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Abstract

Background: Autism spectrum disorder (ASD) is a severe neurodevelopmental disorder characterized by deficits in
social communication and restricted, repetitive behaviors, interests, or activities. The etiology of ASD involves both
inherited and environmental risk factors, with epigenetic processes hypothesized as one mechanism by which both
genetic and non-genetic variation influence gene regulation and pathogenesis. The aim of this study was to identify
DNA methylation biomarkers of ASD detectable at birth.

Methods: We quantified neonatal methylomic variation in 1263 infants—of whom ~ 50% went on to subsequently
develop ASD—using DNA isolated from archived blood spots taken shortly after birth. We used matched genotype data
from the same individuals to examine the molecular consequences of ASD-associated genetic risk variants, identifying
methylomic variation associated with elevated polygenic burden for ASD. In addition, we performed DNA methylation
quantitative trait loci (mQTL) mapping to prioritize target genes from ASD GWAS findings.

Results: We identified robust epigenetic signatures of gestational age and prenatal tobacco exposure, confirming the
utility of DNA methylation data generated from neonatal blood spots. Although we did not identify specific loci
showing robust differences in neonatal DNA methylation associated with later ASD, there was a significant association
between increased polygenic burden for autism and methylomic variation at specific loci. Each unit of elevated ASD
polygenic risk score was associated with a mean increase in DNA methylation of — 0.14% at two CpG sites located
proximal to a robust GWAS signal for ASD on chromosome 8.

Conclusions: This study is the largest analysis of DNA methylation in ASD undertaken and the first to integrate genetic
and epigenetic variation at birth. We demonstrate the utility of using a polygenic risk score to identify molecular variation
associated with disease, and of using mQTL to refine the functional and regulatory variation associated with ASD risk
variants.
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Background

Autism spectrum disorder (ASD) defines a group of com-
plex neurodevelopmental disorders marked by deficits in
social communication and restricted, repetitive behaviors,
interests, or activities [1]. ASD affects ~1-2% of the
population, and confers severe lifelong disability [2—4].
Quantitative genetic studies indicate that ASD is highly
heritable [5, 6], although population-based epidemiologic
studies of environmental risks and ASD liability modeling
using family designs also indicate environmental factors as
important [7]. Genetic studies have shown that autism risk
is strongly associated with both rare inherited and de novo
DNA sequence variants [8—11]. In contrast, the identifica-
tion of common genetic variants associated with ASD
using genome-wide association studies (GWAS) has
proven harder than for other complex neuropsychiatric
traits such as schizophrenia [12], at least in part due to a
lack of large sample datasets. Recent collaboration
between the Psychiatrics Genomics Consortium autism
workgroup (PGC-AUT) and the Lundbeck Foundation
Initiative for Integrative Psychiatric Research (iPSYCH)
has greatly expanded the number of ASD cases with
GWAS data, enabling the identification of three genome-
wide significant associations for ASD and evidence for a
substantial polygenic component in signals falling below
the stringent genome-wide significance threshold [13].
None of the three ASD-associated loci are predicted to re-
sult in coding changes or altered protein structure; instead
they are hypothesized to influence gene regulation.
Previous studies of other neurodevelopmental disorders
have reported an enrichment of disease-associated
variation in regulatory domains, including enhancers and
regions of open chromatin [14].

Epigenetic variation induced by non-genetic exposures
has been hypothesized to be one mechanism by which en-
vironmental factors can affect risk for ASD [15, 16]. Recent
studies have provided initial evidence for autism-associated
epigenetic variation in both brain and peripheral tissues
[17-22], although these analyses have been undertaken on
relatively small numbers of samples with limited statistical
power. Existing analyses have assessed epigenetic variation
in samples collected after a diagnosis of ASD has been
assigned and are likely to be confounded by factors such as
smoking [23—-25], medication [26, 27], other environmental
toxins [28], and reverse causation [29]. Furthermore, they
have not investigated the role of genetic variation in medi-
ating associations between epigenetic variation and ASD.
The integration of genetic and epigenetic data will facilitate
a better understanding of the molecular mechanisms
involved in autism, especially given the high heritability of
ASD and recent data showing how the epigenome can be
directly influenced by genetic variation [30-33]. For
example, we have previously demonstrated the potential
for using polygenic risk scores (PRS)—defined as the sum
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of trait-associated alleles across many genetic loci, weighted
by GWAS effect sizes—as disease biomarkers with utility
for exploring the molecular genomic mechanisms involved
in disease pathogenesis [34]. Of note, PRS-associated
epigenetic variation is potentially less affected by factors
associated with the disease itself, which can confound
case—control analyses.

In this study, we quantified DNA methylation for ~ 1316
individuals (comprising equal numbers of ASD cases and
matched controls, 50% male/female) using DNA samples
isolated from neonatal blood spots collected proximal to
birth (mean = 6.08 days; standard deviation (sd) = 3.24
days; Additional file 1: Figure S1). Known epigenetic signa-
tures for gestational and chronological age [35, 36], and ex-
posure to maternal smoking during pregnancy [24], were
used to confirm the robust nature of genome-wide DNA
methylation data generated from neonatal blood spots.
Matched genome-wide single nucleotide polymorphism
(SNP) genotyping data from the same individuals enabled
us to undertake an integrated genetic—epigenetic analysis
of ASD, exploring the extent to which neonatal methylo-
mic variation at birth is associated with elevated polygenic
burden for ASD. Finally, we generated an extensive data-
base of DNA methylation quantitative trait loci (mQTL) in
neonatal blood samples, which were used to characterize
the molecular consequences of genetic variants associated
with ASD.

Methods

Overview of the MINERVA cohort

Denmark has a comprehensive neonatal screening pro-
gram which is used to test for innate errors of metabolism,
hypothyroidism, and other treatable disorders. Neonatal
blood is collected on standard Guthrie cards and residual
material is stored within the Danish Neonatal Screening
Biobank. The reason for storing the samples in prioritized
order is: (1) diagnosis and treatment of congenital
disorders, (2) diagnostic use later in infancy after informed
consent, (3) legal use after court order, (4) research projects
pending approval by the Scientific Ethical Committee Sys-
tem in Denmark, The Danish Data Protection Agency, and
the NBS-Biobank Steering Committee. Thus, research is
possible assuming sufficient material remains for the pro-
ceeding priorities [37]. Cases and controls were selected
from the iPSYCH case—control sample, which has been re-
cently described [38]. Briefly, the iPSYCH study population
comprises all singletons born in Denmark between May
1st 1981 and December 31st 2005, who are still alive and
residing in Denmark at their first birthday and with a
known mother. iPSYCH ASD cases comprise all children
in the study population with an ASD diagnosis reported
before December 31st 2012. iPSYCH controls comprise
30,000 persons randomly selected from the study popula-
tion (about 2% of the total study population).
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The MINERVA study profiled a subsample of 1316
iPSYCH samples, including an equal number of ASD cases
and controls that were selected using the following criteria.
Cases were born between 1998 and 2002, with both par-
ents born in Denmark themselves. We selected a 1:1 male
to female ratio (i.e., by “oversampling” ASD females). Cases
and controls were excluded if they had a reported diagnosis
(before December 31st 2012) of select known genetic
disorders: Down syndrome, Fragile X, Angelman, Prader
Willi, Zellweger, William, tuberous sclerosis, Rett, Tour-
ette, neurofibromatosis, Duchennes, Cornelia de Lange,
DiGeorge, Smith-Lemli-Opitz, Klinfelter. In addition,
controls were excluded if they had died or emigrated from
Denmark before December 31st 2012, or had any reported
psychiatric diagnosis. Eligible controls were individually
matched to cases on sex, month of birth (month before,
same month, or month after case month), and year of
birth. Among the controls fulfilling these criteria, add-
itional matching criteria were applied as closely as possible
with regard to gestational age (in weeks) and the same
urbanicity level of maternal residence at time of birth as
cases. All perinatal data used for case—control matching,
plus additional information on birth weight and maternal
smoking were obtained from the Danish Medical Birth
Register or the Central Person Register. Detailed maternal
smoking data were used to generate a binary variable indi-
cating whether the mother smoked during pregnancy or
not. All diagnoses used for ASD case identification and
case/control exclusions were obtained from the Danish
Psychiatric Central Research Register (DPCRR) and Danish
National Patient Register (DNPR). In Denmark, children
and adolescents suspected of ASD or other mental or
behavioral disorders are referred by general practitioners
or school psychologists to a child and adolescent psychi-
atric department for a multidisciplinary evaluation, and
their conditions are diagnosed by a child and adolescent
psychiatrist. Registry reporting is done only by psychiatrists
following mandatory training in the use of the World
Health Organization International Classification of
Diseases (ICD) [39]. The following ICD-10 diagnosis codes
were used: ASD, F84.0, F84.1, F84.5, F84.8, F84.9; any psy-
chiatric disorder, FOO—F99. Reported diagnoses for the con-
ditions used as exclusions were obtained from the DNPR,
which holds all data on in- and out-patient diagnoses given
at discharge from somatic wards in all hospitals and clinics
since 1995 [40]. Additional file 2: Table S1 gives a full over-
view of relevant diagnosis codes. The MINERVA study was
approved by the Regional Scientific Ethics Committee in
Denmark and the Danish Data Protection Agency.

DNA methylation profiling in MINERVA

Neonatal dried blood spot samples were retrieved from the
Danish Neonatal Screening Biobank, within the Danish
National Biobank, as part of the iPSYCH study. Neonatal

Page 3 of 13

DNA extractions and DNA methylation quantification
were performed at the Statens Serum Institut (SSI,
Copenhagen, Capital Region, Denmark), building on a pre-
viously described protocol [41]. Briefly, from each dried
blood spot sample two disks of 3.2 mm were used with the
Extract-N-Amp Blood PCR kit (Sigma-Aldrich, St. Louis,
USA) and eluted in 200 pL buffer. The isolated genomic
DNA (160 pL) was converted with sodium bisulfite using
the EZ-96 DNA Methylation Kit (Zymo Research, Califor-
nia, USA). DNA methylation was quantified across the
genome using the Infinium HumanMethylation450k array
(“450 K array”; Illumina, California, USA) and a modified
protocol as previously described [40]. Fully methylated and
unmethylated control samples were included on each plate
throughout each stage of processing.

MINERVA Illlumina 450 K array data pre-processing and
quality control

Signal intensities for 1316 neonatal blood samples, 14 fully
methylated control samples, and 14 fully unmethylated
control samples were imported into the R programming
environment using the methylumIDAT() function in the
methylumi package [42]. Our stringent quality control
(QC) pipeline included the following steps: 1) checking
methylated and unmethylated signal intensities and ex-
cluding samples where either the median methylated or
unmethylated intensity values were <2500; 2) using the
ten control probes to ensure the sodium bisulfite conver-
sion was successful, excluding any samples with a median
score < 80; 3) identifying the fully methylated and fully
unmethylated control samples were in the correct location
on each plate; 4) using the 65 SNP genotyping probes on
the array to confirm no duplicate samples; 5) multidimen-
sional scaling of data from probes on the X and Y chromo-
somes separately to confirm reported gender; 6)
comparing genotype data for up to 65 SNP probes on the
450 K array with SNP array data; 7) using the pfilter()
function in wateRmelon [43] to exclude samples with
more than 1% of probes characterized by a detection P
value > 0.05, in addition to probes characterized by > 1%
of samples having a detection P value > 0.05. In total, 1263
samples (96.0%) passed all QC steps and were included in
subsequent analyses. Normalization of the DNA methyla-
tion data was performed used the dasen() function in the
wateRmelon package [43].

SNP genotyping and derivation of ASD polygenic risk
scores

DNA was extracted at SSI as above and whole genome
amplified in triplicate using the REPLI-g kit (Qiagen,
Hilten, Germany). The triplicates were pooled and then
quantified using Quant-iT  picogreen (Invitrogen,
California, USA). Samples were genotyped at the Broad
Institute (Boston, Massachusetts, USA) using the Infinium
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PsychChip v1.0 array (Illumina, San Diego, California,
USA) using a standard protocol. Phasing and imputation
was done using SHAPEIT [44] and IMPUTE2 with haplo-
types from the 1000 Genomes Project, phase 3 [45, 46] as
described previously [38]. ASD polygenic risk scores (PRSs)
were generated as a weighted sum of associated variants as
previously described [47]. Briefly, results from the largest
autism GWAS available from a combined effort by the
Psychiatric Genomics Consortium (PGC) and iPSYCH [13]
was used to select genetic variants and provide weights. As
the MINERVA cohort is a subset of the broader iPSYCH
cohort we used GWAS results excluding MINERvVA
samples, so that there was no overlap between the training
cohort and the test cohort. Ten different significance
thresholds (pr) from 5 x 107® to 1 were used to select sets
of genetic variants, which were linkage disequilibrium (LD)
clumped using plink with setting —clump-pl 1 —clump-p2
1 —cump-r2 0.1 —clump-kb 500 to generate PRSs.

Statistical analysis

All statistical analyses were performed using the R statis-
tical environment version 3.2.2 [48]. To test the validity and
robustness of our blood spot DNA methylation measures,
we implemented two DNA methylation clock algorithms to
derive estimates for both age in years [36] and gestational
age in weeks [35] for each sample. In addition, for each
sample, we computed a score for prenatal exposure to ma-
ternal smoking using DNA methylation data as previously
described by Elliott et al. [23]. To identify DNA methylation
sites associated with ASD status in the MINERVA discovery
dataset, a linear model was fitted for each DNA methyla-
tion site with DNA methylation as the dependent variable,
case/control status as an independent variable, and a set of
possible confounders as covariates—sex, experimental array
number, urbanicity level, birth month, birth year, gestational
age, smoking, and cell composition variables estimated
using the Houseman algorithm with a reference dataset for
whole blood [49, 50]. Regional analysis to identify differen-
tially methylated regions (DMRs) spanning multiple DNA
methylation sites was performed using a sliding-window
approach as previously described [34]. Subsequent replica-
tion and meta-analysis was performed using summary sta-
tistics available from two US-based studies: the Study to
Explore Early Development (SEED) [51] and the Simons
Simplex Collection (SSC) [52]. Meta-analysis to combine
the epigenome-wide association study (EWAS) results from
MINERvVA, SEED, and SSC studies was performed for
DNA methylation loci present in at least two of the three
studies. Data quality control, normalization, and ASD
EWAS analysis was performed separately for each of the
replication cohorts. A complete description of the SEED
and SSC datasets can be found elsewhere [53]. The P values
from the three independent EWAS analyses were com-
bined using Fisher’s method, focusing on DMPs where the
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direction of effect was consistent across all studies. To iden-
tify DNA methylation sites associated with elevated autism
polygenic risk burden, a linear model was used with DNA
methylation as the dependent variable and ASD PRS, the
number of non-missing genotypes contributing to the PRS,
the first five genetic principal components, sex, experimen-
tal array number, six cell composition variables, smoking
score, gestational age, and birth weight included as inde-
pendent variables as described above. DNA methylation
sites significantly associated with either ASD case control
status or ASD PRS were identified at an experiment-wide
significant threshold of P < 1 x 1077, which is corrected for
the number of DNA methylation sites profiled on the 450
K array.

DNA mQTL and co-localization analyses
All DNA methylation sites located within 250 kb of the
three genome-wide significant genetic variants identified
in the PGC-AUT GWAS [13] were identified and cis (de-
fined as a 500-kb window) mQTL analysis was performed
using the 1257 samples within MINERVA that had both
DNA methylation and imputed genotype data. mQTL
were identified using an additive linear model to test if the
number of alleles (coded 0, 1, or 2) predicted DNA methy-
lation at each site, including covariates for sex, and the
first five principal components from the genotype data fit-
ted using the MatrixEQTL package [54]. Co-localization
analysis was performed for each DNA methylation site as
previously described [55] using the R coloc package
(http://cran.r-project.org/web/packages/coloc). From both
the PGC-AUT GWAS data and our mQTL results we in-
putted the regression coefficients, their variances and SNP
minor allele frequencies, and the prior probabilities were
left as their default values. This methodology quantifies
the support across the results of each GWAS for five
hypotheses by calculating the posterior probabilities,
denoted as PPi for hypothesis Hi.

Hy: there exist no causal variants for either trait;

H;: there exists a causal variant for one trait only, ASD;

Hy: there exists a causal variant for one trait only,
DNA methylation;

Hj: there exist two distinct causal variants, one for each
trait;

Hy: there exists a single causal variant common to both
traits.

Results

Robust epigenetic signatures of gestational age and
prenatal tobacco exposure validate DNA methylation

data generated from neonatal blood spots

Following our stringent QC pipeline (see “Methods”)
our final MINERVA DNA methylation dataset included
1263 samples comprising 629 ASD cases and 634 con-
trols. The characteristics of this sample are displayed in
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Table 1; of note, due to oversampling female cases, we
had a near equal ratio of males and females (632:631).
There were no significant differences between ASD cases
and controls for maternal or paternal age, days to blood
spot sampling, or birth weight (P > 0.05). There was a
significantly higher rate of maternal smoking for the
ASD cases (P = 0.003) and evidence of higher smoking
quantity (P = 0.006). We used DNA methylation data to
derive estimates of gestational age [35] and chrono-
logical age [36] for each sample. The mean predicted
gestational age was 37.7 weeks (sd = 1.35 weeks;
Additional file 1: Figure S2) compared to the actual
mean of 39.6 weeks (sd = 1.77 weeks), with a strong
positive correlation between estimated and actual
gestational age (r = 0.602; Fig. 1la). The mean predicted

Table 1 Characteristics of samples included in the MINERVA cohort
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chronological age was 0495 years (sd = 0.298;
Additional file 1: Figure S3) and this was less strongly
correlated with actual age (r = 0.139; Fig. 1b), consistent
with data from Knight et al. [35]. Of note, “days to sam-
pling”’—i.e., the time between birth and blood draw—was
not correlated with either predicted gestational age or
chronological age, and controlling for this did not im-
prove the strength of the correlation with gestational age
(Additional file 1: Figure S4). We next tested robust
markers of smoking exposure during pregnancy [24] and
adulthood, using an established algorithm [23] to calcu-
late a DNA methylation derived “smoking score” which
we compared to reported in utero exposure. We identi-
fied a highly significant association between this smok-
ing score and actual exposure, with offspring exposed to

Characteristic Unit/category ASD Controls P value
Sex® (%) Male 520 498 0933
Birth year® (%) 1998 318 306

1999 283 29

2000 7 6.78 0.991

2001 13.7 14.2

2002 19.2 194
Gestational ageb (mean (sd)) Weeks 396 (1.82) 396(1.72) 096
Urbanicity® (%) 1: Capital 18.1 17

2: Suburb of the capital 14.9 134

3: Municipalities having a town with more than 100,000 inhabitants 8.27 868

4: Municipalities having a town with between 10,000 and 100,000 273 29.2 0879

inhabitants
5: Other municipalities in Denmark (largest town has less than 10,000 313 317
inhabitants)

Time to sampling (mean (sd)) Days 6.01 (3.15) 6.15(3.33) 046
Maternal age (mean (sd)) Years 202 (494) 297 (457) 007
Paternal age (mean (sd)) Years 32.1(6.04) 319 (5400 0476
Maternal smoking during pregnancy (%) Smoke at any time 29.0 212 000256

Non-smoker 710 788 '
Maternal smoking amount during 5 or less cigarettes per day 6.46 7.25

(o)
pregnancy (%) 6-10 cigarettes per day 11.2 759
0.00573

11-20 cigarettes per day 9.6 5.06

21 or more cigarettes per day 1.05 118
Birth weight (mean (sd)) Grams 3512 (581) 3541 (542) 0.355

Primary characteristics used to match ASD cases and controls

PSecondary characteristics used to match ASD cases and controls as closely as possible. There was a significant difference in maternal smoking rates between ASD

cases and controls
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Fig. 1 DNA methylation data from neonatal blood spots can be used
to accurately predict age and maternal smoking status. a Scatterplot of
gestational age predicted from DNA methylation data (using an
algorithm generated by Knight et al. [35]) against actual gestational
age. Autism cases are in red and controls are in green. b Scatterplot of
chronological age predicted from DNA methylation data (using the
online Epigenetic Clock software [36]) against actual gestational age.
Autism cases are in red and controls are in green. ¢ Boxplot of a smoking
score derived from DNA methylation data [23] stratified by maternal
smoking status during pregnancy

tobacco smoking in utero having higher smoking scores
compared to offspring who were not exposed (P = 8.41
x 107%; Fig. 1c) [23, 34]. Taken together these analyses
highlight the utility of using DNA isolated from neonatal
blood spots to generate reliable DNA methylation data
that can robustly identify exposure/trait-associated
variation.

Methylomic variation in perinatal blood is not
significantly associated with childhood autism

Our initial analysis focused on identifying neonatal
blood DNA methylation differences among MINERVA
neonates who went on to later develop a childhood
diagnosis of ASD. No global differences in DNA methy-
lation—estimated by averaging across all probes on the
array included in our analysis—were identified between
ASD patients (N = 629) and controls (N = 634) (ASD
mean = 50.0%, ASD sd = 0.0811%; controls mean =
50.0%, controls sd = 0.0917%; t-test P = 0.695). Using a
linear model to identify DNA methylation differences in
ASD cases compared to controls we did not identify any
differentially methylated positions (DMPs) passing an
experiment-wide significance threshold adjusted for mul-
tiple testing (P < 1 x 1077). Twenty ASD-associated DMPs
were identified at a “discovery” threshold of P < 5 x 10
(Additional file 1: Figures S5 and S6; Additional file 2: Table
S2); the most significant association was at cgl12699865,
which is located the 5" UTR of RALY where the mean level
of DNA methylation was 0.647% lower (P = 7.63 x 1077) in
ASD cases compared to controls (Additional file 1: Figure
S7). Regional analysis combining the EWAS P values for
DNA methylation sites within a sliding window across the
genome (see “Methods”) did not identify any significant
ASD-associated DMRs after correcting for multiple testing.
Given the higher prevalence of ASD diagnosis in males, we
also tested for an interaction between autism status and sex
but identified no significant associations (P < 1 x 1077) and
only seven DMPs at our discovery threshold of P < 5 x 10
~ (Additional file 2: Table S3).

We next meta-analyzed these findings with summary
statistics from 450K array measurements for two US-based
studies of autism—the Study to Explore Early Develop-
ment (SEED) [51] and Simons Simplex Collection (SSC)
[52]. Although neither of these datasets was generated on
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Fig. 2 A cross-cohort meta-analysis finds little evidence of aut-
ism-associated methylomic variation in neonatal and childhood blood
samples. a Manhattan plot of P values from the autism EWAS meta-
analysis (total n = 2917). P values were calculated using Fisher's
method for combining P values; solid circles indicate sites where the
direction of effect was consistent across all contributing cohorts, empty
triangles indicate where there were different directions of effect in at
least two studies. The red horizontal line indicates experiment-wide
significance (P < 1 x 107). The blue horizontal line indicates a more
relaxed "discovery" threshold (P < 1 X 107°). b Forest plot of
€g03618918, the most significant DNA methylation sites associated
with ASD in the meta-analysis. The effect is the mean difference in
DNA methylation between autism cases and controls. The sizes of
the boxes are proportional to the sample size of that cohort

blood samples collected immediately after birth, they en-
abled us to assess a combined sample size of 1425 ASD
cases and 1492 controls (Additional file 2: Table S4). We
first took the top ranked loci identified in each independ-
ent study and compared the directions of effect (i.e., differ-
ence between autism and controls); we did not find any
excess of consistent associations (all sign test P > 0.05;
Additional file 1: Figure S8; Additional file 2: Table S5).
Second, we combined the P values from the EWAS results
of the three samples using Fisher’s method (Fig. 2a;
Additional file 1: Figure S9). There were no sites where the
combined P value survived correction for multiple testing
(P < 1 x 107), although 45 ASD-associated DMPs were
identified at the discovery P value threshold (P < 5 x 107°)
(Additional file 2: Table S6). The most significant DNA
methylation site, based on a consistent direction of effect
across all three studies, was cg03618918 (combined P =
3.85 x 1077; pooled mean = 1.17%; Fig. 2b), located ~ 10 kb
from ITLNI. In general, the estimated effects of ASD-asso-
ciated DMPs (P < 5 x 107°) was very small (Additional
file 1: Figure S10), typically ~ 1% difference between ASD
and controls. Taken together, these data suggest that, based
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on the sites assayed by the 450K array, ASD is not associ-
ated with robust methylomic signatures in blood obtained
during early childhood.

Increased polygenic burden for autism is associated with
methylomic variation in blood at birth

Like many complex diseases, individual genetic variants as-
sociated with autism explain only a small proportion of an
individual’s risk [6, 56]. Polygenic risk scores (PRSs), which
essentially count the number of risk alleles across multiple
associated loci, have been used successfully to capture the
polygenic architecture of complex traits, including autism
[47]. PRS have been used to establish genetic correlations
between traits [6] and there has been recent interest in
using PRS as a quantitative variable to identify molecular
biomarkers of high genetic burden [34, 57, 58]. PRS-
associated epigenetic variation is potentially less affected
by non-genetic risk factors for the disease itself, which can
confound case—control analyses, although pleiotropic
effects of these genetic variants, which may themselves
influence DNA methylation, cannot be excluded. We
generated autism PRSs for individuals in the iPSYCH-
MINERVA sample using recent results from a meta-analy-
sis of samples in the PGC-AUT GWAS [13] excluding the
subset of individuals included the MINERvVA cohort (1 =
45,162; 39.4% autism cases). Individual PRSs were
calculated using a range of different GWAS P value thresh-
olds (pr = 5 x 1078, ..., 1) to identify the optimal set of
SNPs with the largest difference between ASD cases and
controls in MINERvVA. All scores based on P values <1
significantly predicted autism status (P < 0.05; Additional
file 2: Table S7; Additional file 1: Figure S11), with a PRS
based on pr = 0.1 having the most significant difference (P
= 9.49 x 107'%) between ASD cases and controls (Fig. 3a).
There was a strong positive correlation between scores
based on SNPs selected at relatively relaxed significance
thresholds (ie., pr > 0.001; Additional file 1: Figure S12),
with weaker correlations between scores based on more
limited (but more strongly associated) sets of variants, po-
tentially reflecting the more dramatic effect a single SNP
has on the PRS when the total number of SNPs is small.
We next performed an EWAS of ASD PRS (Additional
file 1: Figure S13; Additional file 1: Figure S14), observing
strong correlations (r > 0.5) between the results of analyses
of scores based on pt > 0.01 (Additional file 1: Figure S15).
Examples of PRS-associated DMPs identified using the
most predictive ASD PRS (pr < 0.1) are shown in
Additional file 1: Figure S16; in total, we identified two
DMPs significantly associated (P < 1 x 1077) with elevated
polygenic burden (cg02771117, P = 3.14 x 10°%
cg27411982, P = 8.38 x 10°®), with 49 DMPs associated at
a more relaxed “discovery” P value threshold (P < 5 x 107°)
(Fig. 3; Additional file 3: Table S8). Both ¢g02771117 and
€g27411982 are located on chromosome 8, but are ~ 5 kb
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Expected —logio(p)

r=0.82

Fig. 3 Polygenic burden for autism is associated with significant variation in DNA methylation at birth. a Density plot of polygenic risk score (PRS;
pr = 0.01) split by ASD case control status. b Q-Q plots of the ASD PRS (pr = 0.01) EWAS analysis in neonatal blood DNA. ¢ Manhattan plot of the
ASD PRS (pr = 0.01) EWAS analysis in neonatal blood DNA. The red horizontal line indicates experiment-wide significance (P < 1 x 107); blue horizontal
line indicates a “discovery” significance threshold (P < 5 x 107). Scatterplots of experiment-wide significant CpG sites where DNA methylation (y-axis)

atd cg02771117 and e cg27411982 is correlated with ASD PRS (x-axis). Red points indicate ASD cases, green points indicate controls. f Scatterplots of —log10
P value from the EWAS of ASD PRS comparing the results from an analysis performed in all individuals (x-axis) against the results from an analysis performed

a ASD b
Control
©
=3
o
w © -
=1
o
3 2
oS £
2z S
2 T
a 8 H]
o 4
o
4
o~ O
o
e Y
S
o
o
S o
o
T T T T
-100 -90 -80 -70 -60
PRS
- 8 +
3 ?
T,
o e b
" 12 13 14 \5 |6 17 19
Chromosome
d €g02771117 e cg27411982
FAM167A;C8orf12 RP1L1
P = 3 14e-0 P = 8 38e-0
o
~
w0
4
5 © S
2 4 N 2 T
s o S8 2 8- XSS AN
£ o < . £ 2 T
] e ] » gy
E > ® E e
$ 2 5. ER %
(=] (=]
3 B
o
™ o
2
o
o~ T T T T T T T T T T
-100 -90 -80 70 -60 -100 -90 -80 -70 -60
PRS PRS
separately for cases and controls and then combined with a meta-analysis (y-axis)

Meta-analysis

All

apart and annotated to two different genes (FAM167A and
RPILI, respectively). Differential DNA methylation at these
sites on chromosome 8 is identified in each of the eight
most inclusive ASD PRS EWAS analyses (i.e., those using
the most relaxed GWAS P value threshold; Additional
file 1: Figure S14). Of note, both DMPs flank a significant
genetic association signal identified in the latest ASD
GWAS (Additional file 1: Figure S17). We used
ChromHMM classifications [59, 60] based on regulatory
data from the Roadmap Epigenomics Project (http://
www.roadmapepigenomics.org) [61] to characterize
chromatin states across this region (Additional file 1:
Figure S18). The index SNP for the GWAS signal is in a

region predicted to be characterized by a repressed poly-
comb state in blood and a quiescent/low state in brain.
One of the ASD PRS-associated DNA methylation sites
(cg02771117) is located in a predicted enhancer region,
and the other (cg27411982) is in a region of predicted qui-
escent/low chromatin state. To establish whether the PRS-
associated methylation signal in this region reflected direct
effects of the GWAS signal itself, we iteratively added PRS
variants within 100 kb of these two sites as covariates in
our EWAS in order of significance (see “Methods”). After
the addition of the four most significant genetic variants,
which were independently associated with ¢g02771117
(Additional file 1: Figure S19), the ASD PRS term was no
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longer significant (P = 0.0518; Additional file 2: Table S9).
In contrast ¢g27411982 was still nominally significant even
after the addition of 12 ASD-associated SNPs, four of
which were independently associated and largely explained
the association between the ASD PRS and DNA methyla-
tion (Additional file 1: Figure S20; Additional file 2: Table
S10). These data suggest that the PRS-associated variation
in DNA methylation at both ¢g02771117 and cg27411982
results from the combined effects of multiple genetic
variants associated with ASD in this region. In order to
demonstrate that the PRS EWAS results are not simply a
consequence of the ASD cases within the full MINERVA
sample, we repeated the analysis separately for cases and
controls. P values from this approach were strongly
correlated with those for the analysis across all samples
(Additional file 1: Figure S21), indicating that the methylo-
mic consequences of high genetic burden are largely
consistent across both groups.

Alignment of DNA methylation quantitative trait loci and
ASD genetic signals

None of the GWAS-AUT identified genetic variants tag
known nonsynonymous mutations; consistent with other
complex phenotypes it is likely that disease-associated
variants instead influence the regulation of gene expres-
sion [14, 62]. Building on our previous work showing
how DNA methylation quantitative trait loci (mQTLs)
can be used to refine GWAS loci through the
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identification of discrete sites of variable methylation as-
sociated with disease risk variants [30, 34], we used the
matched MINERVA DNA methylation and genetic data
(see “Methods”) to identify mQTL located in the vicinity
of ASD-associated GWAS variants (Fig. 4; Additional
file 1: Figure S22). Simply aligning mQTL data with
GWAS results is not sufficient to infer that there is a re-
lationship between ASD and DNA methylation in these
regions; instead it may reflect two distinct causal variant-
s—one associated with ASD and the other with DNA
methylation—in strong linkage disequilibrium. To estab-
lish whether there was evidence of a single causal variant
influencing both DNA methylation and ASD in the re-
gions nominated by the GWAS we performed a Bayesian
co-localization analysis [55]. Briefly, this approach com-
pares the pattern of association results from two independ-
ent GWAS (ie, of ASD and DNA methylation) to see if
associations colocalize to the same causal variant. We con-
sidered mQTL data for 457 unique DNA methylation sites
located within 250 kb of three independent autosomal
ASD GWAS variants. The posterior probabilities involving
91 of these sites were supportive of a co-localized associ-
ation signal for both ASD and DNA methylation (PP; +
PP, > 0.99; Additional file 3: Table S11). Four of these sites
located on chromosome 20 had a higher posterior
probability for both ASD and DNA methylation being as-
sociated with the same causal variant compared to them
being associated with different causal variants (PP,/PP; >
1; Additional file 1: Figure S23). The genes annotated to

-
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Fig. 4 DNA methylation quantitative trait loci (mQTL) mapping can localize putative causal loci associated with ASD. Presented here is a genomic
region (chr8:10268916-10,918,152) identified in a recent GWAS analysis of ASD [13]. At the top of the figure is a schematic detailing the genes
located in this region which are identified by their Entrez ID number. All genetic variants identified in the ASD GWAS (P < 1 x 107 are

1
10918152

represented by vertical solid lines where the color reflects the strength of the association ranging from gray (less significant P values) to black
(more significant P values). A red vertical line indicates the most significant genetic variant in this region. All DNA methylation sites tested for
neonatal blood mQTL in the MINERVA dataset are indicated by red vertical lines and genetic variants by blue vertical lines. Significant neonatal
blood mQTLs (P < 1 x 107"?) are indicated by black diagonal lines between the respective genetic variant and DNA methylation site. Genomic
locations are based on hg19. Additional examples of mQTLs in genomic regions showing genome-wide significant association with ASD are
given in Additional file 1: Figure 522




Hannon et al. Genome Medicine (2018) 10:19

these sites (KIZ, XRN2, and NKX2-4) represent putative
candidates for a potential functional role in ASD and
warrant further investigation.

Discussion
In this study, we quantified neonatal methylomic variation
in 1263 infants selected from the iPSYCH cohort [38] in-
cluding samples from individuals who went on to develop
ASD and carefully matched control samples. It represents
the first attempt to integrate analyses of both genetic and
epigenetic variation at birth in ASD, demonstrating the
utility of using a polygenic risk score to identify molecular
variation associated with disease, and of using DNA
methylation quantitative trait loci to refine the functional
and regulatory variation associated with ASD risk variants.
While ASD itself was not associated with significant
differences in neonatal DNA methylation, at an
experiment-wide significance threshold, increased poly-
genic burden for autism was found to be associated with
methylomic variation at specific loci in blood at birth. Our
analysis of ASD PRS and DNA methylation supplements
an increasing body of literature investigating the effects of
high genetic burden for other complex traits on molecular
variation [34, 57, 58]. We find that two CpGs located on
chromosome 8 are associated with genetic risk for ASD,
and are proximal to a robust GWAS signal for ASD. Fur-
thermore, multiple associated SNPs on chromosome 8
have a polygenic effect on DNA methylation at these two
CpG sites, demonstrating how a complex genetic architec-
ture can converge on a common molecular consequence.
This study has several advantages over previous analyses
of DNA methylation in ASD. We assessed a relatively
large set of samples that is balanced with regard to both
disease status and numbers of males and females. This
contrasts with previous studies that have been undertaken
on much smaller numbers of samples and focused primar-
ily on ASD in males. Our control samples were stringently
matched to cases on the basis of a number of criteria (see
“Methods”) to minimize the effects of confounding
variables that often lead to false positives in molecular
epidemiology. Furthermore, our use of neonatal DNA
samples—collected before diagnosis and the manifestation
of any ASD symptoms—means that we are uniquely posi-
tioned to identify epigenetic variation associated with later
disease or elevated polygenic burden for later ASD, avoid-
ing the confounding exposures often associated with
disease (for example, medication, stress, and reverse caus-
ation) [63]. Finally, our study profiled whole blood from
neonatal infants rather than cord blood; this minimizes
confounding by maternal blood DNA and means our data
can be more easily compared to blood datasets derived
from later in life. A limitation of our sampling strategy,
however, is that no blood cell reference DNA datasets
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specifically for use on neonatal blood are yet available,
likely reflecting the difficulties of obtaining sufficient vol-
umes of neonatal blood for cell sorting and methylomic
profiling. Instead, we corrected for blood cell-type com-
position using algorithms developed using adult datasets
which may not fully represent the cellular diversity ob-
served in neonatal blood.

We find little evidence to support an association between
DNA methylation at birth and ASD, confirming this find-
ing in a meta-analysis of three studies with a total sample
of 2917. Power calculations show that we have >90%
power in our meta-analysis to identify an ASD-associated
difference of 0.3% and a difference of 0.7% in the MIN-
ERVA cohort alone. While this suggests the lack of
association was not due to sample size, we cannot fully
conclude that DNA methylation is not associated with the
onset of ASD. First, our analyses were constrained by the
technical limitations of the Illumina 450K array, which only
assays ~ 3% of CpG sites in the genome. Second, this work
necessitated the use of a peripheral tissue that may provide
limited information about variation in the presumed tissue
of interest, i.e, the brain [64]. Although this is a salient
point for understanding the role DNA methylation plays in
the disease process, biomarkers—by definition—need to be
measured in an accessible tissue and therefore justify the
use of blood from neonates in this study. Third, given the
chronology of sample collection prior to ASD diagnosis, it
is plausible that we were looking too early on in the disease
process. Another limitation of our study is the possibility
of diagnostic misclassification; however, validation of select
diagnoses (e.g., schizophrenia, single-episode depression,
dementia, and childhood autism) has been previously
performed with good results [39, 65].

In contrast, we find that polygenic burden for ASD is
robustly associated with DNA methylation at two CpG
sites on chromosome 8, with 49 DMPs associated with
ASD polygenic burden at a more relaxed “discovery” P
value threshold. Of note, both sites flank a significant
genetic association signal identified in the latest ASD
GWAS and our data suggest that the PRS-associated
variation at these sites results from the combined effects
of multiple genetic variants associated with ASD in this
region. Finally, we have used mQTL analyses to annotate
this extended genomic region nominated by GWAS ana-
lyses of ASD, using co-localization analyses to highlight
potential regulatory variation causally involved in
disease. Of interest, we found evidence that several SNPs
on chromosome 20 were associated with both ASD and
DNA methylation and the genes annotated to these sites
(KIZ, XRN2, and NKX2-4) represent putative candi-
dates for a potential functional role in ASD. The mecha-
nisms linking DNA sequence variation to alterations in
DNA methylation and other epigenetic modifications are
not yet well understood; further exploration of these
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processes is warranted to provide insight into the
functional consequences of disease-associated genetic
variation.

Conclusions

Our data provide evidence for differences in DNA
methylation at birth associated with an elevated poly-
genic burden for ASD. Our study represents the first
analysis of epigenetic variation at birth associated with
autism and highlights the utility of polygenic risk scores
for identifying molecular pathways associated with
etiological variation.
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