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Abstract. Cedrela odorata L. is a native plant of the Amazon 
region. The bark is used in folk remedies for the treatment 
of diarrhea, vomiting, fever and inflammation. Atopic 
dermatitis (AD) is a chronic, relapsing inflammatory skin 
disease accompanied by itching. It is a complex disease 
involving environmental factors and genetic factors. In the 
present study, the anti‑inflammatory and anti‑allergic effects 
of C. odorata L. methanol extract (COEE) on tumor necrosis 
factor (TNF)-α and interferon (IFN)-γ-stimulated HaCaT 
keratinocyte cells were investigated. ELISA and RT-PCR 
analysis revealed that the extract had anti‑inflammatory effects, 
and reduced the interleukin (IL)-6 and IL-8 levels of the 
HaCaT cells. In addition, COEE exhibited anti-allergic effects, 
comprising a reduction in the thymus and activation-regulated 
chemokine and macrophage-derived chemokine levels. In 
addition, pathway analysis and comparison with Bay11-7082 
indicated that these effects are due to the inhibition of nuclear 
factor (NF)-κB in TNF-α/IFN-γ-induced HaCaT cells. 
Therefore, the results of the present study suggest that COEE 
has anti‑inflammatory and anti‑allergic properties in TNF‑α 
and IFN-γ-stimulated HaCaT cells, which are associated with 
the inhibition of pro‑inflammatory cytokines and chemokines 
via the NF-κB pathway.

Introduction

Atopic dermatitis (AD) is caused by a disturbance of the 
immune system. Therefore, to treat AD, it is necessary to 
normalize the immune system in addition to treating the 
external skin manifestations (1-3). Characteristic symptoms 
of AD are pruritus, pus, erythema and chronic skin bacterial 
infection. Skin barrier defects are recognized as one of the 
most important features of AD (4-6). The abnormal differ-
entiation of skin epithelial cells causes skin barrier defects. 
These defects enable the infiltration of allergens, which induce 
an inflammatory reaction and systemic immunological reac-
tion. These skin barrier defects are usually caused by genetic 
and acquired factors (7,8).

Keratinocytes are keratin-producing epidermal cells, 
which account for ~90% of epidermal cells (9,10). The main 
function of the epidermis is to provide a barrier that protects 
the human body from environmental factors, including 
pathogens, heat, ultraviolet rays and moisture loss. Thymic 
stromal lymphopoietin (TSLP) present in keratinocytes 
stimulates dendritic cells to increase the production of 
thymus and activation-regulated chemokine [TARC; also 
known as chemokine (C-C motif) ligand 17, CCL17] and 
macrophage-derived chemokine (MDC; also known as 
CCL22) (11,12). TARC and MDC are typical type 2 helper 
T cell (Th2 cell)-secreted chemokines that induce Th2 cell 
recruitment at inflammatory sites (13). High concentrations 
of TARC, MDC and TSLP have been detected in patients 
with AD (14). These biomarkers are known to be very closely 
associated with atopic disease (15,16).

Cedrela odorata L. is a plant of the genus Cedrela and 
is distributed across tropical climate regions, such as the 
Amazon (17,18). Its wood is mainly used as raw material for 
household furniture or musical instruments (19). Traditionally, 
C. odorata L. has been utilized in folk remedies for diarrhea, 
fever, inflammation, vomiting, hemorrhage, and indiges-
tion (20,21). However, since there is no literature regarding this 
plant in relation to inflammation or AD, it was investigated in 
the present study. The aim of the study was to examine the 
biochemical activity of C. odorata L. ethanol extract (COEE) 
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using HaCaT cells induced with a mixture of tumor necrosis 
factor (TNF)-α and interferon (IFN)-γ.

Materials and methods

Preparation of COEE. The leaves and shoots of C. odorata L. 
were collected in Palo Verde National Park, Costa Rica, in 
2014. A voucher specimen (KRIB 0056657) has been depos-
ited at the International Biological Material Research Center 
(IBMRC) in the Korea Research Institute of Bioscience and 
Biotechnology (Daejeon, South Korea). The dried and refined 
leaves and shoots of C. odorata (100 g) were extracted with 
700 ml 95% ethanol for 2 h, three times. The extract was 
percolated through filter paper (3 mm; Whatman PLC, 
Kent, UK), condensed using a rotary evaporator (Büchi AG, 
Flawil, Switzerland) and lyophilized using a freeze dryer 
(Martin Christ Gefriertrocknungsanlagen, Osterode am Harz, 
Germany).

Cell culture. The human keratinocyte HaCaT cell line 
was purchased from the American Tissue Culture Center 
(Manassas, VA, USA). Cells were cultured in Dulbecco's 
modified Eagle's medium (DMEM; Gibco; Thermo Fisher 
Scientific, Inc. Waltham, MA, USA) containing 10% fetal 
bovine serum (Gibco; Thermo Fisher Scientific, Inc.) and 1% 
penicillin-streptomycin, and maintained using an incubator 
at temperature 37˚C with a 5% CO2 atmosphere while main-
taining a confluency of 60‑80%.

MTT assay. Cell viability was measured using the 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 
(MTT) assay. HaCaT cells were seeded in 96-well plates (SPL 
Life Sciences, Pocheon, Korea) at a density of 1x104 cells/well. 
After 6 h of incubation, COEE (1.25, 2.5, 5, 10 and 20 µg/ml) 
was administered and the cells were incubated for 24 h at 
37˚C. Untreated cells were defined as the control group. Next, 
5 µl MTT solution (5 mg/ml; Amresco, LLC, Solon, OH, 
USA) was added to the cell supernatant, and the mixture was 
incubated for 4 h at 37˚C. After removing the medium, DMSO 
was added to dissolve the formazan. A microplate reader was 
used to measure the absorbance at 570 nm, and the untreated 
formazan value was set at 100%.

Cytokine assay. HaCaT cells were cultured in 96-well plates 
at a density of 5x104 cells/well. After an incubation for 6 h at 
37˚C, COEE (2.5, 5, 10 and 20 µg/ml) and Bay11‑7082 (5 µM) 
were administered. TNF-α/IFN-γ (10 ng/ml of each; TNF-α 
cat. no. 300-01A; IFN-γ cat. no. 300-02; PeproTech, Inc., 
Rocky Hill, NJ, USA) was applied 1 h later. The next day, the 
supernatant was harvested. The inhibitory effect of COEE on 
the secretion of interleukin (IL)-6, IL-8, TARC and MDC into 
the supernatants was evaluated using the following ELISA 
kits: IL-6 (cat. no. 555220; BD Biosciences, Santa Clara, CA, 
USA), IL-8 (cat. no. DY208), TARC (cat. no. DY364) and 
MDC (cat. no. DY336; all R&D Systems, Inc., Minneapolis, 
MN, USA). Samples were analyzed according to the manufac-
turer's protocol.

RT‑PCR analysis. Total RNA was extracted from the 
cells using TRIzol® reagent (Invitrogen, Thermo Fisher 

Scientific, Inc.). Following isolation of the RNA, cDNA 
synthesis was performed using a QuantiTect Reverse 
Transcription kit (cat. no. 205310; Qiagen GmbH, Hilden, 
Germany). RNA, gDNA Wipeout Buffer and RNase-free 
water were mixed and incubated at 42˚C for 2 min. Then, 
Quantiscript Reverse Transcriptase, Quantiscript RT 
Buffer and RT River Mix were mix with the aforemen-
tioned reagents and incubated at 42˚C for 15 min. Finally, 
the mixture was incubated at 95˚C for 3 min to inactivate 
Quantiscript Reverse Transcriptase. The synthesized cDNA 
was amplified by PCR using a GoTaq® Green Master mix 
(Promega Corporation, Madison, WI, USA) with 11 pmol of 
each primer. The sequences of the RT-PCR primers used in 
the present study are listed in Table I. β-actin was used as 
the reference gene. The thermocycling conditions were as 
follows: Pre‑denaturation at 94˚C for 5 min, then 25 cycles 
of denaturation at 94˚C for 20 sec, annealing at 56˚C for 
20 sec and extension at 72˚C for 45 sec. The reaction prod-
ucts were separated by electrophoresis on a 1.5% agarose gel 
and stained with RedSafe™ kits (Intron Biotechnology, Inc., 
Seongnam, Korea). Images were captured using an Olympus 
C4000 zoom camera system (Olympus Corporation). The 
densitometry of the bands were measured using ImageJ 1.50i 
software (National Institutes of Health, Bethesda, MD, USA).

Immunoblotting. Immunoblotting of the cells was performed 
as previously described (22). The HaCaT cells were pre-treated 
with the indicated concentrations of COEE (2.5, 5. 10 and 
20 µg/ml) for 1 h and stimulated with TNF-α/IFN-γ (10 ng/ml 
each) for 20 min at 37˚C. Immunoblots were created using 
anti-nuclear factor (NF)-κB p65 (cat. no. sc-8242; Santa Cruz 
Biotechnology, Inc., Dallas, TX, USA), anti-phospho-NF-κB 
inhibitor α (anti-p-IκBα; cat. no. 2859), anti-IκB-α (cat. 
no. 9242), anti-NF-κB p-p65 (cat. no. 3033) and anti-β-actin 
(cat. no. 4967; all 1:1,000; all from Cell Signaling Technology, 
Inc., Danvers, MA, USA). The secondary antibodies were 
horseradish peroxidase-conjugated goat anti-rabbit IgG 
(cat. no. sc-2030; 1:5,000 in 5% skimmed milk; Santa Cruz 
Biotechnology, Inc.). The densitometry of the bands were 
measured using ImageJ 1.50i software.

Luciferase assay. HaCaT cells were transfected with 0.1 µg 
pGL4.32 (luc2P/NF-κB-RE/Hygro) plasmids (Promega 
Corporation), using Lipofectamine 2000 transfection reagent 
(Invitrogen; Thermo Fisher Scientific, Inc.) according 
to the manufacturer's protocol. At 24 h after transfec-
tion, the cells were pretreated with COEE (2.5, 5, 10 and 
20 µg/ml) and Bay11‑7082 (5 µM) for 1 h at 37˚C, stimulated 
with TNF-α/IFN-γ for 20 h at 37˚C, harvested and then 
assessed for luc2P luciferase activity using the ONE-Glo™ 
luciferase reporter assay system (Promega Corporation) 
according to the manufacturer's instructions. Normalization 
was performed by comparison with Renilla luciferase activity.

Statistical analysis. Data are presented as the mean ± SEM. 
Statistical differences among groups were determined by 
one-way ANOVA with repeated measures followed by 
Newman-Keuls testing using SPSS version 14.0 software 
(IBM Corp., Armonk, NY, USA). P<0.05 was considered to 
indicate a statistically significant difference.
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Results

Cytotoxic effects of COEE in HaCaT cells. Whether COEE 
affects the viability of HaCaT cells was analyzed using the 
MTT assay. As shown in Fig. 1, COEE did not exhibit cyto-
toxicity and did not affect cell viability even when used at 
a high concentration of 20 µg/ml for 24 h. This confirmed 
experimentally that COEE does not exhibit toxicity in HaCaT 
cells at concentrations ≤20 µg/ml.

COEE inhibits TNF‑α/IFN‑γ‑induced IL‑6 and IL‑8 
expression in HaCaT cells. Next, ELISA and RT-PCR 
assays were used to study the inhibitory effect of COEE on 
the production of IL-6 and IL-8 in HaCaT cells stimulated 
with TNF-α/IFN-γ. The RT‑PCR results confirmed that the 
levels of IL‑6 and IL‑8 were significantly increased in the 
group treated with TNF-α/IFN-γ compared with those in the 
untreated group. Similarly, when TNF-α/IFN-γ was added 
after the introduction of COEE to HaCaT cells, the mRNA 
expression levels of IL-6 and IL-8 decreased in an apparently 
concentration-dependent manner compared with those in the 

group treated with TNF-α/IFN-γ without COEE (Fig. 2A). 
Furthermore, the ELISA results demonstrated that COEE 
inhibited the expression of the IL-6 and IL-8 proteins in 
HaCaT cells stimulated with TNF-α/IFN-γ compared 
with those in the cells treated with TNF-α/IFN-γ without 
COEE (Fig. 2B and C).

COEE inhibits TNF‑α/IFN‑γ‑induced TARC/CCL17 and 
MDC/CCL22 expression in HaCaT cells. Chemokines are 
significant mediators of the inflammatory reaction and 
immune response. Exposure of keratinocytes to TNF-α/IFN-γ 
induces the increased expression of chemokines, leading to 
the infiltration of leukocytes into inflammatory lesions in the 
skin (23,24). In the present study, ELISA and RT-PCR were 
used to investigate the suppressive effect of COEE on TARC 
and MDC production in TNF-α/IFN-γ-stimulated HaCaT 
cells. The RT‑PCR results confirmed that TARC and MDC 
mRNA levels were significantly increased in the cells treated 
with TNF-α/IFN-γ compared with those in the untreated 
group. Similarly, when TNF-α/IFN-γ was added after the 
application of COEE to the HaCaT cells, the mRNA expression 
levels of TARC and MDC decreased compared with those in 
the group treated with TNF-α/IFN-γ without COEE, and the 
reduction appeared to be concentration-dependent (Fig. 3A). 
Furthermore, the ELISA results indicated that COEE inhibited 
the expression of the TARC and MDC proteins in HaCaT cells 
induced with TNF-α/IFN-γ (Fig. 3B and C).

COEE inhibits the phosphorylation of NF‑κB p65 in HaCaT 
cells. The nuclear factor NF-κB signaling pathway is consid-
ered a prototypical pro‑inflammatory pathway, mainly due 
to the role of NF-κB in the expression of pro‑inflammatory 
genes, for example, adhesion molecules, chemokines and 
cytokines (25). Therefore, NF-κB p65 phosphorylation in 
TNF-α/IFN-γ-treated HaCaT cells was analyzed in the 
present study. The western blotting results indicated that the 
phosphorylation of IκBα and NF-κB p65 was significantly 
increased by TNF-α/IFN-γ-treatment, whereas pretreatment 
with COEE attenuated the TNF-α/IFN-γ-induced increase in 
p-IκBα and p-p65 levels (Fig. 4).

Table I. Sequences of the reverse transcription PCR primers used in the current study.

Gene Direction Primer sequences (human; 5'-3') Fragment size (bp)

TARC Forward CAC GCA GCT CGA GGG ACC AAT GTG 222
 Reverse TCA AGA CCT CTC AAG GCT TTG CAG G
MDC Forward AGG ACA GAG CAT GGC TCG CCT ACA GA 362
 Reverse TAA TGG CAG GGA GGT AGG GCT CCT GA
IL-6 Forward GAC AGC CAC TCA CCT CTT CA 124
 Reverse AGT GCC TCT TTGCTG CTT TC
IL-8 Forward ATG ACT TCC AAG CTG GCC GTG GCT 299
 Reverse TTA TGA ATT CTC AGC CCT CTT CAA AAA
β-actin  Forward CAT GTA CGT TGC TAT CCA GGC 250
 Reverse CTC CTT AAT GTC ACG CAC GAT

IL, interleukin; TARC, thymus and activation-regulated chemokine; MDC, macrophage-derived chemokine.

Figure 1. Cytotoxicity of COEE to HaCaT cells. Cells were seeded in 96-well 
plates and treated with COEE (1.25, 2.5, 5, 10 and 20 µg/ml) for 24 h. Cell 
viability was assessed using the MTT assay. COEE, Cedrela odorata L. 
ethanol extract.
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Figure 2. Effect of COEE on the expression of cytokines by HaCaT cells. HaCaT cells were pretreated with COEE (2.5, 5, 10 and 20 µg/ml) and then induced 
with TNF-α (10 ng/ml)/IFN-γ (10 ng/ml) for 24 h. (A) IL-6 and IL-8 mRNA expression by HaCaT cells, as detected by RT-PCR. (B) IL-6 and (C) IL-8 
expression levels in the culture supernatants of cells treated with COEE and TNF-α/IFN-γ for 24 h, as detected by ELISA. Each bar represents the mean 
of three independent experiments. Data are presented as the mean values ± SEM of three samples. #P<0.01 vs. the untreated control; *P<0.05, **P<0.01 and 
***P<0.001 vs. the TNF-α/IFN-γ group. COEE, Cedrela odorata L. ethanol extract; IL, interleukin; TNF, tumor necrosis factor; IFN, interferon.

Figure 3. COEE affects the expression of chemokines by HaCaT cells. The inhibitory effects of COEE on TNF-α/IFN-γ‑induced pro‑inflammatory chemo-
kine production by HaCaT cells were investigated. HaCaT keratinocytes were pretreated with COEE (2.5, 5, 10 and 20 µg/ml) and stimulated with TNF-α 
(10 ng/ml)/IFN-γ (10 ng/ml) for 24 h. (A) TARC and MDC mRNA expression in HaCaT cells, as detected using RT-PCR. (B) TARC and (C) MDC levels were 
measured by ELISA in the culture supernatants of cells treated with COEE and TNF-α/IFN-γ for 24 h. Each bar represents the mean of three independent 
experiments. Data are presented as the mean values ± SEM of three samples. #P<0.01 vs. the untreated control. *P<0.05, **P<0.01 and ***P<0.001 vs. the 
TNF-α/IFN-γ group. COEE, Cedrela odorata L. ethanol extract; TNF, tumor necrosis factor; IFN, interferon; TARC, thymus and activation-regulated chemo-
kine; MDC, macrophage-derived chemokine.
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COEE and Bay11‑7082 inhibit the phosphorylation of 
NF‑κB in HaCaT cells. Bay11-7082 inhibits IκBα phosphory-
lation in cells and has been used to indicate the involvement 
of the canonical IκB kinases and NF-κB in mechanistic 
analysis (26). A comparative experiment was conducted in 
the present study, in which the efficacy of COEE (20 µg/ml) 
was compared with that of Bay11-7082 (5 µM) in the inhi-
bition of NF-κB p65. Phosphorylation of IκBα and NF-κB 
p65 was significantly increased by TNF‑α/IFN-γ-treatment, 
while pretreatment with COEE and Bay11-7082 decreased 
the levels of p-p65 and p-IκBα in TNF-α/IFN-γ-treated 
HaCaT cells, as indicated by the results of immunoblotting 
and the luciferase assay (Fig. 5).

COEE and Bay11‑7082 inhibit the expression of chemokines 
and cytokines in HaCaT cells. Using ELISA and RT-PCR, the 
suppressive effects of COEE and Bay11-7082 on TARC, MDC, 
IL-6 and IL-8 production in HaCaT cells stimulated with 
TNF-α/IFN-γ were investigated. The results confirmed that 
the levels of TARC, MDC, IL‑6 and IL‑8 were significantly 
increased in the group treated with TNF-α/IFN-γ compared 
with those in the untreated group. However, when TNF-α/IFN-γ 
was added after the introduction of COEE and Bay11-7082 
to the HaCaT cells, the mRNA and protein expression levels 
of TARC, MDC, IL-6 and IL-8 decreased in an apparently 
concentration-dependent manner compared with those in the 
group treated with TNF-α/IFN-γ without COEE (Fig. 6).

Figure 4. Effect of COEE on TNF-α/IFN-γ-induced NF-κB activation in HaCaT cells. (A) Phosphorylation of p65 and IκBα was analyzed by western blotting. 
(B) HaCaT cells were transfected with the expression vector luciferase reporter plasmid (0.1 µg). At 24 h after transfection, HaCaT cells were treated with 
COEE for 1 h, and the luc2P/Renilla luciferase activity was then measured. All data represent three independent experiments. Data are presented as the mean 
values ± SEM of three samples. #P<0.01 vs. the untreated control. *P<0.05, **P<0.01 and ***P<0.001 vs. the TNF-α/IFN-γ group. COEE, Cedrela odorata L. 
ethanol extract; TNF, tumor necrosis factor; IFN, interferon; NF-κB, nuclear factor-κB; p65, NF-κB subunit p65; p, phospho; IFN, interferon; IκBα, NF-κB 
inhibitor α.

Figure 5. Effect of COEE and Bay11-7082 on TNF-α/IFN-γ-induced NF-κB activation in HaCaT cells. (A) Phosphorylation of p65 and IκBα was analyzed by 
western blotting. (B) HaCaT cells were transfected wih the luciferase reporter plasmid (0.1 µg). At 24 h after transfection, HaCaT cells were treated with COEE 
and Bay11-7082 for 1 h, and the luc2P/Renilla luciferase activity was then measured. All data represent three independent experiments. Data are presented 
as the mean values ± SEM of three samples. #P<0.01 vs. the negative control. *P<0.05 and **P<0.01 vs. the TNF-α/IFN-γ group. COEE, Cedrela odorata L. 
ethanol extract; TNF, tumor necrosis factor; IFN, interferon; NF-κB, nuclear factor-κB; p65, NF-κB subunit p65; p, phospho; IκBα, NF-κB inhibitor α.
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Discussion

AD, also known as eczema, is a common chronic inflammatory 
skin disease and is characterized by the infiltration of inflam-
matory cells into the skin (27). Although AD is generally 
treated with immunosuppressive drugs and anti‑inflammatory 
drugs, these treatments are often ineffective (28). This may 
cause patients to use alternative treatment strategies, including 
traditional plant-based remedies.

In the present study, in vitro experiments were conducted 
to determine the effects of COEE on pro-inflammatory 
chemokine secretion in keratinocytes. Keratinocytes serve a 
crucial role in inflammatory skin disorders via the production 
of pro‑inflammatory cytokines and chemokines (29). These 
cells participate in the pathogenesis of AD by secreting various 
chemokines, among which TARC and MDC selectively attract 
Th2 cells that are predominant in atopic inflammation (30). 
IL‑8 amplifies the inflammatory response in AD by recruiting 
neutrophils into the skin lesions (31). Numerous researchers 
have reported that TNF-α/IFN-γ treatment increases chemo-
kine production in keratinocytes (32,33). The TNF-α/IFN-γ 
combination activates several intracellular pathways, including 
NF-κB pathways (34,35). NF-κB pathways have been shown 
to be involved in the regulation of chemokine and cytokine 
production in keratinocyte cells; they serve a significant 
role in the immune response and regulate inflammatory 
signaling (36,37). Therefore, experiments to investigate the 
effect of COEE on the TNF-α/IFN-γ-stimulated expression of 
MDC and TARC in HaCaT cells were conducted in the present 
study.

The NF-κB family includes critical transcription factors that 
are activated by various stimuli, including TNF-α, IFN-γ, IL-1 
and lipopolysaccharide. Upon stimulation, NF-κB complexes 
in the cytoplasm translocate into the nucleus, where they 
participate in the expression of numerous pro‑inflammatory 

genes (22). NF-κB signaling pathways have been shown to be 
involved in the regulation of TARC and MDC production in 
HaCaT cells (38). Furthermore, the promoters of TARC and 
MDC both contain NF-κB-binding sites (39), indicating that 
these transcription factors may be involved in the modulation 
of TARC and MDC (38). In the present study, the results indi-
cated that COEE suppressed signaling pathways leading to the 
activation of TARC and MDC by NF-κB.

Treatment with COEE or the IκBα inhibitor Bay11-7082 
reduced the TNF-α/IFN-γ‑activated expression of pro‑inflam-
matory cytokines (IL-6 and IL-8) and chemokines (TARC and 
MDC) to baseline values. These results indicate that COEE 
reduces the production of the pro‑inflammatory cytokines 
IL-6 and IL-8, and the expression of the Th2 chemokines 
TARC and MDC in HaCaT cells via inhibition of NF-κB 
pathways in HaCaT cells. These effects are hypothesized to 
be closely associated with the suppression of NF-κB activa-
tion. Therefore, it is suggested that COEE has the potential to 
be used as a therapeutic drug for the treatment of AD.

In conclusion, the results of the present study indicate that 
COEE inhibits the TNF-α/IFN-γ-stimulated expression of 
TARC and MDC in HaCaT cells via the inhibition of NF-κB 
pathways. The ability of COEE to suppress the formation of 
these Th2 chemokines suggests that it may be able to inhibit 
the infiltration of Th2 cells into skin lesions and thereby reduce 
skin inflammation. Further investigation of the mechanism by 
which COEE inhibits the release of these Th2 chemokines 
may provide insights helpful in the design of targeted treat-
ments for AD. However, additional studies using in vivo skin 
inflammation models are required to support the potential of 
COEE in the clinical treatment of AD.
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