy
(CP)

Pixel
accuracy
(normal)

Diagnosis
AUC

COPLE-Net11 0.9913 0.9992 0.7839

Inf -Net17 0.9919 0.9995 0.6646

Eff -Net20 0.9925 0.9992 0.6120

COPLE-Netʹ11 0.9939 0.9998 0.7817

Inf -Netʹ17 0.9945 0.9997 0.7533

Eff -Netʹ20 0.9960 0.9995 0.7028

ConResNet
(3D)14

0.9924 0.9998 0.7958

U-Net (3D)39 0.9989 0.9992 0.7587

HFCF-Net 0.9993 0.9997 0.8038

Abbreviations: AUC, area under the receiver operating characteristic curve; CP,
common pneumonia; HFCF-Net, hybrid-feature cross fusion network.
The bold values means the best performance.

AUC metric can effectively evaluate segmentation per-
formance of each network. Compared with other net-
works, the AUC value of our HFCF-Net is the highest. It
reveals the superiority of our network in the exploration
of discriminative COVID-19 lesion features. Figure 9
visualized the distribution of segmentation results of all
the compared networks. In contrast to other networks,
our network offered a great advantage in identifying true
COVID-19 lesion pixels.

In addition, as can be seen from Figure 9, when seg-
menting the CT image of a normal person, 3D networks
would generate fewer wrongly classified pixels than 2D
networks, thus achieving better segmentation results.
This phenomenon is more apparent when we segment
CT images of patients with pneumonia, since the image
of the pneumonia cases contains much more noise than
that of the normal ones.If there is no contextual informa-
tion, the 2D networks would easily misjudge the lesion of
pneumonia as the COVID lesion.The results also reveal
that the retrained networks with all slices perform bet-
ter than the networks trained with only lesion slices in
segmenting non-COVID data. As shown in Figure 9, the
false-positive rate of new 2D networks is much lower
than that of previous 2D networks.

To conclude,although both quantitative and qualitative
comparison results demonstrate the effectiveness of the
proposed HFCF-Net in the segmentation task of non-
COVID data, there is still room for improvement in our
network. We will investigate a classification network to
judge whether suspicious lesions are normal tissues for
alleviating the false-positive rate in our future work.

4.3 Application and limitation

In clinical practice,our segmentation network could com-
bine quantitative analysis tools with user interactive

display interfaces to build an interactive diagnostic sys-
tem that can help doctors diagnose illness more quickly.
According to the anti-epidemic situation in many nations,
the detection speed of RT-PCR is significantly behind
the increasing rate of suspicious cases during the epi-
demic breakout stage. Our segmentation network is
intended to assist clinicians in serving as an effective
screening tool to reduce patient wait times and shorten
diagnostic workflow times, thus lowering radiologists’
overall workload and allowing them to respond swiftly
in emergencies. On the other hand, RT-PCR detection
is unable to diagnose the severity of a patient’s dis-
ease. Therefore, the integrated segmentation and anal-
ysis system can play a crucial role.

Regardless of whether people are confirmed to be
COVID-19 pneumonia by RT-PCR or not, CT imaging
can evaluate the lung condition for them. The lesion
segmentation system can assist in locating suspicious
lesions and performing additional pathological data
analysis for the probable lesions so that doctors can
make a definitive diagnosis. Furthermore, the system
could assess the severity of patients diagnosed with
COVID-19 pneumonia so that doctors can formulate
reasonable treatment plans for them. In addition, if peo-
ple do not receive nucleic acid testing or have not got the
results yet, the system can check their CT scans to dis-
cover suspicious lesions,as extensive experiments have
proved the accurate performance of our network in the
segmentation task of CT scans without lesions.

Although our work has achieved outstanding results
in lesion segmentation, the current network still has
some limitations. First, our segmentation network only
considered the COVID-19 lesions and may not perform
well when dealing with CT images with non-COVID dis-
eases. In real life, patients may have various lung dis-
eases, such as CP. The non-COVID diseases will be
taken into account in our follow-up work as well.Second,
even if some data augmentation techniques were used
to expand the sample number, such as random trans-
formations, there still exists the risk of overfitting. For
supervised image segmentation, the effectiveness of a
network is largely determined by the training on a sig-
nificant amount of annotated data. However, due to
the complexity and time-consuming of annotating data,
there are currently few publicly accessible datasets with
a large number of annotated images. In the future,
we will focus on the weakly supervised and unsuper-
vised image segmentation to tackle the problem of less
labeled data.

Furthermore, since the hospitals use different scan-
ners with varied parameters to generate CT images,
these data often have inconsistent distributions, such as
variations in appearance, as seen in Figure 10. It could
cause the networks to overfit on the training datasets
and lack generalization ability on the unseen testing
datasets, thereby degrading the segmentation perfor-
mance and bringing challenges to the clinical application
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F IGURE 9 Visualization of segmentation results obtained by different networks on some non-COVID cases. From top to down: I and II are
normal people’s maps, and III and IV are common pneumonia patients’ maps. From left to right: 3D segmentation results of (a) hybrid-feature
cross fusion network (HFCF-Net) and (b) ConResNet, and 2D segmentation results of (c) Inf -Netʹ, (d) COPLE-Netʹ, (e) Inf -Net, and (f)
COPLE-Net

F IGURE 10 Heterogeneity between data from different hospitals
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of our network. Applying domain adaptation techniques
for reducing the heterogeneity of the multi-center data
could be another research direction to further improve
the clinical segmentation performance of the networks.

5 CONCLUSION

In this paper, we proposed an end-to-end HFCF-Net
for COVID-19 lung lesion segmentation in CT volume
data. It first explored abundant information between and
within slices, followed by the effective cross fusion of
hybrid features to jointly optimize 2D and 3D branches
for achieving competitive performance. To better train
the proposed network, we designed a novel loss func-
tion with an adaptive learning strategy to effectively
tackle the imbalance problem between the proportions
of lesion and non-lesion voxels. The proposed net-
work innovatively utilized the advantages that 2D sub-
net requires less computation overhead and 3D subnet
contains rich spatial information. Extensive experiments
conducted on the publicly available dataset have proved
that the proposed network reached the segmentation
performance of 74.85% on the Dice score, superior to
the state-of -the-art networks. The visual comparison of
segmentation performance also demonstrates that our
network outperformed the other networks.
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