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Abstract

A good-based model, the central neurobiological model of economic decision-making,

proposes that the orbitofrontal cortex (OFC) represents binary choice outcome, that

is, the chosen good. A good is defined by a group of determinants characterizing the

conditions in which the commodity is offered, including commodity type, cost, risk,

time delay, and ambiguity. Previous studies have found that the OFC represents the

binary choice outcome in decision-making tasks involving commodity type, cost, risk,

and delay. Real-life decisions are often complex and involve uncertainty, rewards,

and penalties; however, whether the OFC represents binary choice outcomes in a

complex decision-making situation, for example, Iowa gambling task (IGT), remains

unclear. Here, we propose that the OFC represents binary choice outcome, that is,

advantageous choice versus disadvantageous choice, in the IGT. We propose two

hypotheses: first, the activity pattern in the human OFC represents an advantageous

choice; and second, choice induces an OFC-related functional network. Using func-

tional magnetic resonance imaging and advanced machine-learning tools, we found

that the OFC represented an advantageous choice in the IGT. The OFC representa-

tion of advantageous choice was related to decision-making performance. Choice

modulated the functional connectivity between the OFC and the superior medial

gyrus. In conclusion, the OFC represents an advantageous choice during the IGT. In

the framework of a good-based model, the results extend the role of the OFC to

complex decision-making situation when making a binary choice.
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1 | INTRODUCTION

The identified neurobiological mechanism underlying economic

decision-making includes a valuation stage and a choice stage (Hunt

et al., 2014; Kable & Glimcher, 2009; Rodriguez et al., 2014). Decision

makers evaluate the subjective values and characteristics of available

options in the valuation stage. However, encoding subjective value

and characteristics is not sufficient for making decisions, and one of

the available options still needs to be chosen by decision makers at

the choice stage (Hunt et al., 2014; Kable & Glimcher, 2009;

Rodriguez et al., 2014). At this stage, a good-based model, a central

neurobiological model of economic decision-making, proposes that

the orbitofrontal cortex (OFC) represents the binary choice outcome,

that is, the chosen good (Padoa-Schioppa, 2011). A good is defined by

a group of determinants characterizing the conditions in which the

commodity is offered, which can include commodity type, time delay,

cost, risk, and ambiguity (Padoa-Schioppa, 2011).

Consistent with a good-based model, previous studies have found

that the OFC represents the binary choice outcome in juice-choice

tasks (Padoa-Schioppa & Assad, 2006) and decision-making tasks

involving costs (Cai & Padoa-Schioppa, 2019), risks (Raghuraman &

Padoa-Schioppa, 2014), and delays (Chen et al., 2019). For example,

different OFC neurons respond when a monkey chooses between dif-

ferent juice types (Padoa-Schioppa & Assad, 2006). Some OFC neuro-

nal responses in monkeys encode choosing a high-cost option versus

choosing a low-cost option (Cai & Padoa-Schioppa, 2019). Some other

OFC neurons in monkeys encode choosing a risky option versus

choosing a nonrisky option (Raghuraman & Padoa-Schioppa, 2014).

The OFC activity pattern in the human brain can classify choosing

smaller-but-immediate options versus choosing larger-but-delayed

options (Chen et al., 2019). Animal studies with OFC lesion and

reversible inactivation have been implicated in risky decision-making

in animals (Rivalan et al., 2011; St Onge & Floresco, 2010; Zeeb &

Winstanley, 2011, 2013). However, real-life decisions are often com-

plex and involve uncertainty, rewards, and penalties.

The inability to make choices in a complex decision-making situa-

tion, for example, Iowa gambling task (IGT), is a symptom of several

brain disorders, including borderline personality disorder (Linhartová

et al., 2020), attention-deficit/hyperactivity disorder (Linhartová

et al., 2020), anorexia nervosa (Verharen et al., 2019), addiction

(Kluwe-Schiavon et al., 2020), obsessive-compulsive disorder (Nisticò

et al., 2021), and schizophrenia (Betz et al., 2019). In the IGT, reward

value is a key decision-making parameter (Bechara et al., 1997).

Whether the OFC represents a binary choice outcome in the IGT,

advantageous choice (i.e., choosing an option with a high reward

value) versus disadvantageous choice (i.e., choosing an option with a

low reward value), remains unclear. The meaning of OFC representing

an advantageous choice in the IGT means that activity pattern in the

OFC differed between advantageous and disadvantageous choices in

the IGT.

It is worth noting that the OFC represents a cytoarchitectonic

and functionally heterogeneous region (Rolls, 2021; Wallis, 2011). The

medial OFC includes architectonic areas 13 and 11 and the lateral

OFC includes architectonic area 12 (Rolls, 2021). The medial OFC has

functional connectivity with the parahippocampal gyrus, the hippo-

campus, the insula, the cingulate cortex, the temporal gyrus, and the

fusiform gyrus; while the lateral OFC has functional connectivity with

the inferior frontal gyrus, the angular gyrus, and supramarginal gyrus

(Du et al., 2020). Direct connections have been studied with diffusion

tractography imaging (Heather Hsu et al., 2020). Specifically, the

medial OFC has direct connections with the pregenual and subgenual

parts of the anterior cingulate cortex. The lateral OFC has direct con-

nections with the supracallosal anterior cingulate cortex, the inferior

parietal cortex, the supramarginal gyrus, and some premotor cortical

areas. Although both medial and lateral OFC have been involved in

subjective value (Lopez-Persem et al., 2020; Suzuki et al., 2017), only

the lateral OFC represents the elemental nutritive attributes of food

(Suzuki et al., 2017). Rolls (2021) has reviewed that the human medial

OFC represents reward value, and the lateral OFC represents punish-

ments and nonreward (Rolls, 2021). Stalnaker et al. (2015) have

reviewed a number of ideas about OFC functions, such as cognitive

map, value, credit assignment, prediction errors, somatic markers, and

response inhibition (Stalnaker et al., 2015). Recently, the OFC has

been considered to be required for representing task structure (Zhou

et al., 2021).

A line of studies has implicated the OFC at the valuation stage,

that is, evaluating available options such as the value (Ballesta

et al., 2020; Malvaez et al., 2019; Stuphorn, 2020; Yamada

et al., 2018), risk (Burke & Tobler, 2011; Orsini et al., 2015; Payzan-

LeNestour et al., 2013; Preuschoff et al., 2008), ambiguity (Hsu

et al., 2005; Levy et al., 2010), and environmental statistics (Vertechi

et al., 2020). For example, Hare et al. (2009) and Kable and

Glimcher (2007) reported that OFC activity was correlated with high

values versus low values. Kahnt (2018) has shown that the OFC repre-

sents the value of rewards independent of reward category and

reward identity (Kahnt, 2018). Moreover, dopamine D2-receptor
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blockade enhances decoding of reward in the OFC (Kahnt

et al., 2015). Both Bartra et al. (2013) and Clithero and Rangel (2014)

have shown that the OFC is a key brain area related to high subjective

values versus low subjective values of different types of rewards using

meta-analysis. Some studies have also investigated the neural basis of

high ambiguity versus low ambiguity in complex decision-making. For

example, Levy et al. (2010) showed that OFC activity is correlated

with ambiguity level. Hsu et al. (2005) also revealed that the OFC

showed greater activation in response to the level of ambiguity.

Therefore, these studies have implicated the OFC in evaluating risk,

ambiguity, and value.

A good-based model has proposed the OFC represents the choice

in economic decision-making. Studies have shown that the OFC rep-

resents the choice in a juice-choice task (Padoa-Schioppa &

Assad, 2006), decision-making tasks involving costs (Cai & Padoa-

Schioppa, 2019), risks (Raghuraman & Padoa-Schioppa, 2014), and

delays (Chen et al., 2019). However, several neurobiological studies

investigated advantageous versus disadvantageous choice in the IGT

and showed that blood oxygenation level-dependent (BOLD) activa-

tion using individual voxel-based methods in the OFC was not signifi-

cantly associated with advantageous choice versus disadvantageous

choice (Brevers et al., 2016; Christakou et al., 2009; Ding et al., 2017;

Fukui et al., 2005; Jollant et al., 2010; Lawrence et al., 2009; Lin

et al., 2008; Ma et al., 2015; Power et al., 2012; Tanabe et al., 2007;

Werner et al., 2013). For example, Brevers et al. (2016) did not find

any advantageous choice-related activation in the OFC in healthy

controls or poker gamblers in the IGT.

The finding that the OFC was not implicated in advantageous

choice versus disadvantageous choice in the IGT in these studies

may be explained by the complex neurobiological architecture of

the OFC. The firing of neurons in the OFC shows a heterogeneous

relationship to reward parameters (Kahnt, 2018). Both decreasing

and increasing responses to increases in reward value, size, and

probability have been observed in the rodent and primate prefrontal

cortex (Kennerley et al., 2009; Padoa-Schioppa & Assad, 2006;

Schoenbaum et al., 1998). These “increasing” and “decreasing” neu-

rons are not large-scale clustering in the OFC (Morrison &

Salzman, 2011). This heterogeneous coding of reward may average

out the signal of interest in individual fMRI voxels (Kennerley

et al., 2009). Unlike the individual voxel-based method, the

multivoxel pattern analysis (MVPA) can identify brain regions where

overlapping neuronal populations encode the same event with

opposite encoding schemes (Kahnt, 2018). For example, Kahnt

et al. (2015) have used both MVPA and individual voxel-based

methods to detect the effects of amisulpride on the OFC and found

that the amisulpride changed activity pattern in the OFC without

changing the mean signal between conditions (Kahnt et al., 2015).

Moreover, multiple voxels activity pattern in the OFC represents

delayed choice versus immediate choice in decision-making involv-

ing delays (Chen et al., 2019). Thus, we hypothesized that multiple

voxels activity pattern in the OFC, especially medial OFC, would

represent advantageous choice versus disadvantageous choice in

the IGT.

Studies have shown that the superior medial gyrus is signifi-

cantly activated during the contrast disadvantageous choice versus

advantageous choices in the IGT (Ding et al., 2017; Fukui

et al., 2005; Lawrence et al., 2009) and that the superior medial

gyrus is also significantly activated during the contrast difficult deci-

sions versus easy decisions in the delay discounting task (Zha

et al., 2022). Moreover, the OFC shows functional connectivity with

the superior medial gyrus in a decision-making task involving risk

(McCormick & Telzer, 2017). We, therefore, hypothesized that the

OFC would be functionally connected with the superior medial

gyrus for choice.

2 | MATERIALS AND METHODS

2.1 | Participants

Fifty-five healthy participants were recruited in the study, and one

participant was excluded after presenting with significant head motion

(>3.0 mm) during functional magnetic resonance imaging (fMRI) scan-

ning. The remaining 54 participants included 45 males and nine

females (age: mean, 22.7 years; standard deviation (SD), 2.1 years;

range, 19–27 years; education: mean, 16.3 years; SD, 1.8 years; range,

13–19 years). All participants recruited in the present research were

right-handed. All participants were free of psychiatric or neurological

history and had normal or corrected-to-normal vision. The study was

approved by the Human Research Ethics Committee of the University

of Science and Technology of China. The methods and procedures

used in this study were carried out in accordance with the approved

guidelines. Written informed consent was obtained from all partici-

pants before the study, consistent with the Declaration of Helsinki

guidelines.

2.2 | Task paradigm

In the present study, we used the IGT (Bechara et al., 1997; Figure 1),

a popular decision-making task for indexing real-life complex decision-

F IGURE 1 Experimental paradigm of the Iowa gambling task.
Experimental paradigm of the Iowa gambling task. There were two
phases for each trial. Four decks were presented in the first phase.
Participants selected a card within 4 s in this phase (selection phase,
4 s); then, the outcome, including gain and loss, was presented in the
second phase (feedback phase, 1 s)
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making. In each trial, the participants selected a card from among four

decks of cards. The four decks were labeled A, B, C, and D as pres-

ented from left to right. For each participant, deck A, B, C, and D

could be chosen by button press from the left middle finger, left index

finger, right index finger, and right middle finger, respectively. On each

card, there were different numbers of gain and possible loss points,

and the participant received the net (gain–loss) points for choosing

that card. Participants did not know the expected reward and variabil-

ity in the outcomes for all decks before engaging in the task. In the

task, the participants were asked to maximize the points they gained.

Specifically, for each selection from deck A or B (“low reward value

decks”), participants would gain 100 points, but the losses were orga-

nized so that over 10 selections from the decks, the participants

would have an overall loss of 250 points. Specifically, deck A provided

�150, �200, �250, �300, and �350 (loss) points every 10 selections,

whereas deck B provided �1250 (loss) points in one out of 10 selec-

tions. For each selection from deck C or D (“high reward value

decks”), the participants would win 50 points, and the losses were

organized so that if participants made over 10 selections from these

decks, they would obtain an overall profit of 250 points. The two

decks differed in the frequency and magnitude of the punishment.

Similar to the previous two decks, deck C provided �25, �40, �50,

�60, and �75 (loss) points every 10 selections, whereas deck D pro-

vided �250 (loss) points once every 10 selections. Decks A and B had

negative reward expectations and were operationally defined as hav-

ing a low reward value. In contrast, decks C and D had positive reward

expectations and were defined as having a high reward value. There-

fore, choosing decks C and D was an advantageous choice, and choos-

ing decks A and B was a disadvantageous choice. Similar to previous

studies (Wang et al., 2017; Wei et al., 2018), the IGT was extended to

180 trials from the original 100 trials to facilitate rule learning

(Bechara et al., 1997). The IGT consisted of three scan runs, with three

blocks for each scan run and 20 trials for each block. The participants

who had positive net winnings at the end of the task would obtain

extra money (10¥/1000 points). The final net winnings were defined

as the total score.

2.3 | Behavioral analysis—Reinforcement learning
model

This procedure followed that of a previous study (Wei et al., 2018).

The reinforcement learning model (Behrens et al., 2007) was adapted

to analyze the behavioral data. Reward prediction errors (RPEs) were

included in the model, according to the suggestion by Sutton and

Barto (1998). An RPE (δt) was defined as the difference between the

actual reward rt and the predicted reward bvt at trial t. The formula for

this definition was as follows:

δt ¼ rt�bvt: ð1Þ

The RPE was used to update reward prediction in the model using

the following formula:

bvtþ1 ¼bvtþα �δt: ð2Þ

where α is the learning rate for the RPE in the update formula

(Behrens et al., 2007). Then, maximum likelihood estimation (MLE)

was adopted to estimate the learning rate based on the samples. Here,

πit was defined as the probability of choice i at trial t. We transformed

the data with an exponential function when we calculated the value

of πit using the following formula:

πit ¼ ebvitPn
j¼1e

bvjt : ð3Þ

The learning rate was estimated separately by maximizing the

likelihood function for each participant:

Maximumlog� likelihood¼max
XM
t¼1

logπit ,t ð4Þ

where it represents the deck selected at trial t, it � 1,2,3,4f g, and πit ,t

represents the probability of selecting deck it at trial t.

Cohen's d values were calculated via G*Power 3.1 software (Faul

et al., 2007). We calculated the total net good decks, which was the

number of advantageous choices minus the number of disadvanta-

geous choices in 180 trials.

2.4 | fMRI data acquisition and preprocessing

Gradient echo-planar imaging data were acquired using a 3.0T,

8-channel head coil Trio scanner (Siemens Medical Solution, Erlangen,

Germany) with a circularly polarized head coil in Hefei. We restrained

head motion with foam padding. A T2*-weighted echo-planar imaging

sequence (FOV = 240 mm, TE = 30 ms, TR = 2000 ms, flip

angle = 85� matrix = 64 � 64) with 33 axial slices (no gaps, 3.7 mm

thick) covering the whole brain was used to acquire the functional MR

images. There were three runs of IGT, each of which contained

210 epochs. Furthermore, high-resolution T1-weighted spin-echo

imaging data (1 mm isotropic voxel) were also acquired for anatomical

overlay.

We preprocessed the imaging following the workflows proposed

in a previous article (Esteban et al., 2019). All functional MR images

were preprocessed using Analysis of Functional Neuroimages (Version

AFNI_18.2.03) software (Cox, 1996). All fMRI data were corrected for

temporal shifts between slices and motion and grand-mean scaled.

We used rigid-body transformations to calculate the head motion in

the IGT task during fMRI data. This method assumes that the size and

shape of the registered images are the same and only differ in transla-

tions along the x, y, and z axes, and three rotation angles (roll, pitch,

and yaw). The motion correction was performed by AFNI's 3dvolreg

(Cox, 1996). Low-frequency signal drifts were filtered using a cutoff

of 128 s. Volumes meeting the following criteria were removed: trans-

lation >0.3 mm or rotation >0.3� between consecutive volumes (Rose

et al., 2012). Siegel et al. (2014) have shown that motion censoring
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performed well in general linear models with HRF response shapes

and have concluded that motion censoring improves the quality of

task-based fMRI data and can be a valuable data processing procedure

in task-based fMRI studies (Siegel et al., 2014). This motion censoring

procedure has been popularly used in studies with task-based fMRI

data to mitigate motion effects (Kirwan et al., 2009; Rose et al., 2012;

Stark et al., 2010). For each run, we dropped the first two volumes to

enhance stability. Linear regression was also performed to remove lin-

ear trends. All functional volumes were non-linearly transformed to

MNI space (resampled voxel size: 4 � 4 � 4 mm3) according to the

spatial transformation between the anatomical data and the MNI

space. Volumes were spatially smoothed with a Gaussian kernel

(full-width at half-maximum = 8 mm) and were used for general

linear model and psycho-physiological interaction (PPI) analysis.

Unsmoothed data were used for MVPA.

2.5 | General linear model for value signals

To illustrate the neural activations of the values, including RPE, gain,

loss, and reward predictions for the four decks, a general linear model

was used to examine the BOLD signals in which brain regions were

correlated with these values. The general linear model was run for

each value and included (1) an interest regressor, that is, one-value

regressor, defined as RPE, gain, loss, or reward prediction for the four

decks during the epochs when feedback was presented and 0 for

other epochs, and (2) six noninterest regressors for head motion. We

specified seven first level models, including one for RPE, one for gain,

one for loss, one for reward prediction for deck A, one for reward pre-

diction for deck B, one for reward prediction for deck C, and one for

reward prediction for deck D. The value regressors were convolved

with a canonical hemodynamic response function. On the first level

model for RPE, for example, we set all feedback after deck selection

as a regressor in the GLM design matrix. Then we conducted a para-

metric modulation analysis that consider corresponding RPE for each

trial as another regressor in the design matrix to examine which

regions encode the RPE. Then, the RPE regressor was convolved with

a canonical hemodynamic response function. The RPE regressor and

six noninterest regressors for head motion were simultaneously

regressed against the blood oxygenation level-dependent signal in

each voxel. Then, the parameter estimates were extracted for each

value and for each participant. We performed a group-level one-

sample t test for parameter estimates using family-wise error correc-

tion. Specifically, we used the convention that group-level results

should survive at an uncorrected p value of .001, at the voxel level.

Then we reported those clusters with a family-wise error corrected

for multiple comparison p value of less than .05. We used the empiri-

cal, spatial autocorrelation function to estimate the smoothness and

used AFNI's 3dClustSim to run a Monte Carlo simulation with 10,000

iterations in a whole-brain mask (Cox et al., 2017; Eklund et al., 2016).

We performed additional group-level one-sample t test with sex as

covariates for parameter estimates for value signals in the general lin-

ear model.

2.6 | Whole brain searchlight-based MVPA

We first used whole-brain searchlight-based MVPA to classify

advantageous choice versus disadvantageous choice. We adapted

the within-subject MVPA methods from a previous study (Zha

et al., 2019). Specifically, we used the least squares-separate (LSS)

method to extract choice-related activations according to a previous

study (Mumford et al., 2012). LSS is the most effective method to

estimate choice activation (Mumford et al., 2012) and has been

widely used in the field (Corradi-Dell'Acqua et al., 2016; Piva

et al., 2019; Zha et al., 2019). According to the LSS method, a gen-

eral linear model was used to extract activation for each choice.

The general linear model was estimated for concatenated three IGT

task runs. There were 180 choices, C1…180, including advantageous

choices and disadvantageous choices, for each participant. A general

linear model was run for each choice. For the ith choice, Ci, the gen-

eral linear model included two choice regressors. The first was the

choice regressor of interest. During a trial with choice Ci, this regres-

sor was defined as 1 during the epoch when a button press was made

in the selection phase and 0 for the other epochs; during trials with

choices C1…i�1,iþ1…180, this regressor was defined as 0 for all epochs.

The other was the choice regressor of nuisance. During a trial with

choice Ci , this regressor was defined as 0 for all epochs; during trials

with choices C1…i�1,iþ1…180, this regressor was defined as 1 during the

epoch when a button press was made in the selection phase and 0 for

the other epochs. The choice regressor of interest and choice regres-

sor of nuisance were convolved with a canonical hemodynamic

response function. The value of β for the choice regressor of interest

in the general linear model was the activation for choice Ci. The gen-

eral linear model was repeated 180 times to extract activations for

180 choices for each participant. The general linear model was per-

formed using MATLAB's regstats function (MATLAB v2019a,

Mathworks Inc., Natick, MA).

We implemented two steps to control the effects of values,

as choices can be expected to be related to value signals, includ-

ing RPE, gain, loss, and reward predictions for the four decks. For

step 1, we used the Gram–Schmidt orthogonalization algorithm to

orthogonalize choices and values before implementing the general

linear model (Chen, 2021; Pine et al., 2009). Specifically, we

orthogonalized choice and RPE, gain, loss, and reward predictions

for the four decks. For step 2, the orthogonalized choice regressor

of interest, the orthogonalized choice regressor of nuisance, the

regressors for RPE, gain, loss, and reward predictions for the four

decks (those defined as RPE, gain, loss, or reward predictions for

the four decks during the epochs when feedback was presented

and 0 for the other epochs), and six regressors of no interest for

head motion were included in each general linear model. We

extracted β, the activation of the orthogonalized choice regressor

of interest, for each voxel in the whole brain in each general linear

model. The extracted activations were grouped into two catego-

ries according to the choice type, that is, advantageous choice

versus disadvantageous choice, for each voxel and for each

participant.
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We performed whole-brain searchlight-based MVPA that did not

depend on a priori assumptions but searched for predictive informa-

tion across the whole brain. For each voxel vi, considering the local

patterns that contained the spatial correlation that might decode

advantageous choice versus disadvantageous choice, we constructed

a spherical collection of voxels (SI…N), with 33 voxels (Kriegeskorte

et al., 2006) centered on voxel vi. For each voxel S1…Nð Þ in the fixed

spherical cluster, we extracted the parameter estimation (β value for

the choice trial) separately for advantageous and disadvantageous

choice trials. This generated two N-dimensional pattern vectors,

namely βa,1…N
� �

and βd,1…N
� �

, representing the local response patterns

in the spherical cluster in trials in which the participants chose

between advantageous options and disadvantageous options. Both

βa,1…N
� �

and βd,1…N
� �

were normalized to the range from 0 to 1 to give

all voxels equal importance during classifier training (Linn et al., 2016;

Peng et al., 2013) and subsequently were used as input to a subject-

wise linear support vector classification decoding analysis described

below. The support vector classification was performed with a default

cost parameter c = 1. The decoding accuracy of the central voxel vi

was acquired by five-fold cross-validation. The implementation of the

support vector machine and cross-validation were based on sklearn.

svm.SVC in Python's scikit-learn toolbox (version 0.21.2; Pedregosa

et al., 2011). During training and testing of the classification model,

random undersampling was used to handle the imbalance in samples

between advantageous choice and disadvantageous choice. For exam-

ple, if the number of advantageous choices was larger than that of dis-

advantageous choices, advantageous choices were removed randomly

to make the numbers the same as the disadvantageous choices by the

numpy.random.shuffle function in Python (version 3.6.8). Equal num-

bers of both choices were labeled the original data sample, which was

then randomly partitioned into five equal sized subsamples for five-

fold cross-validation. Three-voxel size spheres, that is, 123 voxels

(Kriegeskorte et al., 2006), for the searchlight-based analysis was run

to complement findings from the 33 voxels sphere. A leave-one-run-

out cross-validation was used to complement a five-fold cross-

validation procedure for the searchlight-based prediction analysis. The

same procedure was performed for each voxel over the whole brain

for each participant. The whole-brain decoding accuracy was normal-

ized by subtracting the mean of the whole-brain accuracy for each

participant.

We performed a group-level one-sample t test for whole-brain

searchlight-based MVPA for decoding accuracy using family-wise

error correction. We performed additional group-level one-sample

t test with sex as covariates for decoding accuracy in the whole-brain

searchlight-based MVPA.

As a control analysis, we also tested whether choice-related acti-

vations were correlated with value signals, that is, RPE, gain, loss, and

reward predictions for the four decks using both whole brain analysis

and region of interest (ROI) analysis. Specifically, the extracted activa-

tions in the general linear model were grouped into two categories

according to the median split of the values of the trials, that is, high

and low subgroups for RPE, gain, loss, and reward predictions for the

four decks for each participant. We tested whether these subgroups

showed differences for RPE, reward predictions for the four decks,

gain, and loss separately using paired t test in the whole brain with

family-wise error correction. We further included the left and right

OFC ROIs from the Anatomical Automatic Labeling atlas (AAL2; Rolls

et al., 2015). The left OFC ROI included OFCmed_L, OFCant_L,

OFCpost_L, and OFClat_L and the right OFC ROI included

OFCmed_R, OFCant_R, OFCpost_R, and OFClat_R. The extracted

activations for values above were averaged in the left and right OFC

ROIs separately, then, were fed into group comparisons using the

t test with Bonferroni correction to correct for multiple comparisons,

as we performed seven tests for values signals.

2.7 | ROI-based MVPA

We further tested whether the OFC represented choice, that is,

advantageous choices versus disadvantageous choices, using ROI-

based MVPA. First, we included OFC ROIs from the AAL2 that

showed overlapping areas with the peak voxel for significant clusters

in the whole-brain searchlight-based MVPA. We also used the peak

coordinates from the whole-brain MVPA to generate a spheric ROI

with a radius of 8 mm to complement results. Second, we extracted

the activations associated with each choice for each OFC ROI. Activa-

tions were also normalized to the range from 0 to 1 for advantageous

choice and disadvantageous choice separately (Linn et al., 2016; Peng

et al., 2013). The decoding accuracy for each OFC ROI was acquired

by five-fold cross-validation.

We tested whether the decoding accuracy was greater than

chance level (0.5) for each OFC ROI using a one-sample t test. We

tested whether the decoding accuracy was correlated with the learn-

ing rate, total score, and total net good decks using Pearson

correlations.

To test whether the signal-to-noise ratio (SNR) affected the

decoding results, Pearson correlations between the SNR and decoding

accuracy for each ROI were determined.

2.8 | PPI analysis

To investigate whether the functional connectivity of the OFC identi-

fied in ROI-based MVPA differed between advantageous and disad-

vantageous choices, we ran PPI analysis. First, we created a “seed”
time series by extracting mean time courses for each OFC identified

in ROI-based MVPA. Second, we computed the interaction terms

between the “seed” and either the (1) advantageous choice regressor,

defined as 1 during the epoch when a button press was made and

0 for other epochs during trials with advantageous choice and as 0 for

all epochs during trials with disadvantageous choice or the (2) disad-

vantageous choice regressor, defined as 1 during the epoch when a

button press was made and 0 for other epochs during trials with dis-

advantageous choice and as 0 for all epochs during trials with advan-

tageous choice. Third, we estimated a PPI general linear model

including the following regressors: (1) the advantageous choice
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regressor, (2) the disadvantageous choice regressor, (3) the OFC seed

time course, (4) the interaction term between the “seed” and advanta-

geous choice regressor, defined as advantageous choice PPI, (5) the

interaction term between the “seed” and disadvantageous choice

regressor, defined as disadvantageous choice PPI, (6) seven value

regressors including RPE, gain, loss, and reward predictions for the

four decks, defined as RPE, gain, loss, or reward predictions for the

four decks, respectively, during the epochs when feedback was pres-

ented and 0 for the other epochs, and (7) six noninterest regressors

for head motion. The advantageous choice regressor, the disadvanta-

geous choice regressor, the interaction term between the “seed” and

advantageous choice, the interaction term between the “seed” and

disadvantageous choice, and seven value regressors were convolved

with a canonical hemodynamic response function. The PPI general lin-

ear model was performed using AFNI's 3dDeconvolve.

We computed the first level contrast for the disadvantageous

choice PPI β minus the advantageous choice PPI β. We performed a

one-sample t test to identify significant differences in the contrast to

identify PPI effects using family-wise error correction.

We also tested whether there were overlapping regions in the

brain among the whole-brain searchlight-based MVPA and PPI.

As a control analysis, we tested whether value signals modulated

OFC functional connectivity. To achieve this, we performed PPI analy-

sis for RPE, gain, loss, and reward predictions for the four decks sepa-

rately. The PPI general linear model included the following regressors:

(1) a value regressor, defined as RPE, gain, loss, or reward predictions

for the four decks during the epochs when feedback was presented

and 0 for other epochs, (2) the OFC seed time course, (3) the interac-

tion term between the “seed” and value regressor, defined as the

value PPI, and (4) six noninterest regressors for head motion. We

computed the first level contrast for PPI β values and performed a

one-sample t test to identify PPI effects using family-wise error cor-

rection. Therefore, we have run eight PPI analyses, including one

advantageous choice versus disadvantageous choice, one RPE, one

gain, one loss, one reward prediction for deck A, one reward predic-

tion for deck B, one reward prediction for deck C, and one reward

prediction for deck D. Thus, the PPI was prone to generate false posi-

tives. Gotts et al. (2021) have used a cluster-size correction to control

the Type I error rate in fMRI task-based functional connectivity ana-

lyses (Gotts et al., 2021). Specifically, the family-wise alpha for

multiple-comparisons correction was set at p <(.05/[number of

tests * number of seeds]) in order to correct for a number of tests as

well as a number of seeds, with the full FWE Type I error rate

controlled at p <.05. Thus, we used the same method to control the

Type I error rate: A number of tests were eight; thus, family-wise

alpha for multiple-comparisons correction was set at p <(.006/number

of seeds).

In the FWE correction, group-level results should survive at an

uncorrected p value of .001, at voxel level. Then we reported those

clusters with a family-wise error corrected for multiple comparison

p value of less than (.006/number of seeds). We used the empirical,

spatial autocorrelation function to estimate the smoothness and

used AFNI's 3dClustSim to run a Monte Carlo simulation with

10,000 iterations in a whole-brain mask (Cox et al., 2017; Eklund

et al., 2016).

3 | RESULTS

3.1 | Summary of behavioral performance in
the IGT

The participants' learning rate, response time, number of advanta-

geous choices, number of disadvantageous choices, total score, and

total net good decks are summarized in Table 1.

3.2 | BOLD activity in the OFC is correlated with
value signals

We found significant activations in the OFC, striatum, and posterior

cingulate cortex for value signals, including RPE, gain, loss (Figure 2

and Table 2), and reward predictions for the four decks (Figure S1 and

Table S1). Using the general linear model for value signals with sex as

covariates, we also found significant activations in the OFC, striatum,

and posterior cingulate cortex for value signals, including RPE, gain,

loss, and reward predictions for the four decks (Figures S2 and S3).

Therefore, the results are consistent with previous studies showing

that the OFC is implicated in value evaluation (Antony et al., 2021;

Tom et al., 2007; Wang et al., 2017).

3.3 | The OFC represents advantageous choice

As the OFC has been implicated in the representation of value signals,

we next examined whether the OFC represented advantageous

TABLE 1 Summary of behavioral
performance in the Iowa gambling task

Mean SD Min Max

Learning rate 0.152 0.119 0.012 0.605

Response time 0.655 0.240 0.273 1.424

The number of advantageous choices 136.426 20.752 83.000 168.000

The number of disadvantageous choices 43.574 20.752 12.000 97.000

Total score 5050.741 977.772 3075 6885

Total net good decks 92.852 41.503 �14.000 156.000
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choice while controlling for value effects. Using whole-brain

searchlight-based MVPA, we found that the activity pattern in the

OFC indeed represented advantageous choice (Figure 3a and

Table 3). A leave-one-run-out cross-validation revealed a consistent

result: The activity pattern in the OFC represented advantageous

choice (Figure S4a). A whole-brain searchlight-based MVPA with a

three-voxel size sphere revealed a consistent result: The activity pat-

tern in the OFC represented advantageous choice (Figure S4b). Using

whole-brain searchlight-based MVPA with sex as covariates, we also

found that the activity pattern in the OFC indeed represented advan-

tageous choice (Figure S4c). Whole-brain searchlight-based MVPA

also revealed that activity in the frontal regions and the parietal

regions represented advantageous choice (Figure 3a and Table 3);

thus, we replicated similar findings regarding the representation of

choice in the frontoparietal network from previous studies (Hunt

et al., 2014; Kable & Glimcher, 2009).

Are choice related activations in the OFC related to value signals?

We found that there were no significant activations in the OFC

between the high and low subgroups for RPE, gain, loss (Figure 3b–d,

and Table S3), or reward predictions for the four decks (Figure S5 and

Table S4). We further found that there were no significant differences

in the left or right OFC ROIs between the high and low subgroups for

RPE, gain, and loss (all ps >.35, corrected). The results suggest that

choice-related activations in the OFC for MVPA were not confounded

by value signals.

The peak voxels of significant clusters in thewhole-brain searchlight-

based MVPA showed an overlapping area with OFCmed_R in AAL2;

therefore, we further examined the choice representation in OFCmed_R

F IGURE 2 BOLD activity in
the OFC was correlated with
value signals. BOLD signals in the
OFC, striatum, and posterior
cingulate cortex were correlated
with value signals, including
(a) RPE, (b) gain, and (c) loss.
Family-wise error at a cluster-
level threshold of p <.05 (voxel-

level threshold of p <.001, voxel
size >13 for RPE, 33 for gain, and
19 for loss). N = 54
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using ROI-based MVPA. We found that OFCmed_R represented an

advantageous choice (t53 ¼7:770,p< :001,Cohen0sd¼1:057, 95%

confidence interval: [0.075, 0.126]) (Figure 4a). We found significant

correlations between the decoding accuracy and learning rate

(r¼ :559,p< :001,N¼54), total score (r¼ :357,p¼ :008,N¼54), and

total net good decks (r¼ :468,p< :001,N¼54; Figure 4b–d). The

decoding accuracy showed no significant correlations with the SNR

(r¼�:119,p¼ :390,N¼54) or censor rate (r¼ :071,p¼ :610,N¼54),

suggesting that the decoding accuracy was not explained by either of

these parameters. The peak coordinate from the whole-brain MVPA,

that is, (�14, �38, �20), was used to generate a spheric ROI with

radius 8mm. The ROI-based MVPA using this spheric ROI revealed a

consistent result: The activity pattern in the OFC represented advan-

tageous choice (t53 = 2.062, p <.041, Cohen's d = 0.281, 95% confi-

dence interval: [4.440e�04, 0.032]).

3.4 | Choice modulates OFC functional
connectivity with the superior medial gyrus

PPI analysis revealed greater OFC connectivity with the superior

medial gyrus when choosing disadvantageous options versus choosing

advantageous options (Figure 5a). Furthermore, the superior medial

gyrus showed an overlapping area with brain regions representing

advantageous choice revealed by whole-brain searchlight-based

MVPA (Figure 5b). As a control analysis, we tested whether value sig-

nals modulated OFC functional connectivity. We found that there

was no significant OFC functional connectivity in the whole brain for

RPE, gain, loss, or reward predictions for the four decks (Figure 5c),

suggesting that choice-modulated OFC functional connectivity was

not confounded by the value signals.

4 | DISCUSSION

Consistent with the proposal of a good-based model, the present

study demonstrates that the OFC represents advantageous choice,

which provides strong evidence to support the role of the OFC in

binary choice in the IGT. Furthermore, IGT behavioral performances

were correlated with the advantageous choice representation in the

OFC. Third, the functional connectivity between the OFC and supe-

rior medial gyrus supports choice.

4.1 | The OFC represents an advantageous choice
in the IGT

In the present study, we demonstrated that the OFC represents

binary choice in the IGT based on the distributed activity pattern.

These results are supported by neurobiological studies with human

(Bechara et al., 1997; Manes et al., 2002) as well as animal (Bradfield

et al., 2015; Stolyarova & Izquierdo, 2017) prefrontal lesions (including

in the OFC), consistently indicating that the OFC plays a necessary

role in decision-making when information is complex.

TABLE 2 Blood oxygenation level-dependent activity in the orbitofrontal cortex is correlated with the value signals

Brain regions Voxels xa y z

RPE Right inferior frontal gyrus 2450 �26 �22 +24

Left superior frontal gyrus 43 +22 �42 +48

Left superior frontal gyrus 37 +18 �62 +12

Right cerebellum 20 �42 +78 �36

Left cerebellum 19 +10 +46 �16

Gain Right lingual gyrus 11,827 �18 +90 �4

Left hippocampus 337 +26 +10 �16

Left mid orbital gyrus 301 +2 �54 �12

Right medial temporal pole 124 �50 �14 �28

Right Rolandic operculum 80 �42 +14 +20

Right SMA 75 �6 +10 +52

Right angular gyrus 42 �58 +66 +28

Loss Right insula lobe 4508 �34 �22 +0

Right inferior parietal lobule 3604 �42 +42 +48

Left paracentral lobule 531 +6 +30 +64

Left middle frontal gyrus 65 +50 �38 +20

Right cerebellum 28 �42 +82 �36

Left superior frontal gyrus 25 +18 �46 +48

aThe coordinates of the peak voxel are shown in MNI space (+ left, � right; + posterior, � anterior; + superior, � inferior). Family-wise error at a cluster-

level threshold of p < 0.05 (voxel-level threshold of p < 0.001, voxel size > 13 for RPE, 33 for gain, and 19 for loss). N = 54.
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Abnormal behavioral performance in the IGT has been implicated

in several brain disorders. For example, Linhartová et al. (2020) have

shown that attention-deficit/hyperactivity disorder shows significant

impairment in the IGT compared to healthy controls (Linhartová

et al., 2020). Yang et al. (2019) have shown decreased win and loss

feedback-elicited activations in the OFC in the attention-deficit/

hyperactivity disorder compared to healthy controls (Yang

et al., 2019). Using a univariate analysis, Norman et al. (2018) did not

show altered advantageous choice-elicited activations in the OFC

attention-deficit/hyperactivity disorder compared to healthy controls

(Norman et al., 2018). For cigarette smoking, Wei et al. (2018) have

shown that smokers have a low learning rate in the IGT compared to

healthy controls (Wei et al., 2018). Moreover, Wei et al. (2018) have

shown that the medial prefrontal cortex did not modulate RPE learn-

ing in smokers compared to healthy controls (Wei et al., 2018). Con-

sistent with the idea that the OFC represents a cytoarchitectonic and

functionally heterogeneous region (Rolls, 2021; Wallis, 2011), our

MVPA results may suggest that the multivariate activity pattern in the

OFC may be altered in the IGT advantageous choice for attention-

deficit/hyperactivity disorder and smokers.

F IGURE 3 The OFC
represents advantageous choice,
and choice-related activations in
the OFC are not correlated with
value signals. (a) Whole-brain
searchlight-based MVPA revealed
that the OFC represents choice.
Choice-related activations in the
OFC are not significantly

correlated with value signals,
including (b) RPE, (c) gain, or
(d) loss. R, right, L, left. Family-
wise error at a cluster-level
threshold of p <.05 (voxel-level
threshold of p <.001, voxel size
>4 for advantageous choice, 1 for
RPE, 3 for gain, and 2 for
loss). N = 54
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In the present study, significant clusters in the whole-brain

searchlight-based MVPA mainly included the medial part of the OFC

(see Section 3.3 and Figure 3a). Studies have shown a subjective value

role in the medial OFC (Clithero & Rangel, 2014; Levy &

Glimcher, 2012). Our findings suggest that the medial OFC can also

represent a choice role. The finding that both the overall value and

binary choice were represented in the medial OFC may suggest that

the medial OFC can compute the value and then form a choice in an

efficient way. There are many forms of economic decision-making.

Whether the choice role in the medial OFC could be generalized to

other forms of economic decision-making should be tested in

future work.

Furthermore, beyond the OFC, the frontoparietal network was

also implicated in choice in the present study, and the finding is

consistent with previous studies (Hunt et al., 2014; Kable &

Glimcher, 2009). Both the OFC and the frontoparietal network

represented choice in the present study; therefore, we expected to

find functional connectivity between the regions for choice.

Indeed, we identified a functional connectivity between the OFC

and the superior medial gyrus for choice, but not for values,

suggesting that the OFC is functionally coupled with the prefrontal

cortex when humans make choices. As the frontoparietal network

has been widely implicated various decision-making situations

(Hunt et al., 2014; Kable & Glimcher, 2009), the connectivity

between the OFC and the superior medial gyrus would be helpful

for choice under various decision-making contexts. We also found

that OFC activity is related to value signals, for example, RPE, gain,

and loss. Therefore, the finding that both choice and value were

represented in the OFC may make it easier for individuals to make

optimal choices with the help of frontoparietal network modulation

during difficult decision-making situations that lack sufficient

information.

Patients with insula lesion have shown poor IGT performance

(Bechara, 2004). Disadvantageous choice versus advantageous choice

activated the insula (Brevers et al., 2016; Lawrence et al., 2009).

Patients with temporal lobe resection, including temporal pole, show

impairments in the IGT performance compared to healthy controls

(Von Siebenthal et al., 2017). The middle temporal cortex has been

shown higher activation during disadvantageous choice versus advan-

tageous choice (Ma et al., 2015). Together, our finding that activity

pattern in the insula, as well as the temporal pole, represented an

advantageous choice in the IGT suggests an important role of the

insula and temporal pole in decision-making.

4.2 | A proposed role for the OFC: representation
of choice-related complex information along a
continuous spectrum

In the present study, the OFC was shown to represent advantageous

choice. This finding is supported by a recently proposed cognitive

map representing a state space (Wilson et al., 2014). In the context of

the cognitive map, the OFC is activated when the decision maker

becomes cognizant of unobservable information and makes a correct

choice; however, the OFC would not activate when the decision

maker is not cognizant of unobservable information and makes an

incorrect choice (Schuck et al., 2016).

Interestingly, in the present study, even though the participants

did not know the specific reward value for each deck, the OFC never-

theless represented advantageous choice. Integration of these find-

ings shows that exact knowledge of complex information is not

necessary for OFC activation. This may suggest that the OFC, in part,

could play a role in unconscious influences, for example, emotions, in

complex decision-making (Poppa & Bechara, 2018).

We found that decoding accuracy in the OFC correlated with

decision-making performance. We therefore propose a role for the

human OFC based on the cognitive map idea: the OFC may represent

choice-related complex information along a continuum, for example,

from a high decoding accuracy of advantageous choice if the decision

maker exactly knows the complex information to a low decoding

accuracy if they do not. Our proposal further predicts that the OFC

represents choice in choosing between other decision-making param-

eters, such as self-control and cost. This is important because humans

often face choices that have unknown costs for effort control. It is

beneficial to exert an appropriate level of effort for an appropriate

choice. The OFC seems to be a candidate for the brain region

TABLE 3 Brain regions including the orbitofrontal cortex that
represent advantageous choice

Brain regions Voxels xa y z

Right inferior occipital gyrus 497 �38 +82 �16

Right superior medial gyrus 157 �10 �66 +20

Left superior orbital gyrus 135 +14 �62 �8

Right superior orbital gyrus 130 �14 �38 �20

Left superior temporal gyrus 72 +54 +38 +20

Right middle temporal gyrus 59 �54 +38 +4

Left insula lobe 46 +42 �6 �12

Right paracentral lobule 45 �2 +38 +76

Right superior occipital gyrus 42 �30 +78 +40

Left inferior occipital gyrus 39 +46 +74 �8

Right temporal pole 36 �62 �2 +0

Right temporal pole 28 �54 �14 �16

Right angular gyrus 27 �50 +70 +36

Left superior parietal lobule 27 +22 +46 +64

Left superior parietal lobule 26 +30 +66 +64

Left inferior occipital gyrus 22 +18 +98 �8

Left temporal pole 20 +58 �10 �4

Left postcentral gyrus 20 +66 +14 +16

aThe coordinates of the peak voxel are shown in MNI space (+ left, �
right; + posterior, � anterior; + superior, � inferior). Family-wise error at

a cluster-level threshold of p < 0.05 (voxel-level threshold of p < 0.001,

voxel size > 4). This table only displays the brain regions that formed a

cluster of more than 20 voxels; all significant clusters are shown in

Supplementary Table 2. N = 54.
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used when making choices based on the aforementioned parameters

in a complex context; this hypothesis should be investigated in

future work.

In the present study, as shown in Figure 2, there was a big

engagement of the occipito-temporal cortex in the IGT. This is consis-

tent with findings in a previous study (Wang et al., 2017). Specifically,

Wang et al. (2017) have shown that the significant clusters for the

RPE as well as the reward predictions are very large. That big engage-

ment of the occipito-temporal cortex is implicated in RPE and reward

predictions in the IGT. A potential reason for clusters being large in

Wang et al. (2017) as well as in the present study is that a less strin-

gent voxel-level threshold was used in the FWE correction in both

studies. For example, we used p <.001 and Wang et al. (2017)

used p <.005.

Moreover, in the present study, we found that beyond striatum

and OFC, the occipito-temporal cortex was also activated for RPE in

the IGT. Previous studies have also shown a nonspecific cluster in the

IGT task during fMRI. Specifically, Wei et al. (2018) have shown that

numerous brain regions were involved in the significant clusters for

the RPE including the occipito-temporal cortex. Tanabe et al. (2013)

have also shown that activations in the temporal and occipital cortex

have been involved in RPE in the IGT. A potential reason for non-

specific cluster in Wei et al. (2018), Tanabe et al. (2013), and the pre-

sent study may be that the IGT is a complex task involving gain, loss,

and learning than a normal task with RPE, such as decision-making

involving risk. For example, Wang et al. (2017) have found that the

RPE activated more brain regions in the IGT than in the risky decision-

making task. More future work is needed to test this possibility.

Several shortcomings of the present study should be acknowl-

edged. First, few female participants were recruited in the present

study. We conducted ROI-based MVPA for males and females sepa-

rately to test whether females and males showed a difference in

decoding accuracy. We found consistent results (see Table S5)

between the sexes, suggesting that the percentage of females might

not influence our results. Future work should include more female

participants to substantiate our conclusion. Second, the IGT design

convolves decision-making with uncertainty with learning. Good

learning would presumably result in choosing from the high value

deck and not from the other decks and would also presumably result

in choosing from the high value deck more in the late IGT runs and

less in the early IGT runs. Therefore, a reasonable assumption would

be that changes in activation patterns between choosing high value

versus choosing low value may be due to differences in choice prob-

ability. However, the choice probability is related to reward predic-

tion, which we controlled for when we performed MVPA and PPI

analysis. We found that choice-related activations in the OFC could

represent choice in MVPA and that choice-related activations in the

OFC were not related to reward predictions. We also found that

choice, but not reward predictions, modulated OFC functional con-

nectivity with the superior medial gyrus in PPI analysis. Therefore,

F IGURE 4 The OFC represents an advantageous choice, and the OFC decoding accuracy is correlated with behavioral performances. (a) The
OFCmed_R region in AAL2 represents an advantageous choice. The OFCmed_R decoding accuracy was correlated with the (b) learning rate,
(c) total score, and (d) total net good decks in the IGT. The dashed line in the panels shows the chance level (0.5), and the dashed area in the
panels shows the 95% confidence interval. N = 54
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our results suggest that neither the choice probability nor the learn-

ing effect in the IGT confounds the decoding or PPI results in the

present study. Future work will require a complex decision-making

task without learning to substantiate our conclusion. Third, attention

modulates the value signal in the OFC (Xie et al., 2018), thus, a rea-

sonable assumption would be that choice-related signals in the OFC

may be confounded with attention. However, the OFC signal has

been related to value of attended option (Xie et al., 2018) and we

found that choice-related signals in the OFC were not related to all

value signals, including RPE, gain, loss, or reward predictions for the

four decks. Therefore, our results suggest that attention may not

confound the decoding or PPI results in the present study. Future

work will require a decision-making task with covert shift of atten-

tion to substantiate our conclusion. Fourth, the deck A and B were

presented in the left-hand side, and the deck C and D were pres-

ented in the right-hand side of the computer display. Thus, the

choice-related signals cannot be dissociated from spatial information

within each participant. However, findings that decoding accuracy in

the OFC were related to the behavioral performance in IGT,

suggesting that spatial information might not confound decoding

accuracy of choice in the present study.

5 | CONCLUSION

In conclusion, our results demonstrate that the OFC represents

advantageous choice in the IGT. Our data provide evidence to support

the integration of knowledge in the OFC to make choices in a complex

context, which may be helpful for survival. Decreased decoding accu-

racy in the OFC may be related to poor decision-making ability, and

these findings may provide potential insight into understanding impul-

sive behaviors.
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