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Introduction: MicroRNAs are small noncoding RNAs with potential regulatory roles in
hypertension and drug response. The presence of many of these RNAs in biofluids has
spurred investigation into their role as possible biomarkers for use in precision approaches
to healthcare. One of the major challenges in clinical translation of circulating miRNA
biomarkers is the limited replication across studies due to lack of standards for data
normalization techniques for array-based approaches and a lack of consensus on an
endogenous control normalizer for qPCR-based candidate miRNA profiling studies.

Methods:We conducted genome-wide profiling of 754 miRNAs in baseline plasma of 36
European American individuals with uncomplicated hypertension selected from the PEAR
clinical trial, who had been untreated for hypertension for at least one month prior to
sample collection. After appropriate quality control with amplification score and
missingness filters, we tested different normalization strategies such as normalization
with global mean of imputed and unimputed data, mean of restricted set of miRNAs,
quantile normalization, and endogenous control miRNA normalization to identify the
method that best reduces the technical/experimental variability in the data. We
identified best endogenous control candidates with expression pattern closest to the
mean miRNA expression in the sample, as well as by assessing their stability using a
combination of NormFinder, geNorm, Best Keeper and Delta Ct algorithms under the
Reffinder software. The suitability of the four best endogenous controls was validated in 50
hypertensive African Americans from the same trial with reverse-transcription–qPCR and
by evaluating their stability ranking in that cohort.

Results: Among the compared normalization strategies, quantile normalization and global
mean normalization performed better than others in terms of reducing the standard
deviation of miRNAs across samples in the array-based data. Among the four
strongest candidate miRNAs from our selection process (miR-223-3p, 19b, 106a, and
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126-5p), miR-223-3p and miR-126-5p were consistently expressed with the best stability
ranking in the validation cohort. Furthermore, the combination of miR-223-3p and 126-5p
showed better stability ranking when compared to single miRNAs.

Conclusion:We identified quantile normalization followed by global mean normalization to
be the best methods in reducing the variance in the data. We identified the combination of
miR-223-3p and 126-5p as potential endogenous control in studies of hypertension.

Keywords: hypertension, endogenous control, data normalization, plasma microRNA, circulating microRNA

INTRODUCTION

Hypertension (HTN) is a major public health burden, affecting
more than 1 billion individuals worldwide (World Health
Organization, 2021). It is a major yet modifiable risk factor for
myocardial infarction, stroke, heart failure, and kidney failure
(Kokubo and Iwashima, 2015). Most cases (95%) of HTN are
essential or primary or idiopathic HTN, where the underlying
cause is unknown (Jusic and Devaux, 2019). Essential HTN is a
complex and heterogenous phenotype involving several tissues
and pathways and exhibits large interpatient variability in the
pathophysiology and response to different therapeutic agents
(Nardin et al., 2018; Shih and O’Connor, 2008). Despite
extensive efforts to understand the pathogenesis of HTN, the
underlying cellular and molecular mechanisms remain largely
elusive.

MicroRNAs (miRNAs) are a subclass of noncoding RNAs that
act via sequence-specific interaction with messenger RNAs
(mRNAs), causing either degradation or translational
repression of target mRNA (Bartel, 2004). They are involved
in regulation of virtually all cellular functions, and their
deregulation is implicated in a variety of diseases like cancer
(Ratti et al., 2020) and cardiovascular diseases (Das et al., 2020)
including HTN (Shi et al., 2015). MiRNAs from different tissues
are often released into the circulatory system with a potential role
in cross-tissue communication (Mori et al., 2019). Altered
circulating miRNA levels were observed in various disease
states and often studied as noninvasive predictive biomarkers
for disease prognosis or response to therapy (Condrat et al.,
2020). Because circulating miRNAs are often found enclosed in
extracellular vesicles or bound to protein complexes, they are
resistant to degradation by RNAses (Li and Zhang, 2015) and to
extreme changes in temperature and pH, making them promising
biomarker candidates. There is accumulating evidence on the role
of circulating miRNAs and their potential as prognostic
biomarkers in HTN (Romaine et al., 2016; Jusic and Devaux,
2019). The studies from our laboratory demonstrated the
association of certain miRNAs with response to
antihypertensive therapies, suggesting their potential future
utility in precision medicine (Solayman et al., 2019).

An important challenge in clinical translation of circulating
miRNA biomarkers is the low reproducibility across studies (De
Ronde et al., 2017). MiRNA biomarker identification often starts
with a high-throughput screening (e.g., microarray panel
containing hundreds of miRNAs), after which the most
promising candidates are validated by quantitative polymerase

chain reaction (qPCR) measurements in independent samples.
Although qPCR is a sensitive method, challenges arise when
working with target quantities near the detection limit of qPCR,
as is the case for many circulating miRNAs. This leads to missing
data, which is handled and interpreted differently among studies,
leading to differences in findings (De Ronde et al., 2017).
Additionally, experimentally introduced artifacts, e.g., starting
sample amount, collection and storage conditions, and miRNA
extraction/transcription efficiency, profoundly affect the final
results of qPCR, eventually masking the true associations. It is
important to normalize the data to reduce this analytical
variability to obtain the most reliable and reproducible results
(Faraldi et al., 2019).

Currently, a variety of normalization techniques are used for
array-based methods, such as mean-centering/global
normalization, quantile normalization, normalization with a
restricted set of highly expressed miRNAs (restricted mean
centering), standard housekeeping miRNA/endogenous control
normalization, and exogenous control normalization, but each
has its own advantages and disadvantages. In cases where a few
candidate miRNAs are being profiled, which is most likely the
case in clinical settings, only standard housekeeping miRNA and
exogenous control methods can be used to normalize the reverse-
transcription–qPCR (RT-qPCR) data.

Exogenous oligonucleotides (such as cel-miR-39, cel-miR-54 or
cel-miR-238, and ath-miR159a) (Faraldi et al., 2019) are often used
as external controls and added at known concentrations to the
biological samples before RNA extraction. While they are useful to
correct for the RNA extraction efficiency and reverse transcription
efficiencies of the kits used, they cannot account for the other
previously described intrinsic variables to which they are not
exposed. Endogenous miRNAs might be considered as optimal
references/normalizers since their expression is affected by the
same variables as the target miRNAs. One of the most
commonly used endogenous miRNAs-based normalization
strategy in experiments assaying large numbers of miRNAs is
global mean normalization that involves the averaged Ct (cycle
threshold) value of all the analyzedmiRNAs. Quantile normalization
can also be used for array-based methods to reduce the technical
variabilities in the experiments, but it has the disadvantage of
reducing/masking the biological variations of interest (Hicks and
Irizarry, 2014). In candidate miRNA profiling, it is essential to
identify and use a single or a combination of endogenous
controls or housekeeping microRNAs when analyzing a small
number of miRNAs, and it is critical to identify a suitable
housekeeping miRNA to ensure accurate results.
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While several endogenous miRNAs, such as U6 and miR-16,
are often used as reference miRNAs for normalizing tissue/
cellular miRNA expression data (Das et al., 2016), there is no
consensus on a circulating miRNA normalizer. Research has
shown that U6 is unstable in plasma. Additionally, since
plasma miRNA profiles are oftentimes altered in disease states,
it is unlikely to discover a universal circulating miRNA
normalizer. Thus, it is important to identify a housekeeping
miRNA(s) for a specific disease and oftentimes specific to the
experiment. To the best of our knowledge, there is no consensus
on endogenous control miRNAs for RT-qPCR analysis of plasma
miRNAs in HTN.

In this study, we aim to compare different normalization
strategies for array-based data as well as identify and validate
suitable endogenous circulating miRNA controls for
normalization of candidate miRNA studies in HTN, with the
objective of standardizing the analysis and to improve
reproducibility across studies.

METHODS

Study Cohort and Sample Collection
Biological samples and clinical data used in this study were
collected as part of the PEAR (Pharmacogenomic Evaluation of
Antihypertensive Responses) trial (clinicaltrials.gov
#NCT00246519). The design and objectives of the study have
been previously described (Hicks and Irizarry, 2014). In brief,
PEARwas amulticenter, randomized clinical trial with the primary
aim of evaluating the role of genetic variability on blood pressure
(BP) response in Hydrochlorothiazide and/or atenolol treated
patients. All participants (n = 768) were 17–65 years of age and
had mild-to-moderate uncomplicated HTN. After an
antihypertensive drug washout period of 4–6 weeks, the baseline
biological samples were collected in a fasting state.

The study was approved by the institutional review boards at
each site, and all participants gave written informed consent.

We selected 36 European Americans (EAs) with uncomplicated
HTN from the PEAR study to profile genome-wide plasma
miRNAs using a microarray-based method. We compared a
variety of data normalization strategies to identify the ones that
best reduced the variability in the data.We further identified a list of
endogenous control miRNAs with potential utility as housekeeping
miRNAs and validated them in a cohort of 50 African Americans
(AA) with uncomplicated HTN from the same study.

Comparison of Normalization Strategies
The following methods of normalization were compared:

Global mean normalization: normalized Ct for each miRNA
for each sample is calculated by subtracting the mean of all
analyzed miRNAs in that sample from the raw Ct of that miRNA.

Mean centering_unimputed: this is similar to global mean but
uses the mean of only the expressed miRNAs, omitting the
missing values.

Mean centering restricted or MCR normalization:
normalization with a restricted set of miRNAs that are
expressed across all samples (zero missingness in data).

Quantile normalization: this method assumes that the
statistical distribution of each sample is the same.
Normalization is achieved by forcing the observed
distributions to be the same as the average distribution,
obtained by taking the average of each quantile across samples
which is used as the reference.

Endogenous control normalization: normalized Ct is obtained
by subtracting the endogenous control miRNA Ct from the raw
Ct of the miRNA in each sample.

To compare the above methods, we plotted the standard
deviation (SD) of each miRNA across all samples for the raw
data and normalized data using each of the above methods, to
identify the methods that best reduced variation in the data.

To identify suitable endogenous controls/housekeeping
miRNAs, we followed the steps stated below.

Endogenous Control Selection
Though many strategies have been proposed to select the best
endogenous control from miRNA arrays (Vandesompele et al.,
2021), recent proposals indicate that the similarity between the
values of an endogenous control and the global mean (which is
considered the gold standard by many) is one of the best
approximations (Santamaria-Martos et al., 2019). Hence, we
selected the miRNAs with the lowest variability (those with
smallest SD) after normalization with the global mean
(Santamaria-Martos et al., 2019). While it is important that the
endogenous control closely represents the mean miRNA expression
of the sample, it is also important that endogenous control is highly
and consistently expressed across all samples to allow accurate
quantification and normalization. We fed the raw data after initial
quality control into the Reffinder (Xie et al., 2012) software, a tool that
evaluates and screens reference genes or miRNAs using the currently
available major computational programs NormFinder (Andersen
et al., 2004), Delta Ct method (Silver et al., 2006), geNorm
(Vandesompele et al., 2002), and BestKeeper (Pfaffl et al., 2004)
algorithms to compare and rank the tested candidate reference genes
or miRNAs. Based on the rankings from each program, it assigns an
appropriate weight to an individual miRNA and calculates the
geometric mean of their weights for the overall final ranking.

To dissect out the potential impact of age and gender on the
miRNA expression levels, we conducted a sensitivity analysis with
residuals ofmiRNA levels after regressing out age and gender. Firstly,
the global mean-normalized miRNA levels were regressed with age
and gender, and the resultant residuals were used to calculate the SD
to identify miRNAs closest to the global mean and with lowest
variability. Secondly, raw miRNA Ct data were regressed with age
and gender. The resultant residuals were fed into the Reffinder
software to identify the miRNAs with best stability rankings.

The top four miRNAs that closely resembled the mean
expression of the sample as well as with the best
comprehensive ranking from Reffinder were taken forward for
validation by single-tube RT-qPCR–based assays in the African
American cohort.

Endogenous Control Validation
We profiled the four control miRNAs along with nine additional
miRNAs that were selected for an unrelated project, using
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individual RT-qPCR. The raw Ct values after initial quality
control were fed into Reffinder to see if each selected
endogenous control still showed high comprehensive ranking,
confirming it to be a good housekeeping miRNA. In our study,
the validation cohort was selected in order to validate the findings
in a different ancestry group (African Americans) from the
discovery cohort (European Americans), considering that
miRNA expression differences exist by ancestry (Dluzen et al.,
2016). For the candidate miRNAs that were validated with the
highest comprehensive ranking, we further tested using Reffinder,
if the combination of miRNAs was a better endogenous control
than single miRNAs.

RNA Extraction and microRNA Profiling
The plasma was separated from the baseline blood samples collected
in EDTA vacutainer tubes and stored in aliquots at −80°C for long-
term storage. About 100 μl of the plasma samples were used to
extract the total RNA by the MagMAX mirVana Total RNA
Isolation Kit (Thermo Fisher Scientific, CA) using the
manufacturer’s protocol, in 30 μl of elution buffer. After checking
the quantity and quality of the extracted total RNA, about 100 ng of
the RNAwas used to reverse transcribe to cDNA using the TaqMan
reverse transcription kit and Megaplex Primer Pools A and B,
followed by preamplification using TaqMan PreAmp Master Mix
and Megaplex PreAmp Primer Pools A and B (Applied Biosystems,
Thermo Fisher Scientific, CA). The pre-amplified product was
diluted and added with TaqMan PCR Master Mix onto the
TaqMan OpenArray Human MicroRNA Panel for quantification
onQuantStudio™ 12K Flex system using real-time qPCR technique.
The TaqMan OpenArray Human MicroRNA Panel (Applied
Biosystems, Thermo Fisher Scientific, CA) tests for 754 miRNAs.

Raw data obtained from QuantStudio were filtered of those
with <1.1 Amp Score and < 0.7 Cq Confidence scores (Cq Conf).
Samples that showed very low miRNA expression/detection and
microRNAs with missing Cts in ≥50% of samples were excluded
from further analysis. Among the remaining samples and
miRNAs that were considered for analysis, missing values
were replaced with minimum cycle threshold (Ct) of 40.

Reverse Transcription–Quantitative
Polymerase Chain Reaction Validation
The total RNA was extracted from 100 µl of baseline plasma as
described above. The samples were normalized to 10 ng/µl total
RNA concentration. For further steps, 2 µl of the normalized
samples were used. TaqMan™ Advanced miRNA cDNA
Synthesis Kit was used to perform poly(A) tailing, adapter
ligation, RT reaction, and preamplification using the
manufacturer’s protocols for TaqMan Advanced miRNA
single-tube assays. After 1:10 dilution of the pre-amplified
product, we performed PCR reactions in 10-µl volumes in
triplicate using TaqMan™ Fast Advanced Master Mix and the
selected TaqMan™ Advanced miRNA Assays.

The Ct values with Amp Score <1.1 were filtered out. This
lower cutoff, as compared to discovery, was considered
appropriate since qPCR was done in triplicate that would
provide sufficient confidence on miRNA expression and Ct

values. The average of the triplicate Cts was used for analysis.
Samples with low miRNA expression/detection and miRNAs
with missing Cts in >50% of the samples were excluded from
the analysis. Missing Cts were replaced with 40.

Statistical Analysis
R studio (version 3.6.1) and SPSS were used for statistical analysis.

RESULTS

Patient Characteristics
The clinical and demographic characteristics of the patients are shown
in Table 1. Patients were middle-aged (<60 years), overweight–obese.
After filtering miRNAs for Amp Score and Cq Confidence threshold,
we excluded six samples with overall low miRNA expression/
detection. Of the 754 miRNAs tested, 346 unique miRNAs were
detected in the plasma in at least one of the samples. An average of 108
miRNAs were detected in each sample. Only 81 miRNAs were
detected consistently across samples with <50% missingness.
Further analysis was conducted on these 81miRNAs from30 samples.

Comparison of Normalization Strategies
Figures 1A,B present the effect of different normalization
strategies on the expression of all miRNAs and on a restricted
set of 13 miRNAs, respectively, that were consistently detected
across all samples. For the purpose of this comparison, to
represent endogenous control normalization, we used miR-
223-3p that showed expressions closest to the global mean
(Table 2). We noticed that all the normalization strategies
reduced the variation in the data to some extent (seen as
reduction in the mean SD of miRNAs from the raw SD).
Quantile normalization followed by global mean normalization
(global mean after imputation of missing values) showed the
greatest reduction in variation. Normalization with the single
miR-223 performed similar to normalization with the mean of
the restricted set of 13 consistently expressed miRNAs
(MCR_norm). The effect of different types of normalization
on the well-expressed miRNAs was slightly different from the
effect on all miRNAs (as seen in Figure 1A vs. Figure 1B). The
MCR method performed best, followed by quantile
normalization. Supplementary Figure S1 shows the trend of
different normalizers across patient samples.

TABLE 1 | Demographics.

Characteristics Discovery (n = 36) Validation (n = 50)

Age (years) 47.8 ± 9.9 48.8 ± 6.3
Females (n,%) 16 (44%) 29 (58%)
BMI (kg/m2) 30.0 ± 5.1 31.9 + 5.6
Baseline DBP (mmHg) 94.2 ± 4.6 95.4 + 4
Baseline SBP (mmHg) 145.3 ± 10 143.2 + 11
Hip circumference (cm) 109.2 ± 10.8 111.8 + 11.3
Waist circumference (cm) 100.9 ± 16.5 104.9 + 14.7

Note: Data are normally distributed when tested by Shapiro–Wilk test. Hence, mean and
standard deviation were used to describe the data distribution.
DBP, Diastolic Blood Pressure; SBP, Systolic Blood Pressure; BMI, Body Mass Index.
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Candidate Endogenous Controls
Table 2 shows the ordered list of miRNAs which closely resemble
the globalmean, i.e., with the smallest SD across samples after global
mean normalization. We present a list of those with mean SD <2
ΔCt (Table 2). hsa-miR-223-3p, hsa-miR-19b, hsa-miR-126-5p,
and hsa-miR-106a were the top four miRNAs that showed the
least SD after normalization with the global mean.

Table 3 shows the rankings for the most stably expressed
miRNAs according to different software programs, along with the
Reffinder comprehensive ranking. The same four miRNAs: 19b,
223-3p, 106a, and 126-5p showed the highest stability
(represented by the smallest stability ranking).

We repeated the selection process with residuals after
regressing out age and gender from the miRNA expression
levels (data not presented). Neither the order of top miRNAs
closest to the global mean nor the results from the Reffinder
differed from our original results. Thus confirming the
consistency of the selected miRNAs as normalizers, as they
were not affected by changes in age or gender.

Validation of Endogenous Controls in Cross
Ancestry Cohort
The four miRNAs: 19b, 223-3p, 106a, and 126-5p were tested for
stability among a custom set of 13 miRNAs (that were selected
for a different study) for validation in the AA cohort. Only
miRNA 223-3p and miR-126-5p were well expressed across all
samples. miR-19b and -106a were not sufficiently detected
across patient samples from AA cohort and hence were not
included in the analysis. Out of the profiled miRNAs, miR-223-
3p, followed by miR-126-5p, showed the highest stability, as
shown by the Reffinder rankings in Table 4. The combination of
miR-223-3p and 126-5p was a better normalizer than individual
miRNAs as shown by the stability rankings in Supplementary
Table S1.

FIGURE 1 | Effect of normalization methods on variation of miRNA expression in microarray data. (A) Each box represents the distribution of standard deviation of
all analyzed miRNAs (n = 81) or (B) restricted set of miRNAs (Restricted miRNAs; n = 13) on the TaqMan array, calculated separately across all samples. Y-axis
represents standard deviation (sd).

TABLE 2 | Endogenous control candidate miRNAs with expression closest to the
global mean.

Target SD

hsa-miR-223_002295_A 1.06
hsa-miR-19b_000396_A 1.13
hsa-miR-126#_000451_B 1.21
hsa-miR-106a_002169_A 1.21
hsa-miR-24_000402_A 1.22
hsa-miR-17_002308_A 1.24
hsa-miR-484_001821_A 1.38
hsa-miR-191_002299_A 1.42
hsa-miR-30c_000419_A 1.51
hsa-miR-320_002277_A 1.59
hsa-miR-150_000473_A 1.86
hsa-miR-331_000545_A 1.95
hsa-miR-146a_000468_A 1.96
U6 rRNA_001973_B 1.98

SD, standard deviation. MicroRNAs with the values most similar to the global mean
expression were determined by normalizing the data set with the global mean to select
the miRNAs with the smallest standard deviation.
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DISCUSSION

MicroRNAs play important regulatory roles in health and
disease states and thereby in treatment responses. Current
lack of consensus on the data normalization strategies or a
strong housekeeping microRNA for microarray data and qPCR
data analysis impairs the validation of circulating miRNA
associations in HTN and their translation as clinical
biomarkers. Due to the variability in miRNA isolation
profiling and analysis steps, clinical studies may lead to the
identification of biased profiles, of which only subsets of the
miRNAs clinical signature could be validated by RT-qPCR.
Here, we identified the combination of miR-223-4p and 126-
5p as a potential endogenous miRNA normalizer that can be
used across microarrays and single qPCR assay platforms, as
well as across ancestry groups, to control the technical
variability across samples in the quantification of circulating
miRNAs in HTN. We also provided a comparison of different
normalization techniques and how they can affect the relative
miRNA expressions, and in turn effecting the measure of true
biological variations.

Currently, there is not a universal method that can efficiently
reduce the technical variability in miRNA RT-qPCR data.
Different techniques such as spike-in normalization, gene
normalization, and small nucleolar RNA normalization have
been used, but all these can lead to non-replicable results. The
gold standard normalization is based on mean-centric methods
and is very useful in high-throughput miRNA profiling, but it is
not an option for analysis of a few miRNAs. In such cases, the use
of endogenous controls is the best option (Santamaria-Martos
et al., 2019). Given the differences in miRNA profiles in different
disease states and tissues, circulating endogenous control
miRNAs should be identified for each disease. The lack of a
comprehensive analysis of normalizers for miRNAs in HTN
patients could compromise miRNA results. For this reason, we

performed miRNA array screening including 81 miRNAs as
potential endogenous controls.

In our study, the quantile normalization followed by the global
mean of all analyzed miRNAs data (with imputation of missing
values) was identified as the best normalization strategy. Though
quantile normalization has been previously shown to perform better
than single-gene endogenous control normalization (Mar et al., 2009)
or global normalization methods (Fundel et al., 2008) in terms of
reducing the variation in the data, quantile normalization does not
retain the true magnitude of expression differences across samples
(Fundel et al., 2008) and is known to obliterate true biologically driven
signals and generate false signals in downstream analysis (Wang et al.,
2011; Zhao et al., 2020). Hence it may not be appropriate in
biomarker discovery studies where associations of miRNA
expression with phenotypes of interest are tested.

While some studies use global mean of the expressed miRNAs
(omitting the missing values) as described first by Mestdagh et al.
(2009), we identified that this method worked well only for the
miRNAs with very good expression profiles and performed
comparatively worse than the global mean normalization of all
the analyzed miRNAs (imputing the missing values). Since it is
known that circulating miRNAs can occur in low concentrations or
might even be totally absent from the circulation in some individuals,
a large number of missing values can be expected (De Ronde et al.,
2017). Furthermore, it is known that with decreasing concentrations
of the target miRNAs, the chance of finding a so-called “non-detect”
increases (De Ronde et al., 2017). The RT-qPCR data contain a
systematic bias resulting in large variations in the Ct values of the
low-abundant miRNA samples. Complete exclusion of the missing
data leads to the loss of data points resulting in a loss of statistical
power. While there are several methods for imputation (which is
beyond the scope of this article), in this study, we compared the
utility of global mean normalization with or without imputation of
missing data with Ct = 40. The calculatedmean omitting themissing
values could bias toward a good mean expression for samples with

TABLE 3 | Endogenous control candidates stability ranking in microarray data

Method/Rank 1 2 3 4 5 6 7 8 9 10 11

Delta CT miR-223 miR-19b miR-106a miR-17 miR-24 miR-126-5p miR-484 miR-191 miR-30c miR-320 miR-150
BestKeeper miR-150 miR-126-5p U6_rR40 miR-320 miR-106a miR-19b miR-484 miR-17 miR-24 miR-223 miR-191
NormFinder miR-223 miR-19b miR-126-5p miR-106a miR-24 miR-17 miR-484 miR-191 miR-30c miR-320 miR-150
geNorm miR-106a| miR-19b miR-223 miR-17 miR-24 miR-191 miR-484 miR-320 miR-126-5p miR-30c miR-150
Comprehensive ranking miR-19b miR-223 miR-106a miR-126-5p miR-17 miR-24 miR-150 miR-484 miR-320 miR-191 U6_rR40

Top four miRNAs: miR-19b, miR-223, miR-106a, and miR-126-5p were moved forward for validation.

TABLE 4 | Stability ranking of miRNAs in the validation African American cohort, single-tube qPCR data.

Method/Rank 1 2 3 4 5 6 7 8 9 10 11 12 13

Delta CT miR-126-5p miR-199a-3p miR-223 miR-423-5p miR-16 miR-126 let-7g miR-29a miR-30d miR-885-5p miR-376c miR-26b miR-142-3p

BestKeeper miR-423-5p miR-223 miR-126 let-7g miR-126-5p miR-199a-3p miR-16 miR-29a miR-885-5p miR-30d miR-376c miR-26b miR-142-3p

NormFinder miR-126-5p miR-199a-3p miR-223 miR-423-5p miR-16 miR-126 let-7g miR-29a miR-30d miR-885-5p miR-376c miR-26b miR-142-3p

geNorm miR-199a-3p | miR-223 miR-423-5p miR-126-5p miR-16 miR-126 let-7g miR-29a miR-885-5p miR-30d miR-376c miR-26b miR-142-3p

Comprehensive ranking miR-223 miR-126-5p miR-199a-3p miR-423-5p miR-126 miR-16 let-7g miR-29a miR-30d miR-885-5p miR-376c miR-26b miR-142-3p

Among the four miRNAs miR-19b, miR-223, miR-106a, and miR-126-5p moved forward for validation, only miR-223 and 126-5p were sufficiently expressed in single-tube qPCR-based
study in African Americans. Note: The additional miRNAs listed here are those selected from a previous single-tube qPCR-based study available to us, with good expression levels but are
not endogenous controls.
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lowmiRNA expression, since themissing values of amajority of low-
expression miRNAs are ignored, and the mean is calculated only
from those expressed in a particular Ct range. In our study,
MCR_norm and endogenous control normalization performed
similarly, but a previous study for miRNA normalizers in the
brain, placenta, and serum observed that MCR_mean performed
better than the other types of normalization strategies in terms of
reducing the SDs across the titration samples, while also showing
maximum separation between true biologically different sample
types (Wylie et al., 2011). Based on our data, we recommend
using global mean normalization after imputation, as it has
successfully reduced technical/experimental variability in the data,
without purported masking of biological variability.

We identified miRNAs-223-3p, 19b, 106a, 126-5p as potential
endogenous controls in a microarray miRNA profiling experiment
and validated miRNAs-223-3p and 126-5p in the RT-qPCR–based
single miRNA assay in an African American cohort. While it is
possible that miRNAs 19b and 106a are downregulated in AAs, we
cannot rule out the possibility of the lack of efficiency of the single
miRNA qPCR probes used in this study. MiR-223-3p has been
previously used as endogenous control (Kroh et al., 2010) due to its
stable expression in plasma samples (Benson and Skaar, 2013). A
previous study from our lab (Solayman et al., 2016) aimed to identify
an endogenous control plasma miRNA for HTN, tested the stability
of a set of five previously known reference miRNAs using a single
assay qPCR-based method. While miR-223-3p showed the least
stability among the tested candidates, it is important to note that the
study compared both hypertensive and non-hypertensive patients,
and some previous studies showed that miR-223-3p could be
dysregulated in HTN and cardiovascular disease (Zhang et al.,
2018; Zhang et al., 2021). Though serum- and platelet-derived
miR-223-3p were shown to be downregulated in HTN patients,
their consistent expression in the plasma promoted their utility as a
biomarker for diagnosis of HTN with high sensitivity (Zhang et al.,
2018). So, it is important to acknowledge that these findings may be
applicable only in uncomplicated hypertensive patients.

MiR-19b was shown to be a good reference miRNA in an
evaluation of seven potential normalizers in studies focused on
cardiovascular diseases (Mar et al., 2009). It belongs to the miR-17/
92 cluster that comprises miR-19b-1 and miR-17, and was also
identified among the top 10 stably expressed miRNAs in our study.
The miR-106a belongs to the 106a/363 cluster that also encodes
miR-19b-2. Mir-106a has been previously used as endogenous
control in different diseases (Sanders et al., 2012; Ortega et al., 2014;
Schwarzenbach et al., 2015). We identified miR-126-5p as one of
the consistently expressed miRNAs. A previous study by Pagacz
et al. (2020) testedmiR-126 as part of the set of reliable endogenous
miRNA normalizers in the serum, in a variety of diseases, but not
specifically in HTN. We further identified that the combination of
miRNAs 223-3p and 126-5p was a better endogenous control than
single miRNAs. This result is in line with previous studies (Li et al.,
2015; Inada et al., 2018) that identified sets of two or more
reference miRNAs to be better endogenous controls than single
miRNAs. As stated in the MIQE guidelines for fluorescence-based
quantitative real-time PCR experiments (Bustin et al., 2010),
normalization should be performed with multiple reference
genes, unless the single reference gene is sufficiently validated.

Limitations: The present study has several limitations. Our
discovery cohort had a small sample size that might not truly
capture the variability in miRNA expression across the patient
population. But this limitation is circumvented by validating the
consistency of miRNA expression in a larger, independent
validation cohort that involved patients of different ancestry
from discovery cohort, thus confirming the stability of miR-
223-3p and 126-5p as housekeeping miRNAs across
hypertensive patients. Nonetheless, it is to be noted that the
validation cohort included only 13 miRNAs (that are not
necessarily endogenous controls) for testing. Future validation
studies should test miR-223-3p and 126-5p expression in
comparison to other housekeeping controls to confirm their
consistency and stability as endogenous controls. Multiple
freeze–thaw cycles and age of the samples could negatively
affect the stability of RNAs. Also, circulating miRNAs are
oftentimes enclosed in extracellular vesicles and are considered
to be relatively stable in extreme temperatures and freeze–thaw
cycles. Nonetheless, the samples were stored and processed in
aliquots, thus limiting the number of free-thaw cycles. Future
studies could test the stability of miR-223-3p and 126-5p under
multiple freeze–thaw cycles and with long-term storage. Low
starting sample quantity and the age of samples could have
reduced the quality of the RNA and the number of quantifiable
miRNAs across samples. Only patients between 17 and 65 years of
age have been studied, and larger studies should be performed to
determine the validity of these endogenous controls in patients
with different age groups, though our analysis showed that in the
tested population, these miRNAs were not associated with changes
in age or gender. We only selected the top four miRNAs from the
discovery to test in the validation cohort. We acknowledge that
there may be other more stable miRNAs in the AA cohort that
might be better normalizers but were not tested in this study.

CONCLUSION

The present study evaluated a variety of normalization strategies
and identified global mean normalization as the most appropriate
approach for microarray data. The results of this study also
identified that the combination of miR-223-3p and 126-5p
could be used as endogenous control for normalization of
single-tube RT-qPCR–based miRNA profiling in essential HTN.
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