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Abstract: Modern large telescopes are built based on the effectiveness of adaptive optics systems in
mitigating the detrimental effects of wavefront distortions on astronomical images. In astronomical
adaptive optics systems, the main sources of wavefront distortions are atmospheric turbulence and
mechanical vibrations that are induced by the wind or the instrumentation systems, such as fans
and cooling pumps. The mitigation of wavefront distortions is typically attained via a control law
that is based on an adequate and accurate model. In this paper, we develop a modelling technique
based on continuous-time damped-oscillators and on the Whittle’s likelihood method to estimate
the parameters of disturbance models from wavefront sensor time-domain sampled-data. On the
other hand, when the model is not accurate, the performance of the minimum variance controller is
affected. We show that our modelling and identification techniques not only allow for more accurate
estimates, but also for better minimum variance control performance. We illustrate the benefits of
our proposal via numerical simulations.

Keywords: adaptive optics; wavefront sensor; disturbances; modelling; identification; minimum
variance controller; Whittle’s likelihood

1. Introduction

The last decades have marked the advent of the extremely large telescopes epoch in
ground-based astronomy, in which astronomical observatories have experienced a growth
in the aperture of their telescopes, see e.g., [1]. Currently, the Large Binocular Telescope
(LBT) in Arizona, USA, reaches a combined effective aperture of 11.9 m, whilst the Gran
Telescopio Canarias (GTC) in the Canary Islands, Spain, reaches an effective aperture of
10.4 m. This kind of modern telescopes is used for deep universe exploration as well as
sharp high-definition images. However, the attainment of such images is subject to the
inherent effects of the atmosphere and the vibrations of different equipment that are part
of the telescope, see e.g., [2].

Adaptive optics (AO) is an optical technique that is used to improve astronomical
images by compensating the effect of wavefront distortions caused by atmospheric tur-
bulences and mechanical vibrations [3,4]. AO systems are very sensitive to vibrations
acting in the propagation of the light [2,5,6]. Mechanical vibrations are typically induced
by wind or elements within the instrumentation of the system, such as fans and cooling
pumps. Hence, the modelling and mitigation of disturbances are a subject of increasing
importance in many observatories [2,7–10]. This mitigation is achieved by deforming a
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deformable mirror (DM) in order to compensate the optical aberrations that are measured
by a wavefront sensor (WFS), which, in turn, implies the need for both an accurate model
of the complete AO system and adequate controllers.

In order to improve the quality of ground astronomical images, it is essential to obtain
accurate models that define the dynamics of the plant that is comprised of the cascade
connection of the DM and the WFS [11–13] and the accurate model parameters of all sources
of noise and disturbances (turbulence and vibrations) that allow for implementing effective
control techniques. For large telescopes (>8 m), disturbances become even more relevant,
since the larger structures of this type of telescopes naturally oscillate according to different
modes. In fact, disturbance mitigation is one of the key challenges for the next generation
of extreme large telescopes [14,15].

In this paper, we focus on obtaining accurate disturbance models for the design of
a minimum variance controller (MVC) in AO systems to improve the performance of
the AO system. We present an extension of the work in [16–19] using continuous-time
autoregressive (CAR) damped oscillators to model the disturbance and the Whittle’s
likelihood technique to estimate the continuous-time parameters of the damped oscillators.
We focus on the estimation of the continuous-time model parameters since the continuous-
time model allows using different sampling intervals for the identification and the control
scheme, which is necessary for more advanced control techniques, see e.g., [20]. We also
analyse the impact of the disturbance model accuracy on the control performance, using a
discrete-time transfer function of the disturbances for the design of the controller. From
our analysis, we show that the control performance can drastically increase when the MVC
is obtained from more accurate models. In our simulations, the MVC control performance
improves in about 19% when the controller is designed using the model that was obtained
from our proposed identification technique.

The structure of the paper is as follows: In Section 2, a general description of a typical
AO system is presented. In Section 3, we present an equivalent AO system model and
the sampled-data model for the disturbances in AO systems. In Section 4, the proposed
sample-data model for the disturbances is presented. In Section 5, we show the disturbance
identification using the non-linear least square (NLS) fitting method. In Section 5, we also
introduce our proposed identification algorithm that is based on the Whittle’s likelihood
method to estimate the parameters of the continuous-time disturbance model. In Section 6,
we present the MVC design and evaluate the MVC performance subject to model error.
Numerical results are presented in Section 7, where we show the benefits of our proposed
model and identification algorithm in terms of the MVC performance. Finally, we present
conclusions in Section 8.

2. AO Systems

Figure 1 shows the classical model of an AO system used in astronomy. This AO
closed-loop system consists of a wavefront sensor, a deformable mirror (Mc(s)), a controller
(K(z−1)), and a zero order hold (ZOH) [6,21,22], where s = d

dt should be understood as the
derivative operator or the argument of the Laplace transform, and z is either the forward
shift operator (zϕk = ϕk+1) or the argument of the Z-transform. The continuous-time
signals ϕTot(t), ϕcor(t) and ϕres(t) are the total disturbance (the amplitude of the disturbed
wavefront; turbulence+vibrations), the correction disturbance (that corrects the wavefront),
and the residual disturbance, respectively. The disturbed wavefront ϕTot(t) is defined as
the sum of the atmospheric turbulence effect ϕtur(t) and the different vibration sources
effect ϕvibl (t), l = 1, ..., m [5,6,22]. That is:

ϕTot(t) = ϕtur(t) + ϕvib1(t) + ϕvib2(t) + · · ·+ ϕvibm(t), (1)

where m is the number of vibration sources. The signal ηk shown in Figure 1 is a discrete-
time additive zero-mean white Gaussian noise with variance σ2

η .
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Figure 1. Block diagram for an AO closed-loop system.

2.1. Wavefront Sensor

A wavefront sensor (Figure 2) is an optical device that is used to measure the aberra-
tions of an image. It consists of an array of lenses (lenslets) focused on an CCD or CMOS
array (image plane). The basic idea is to measure the displacement of the centroid with
respect to the ideal wavefront (planar wavefront) centroid position. Afterwards, using this
information we can obtain a reconstructed wavefront (a linear approximation). Because
only tilts are measured, the Shack–Hartmann wavefront sensor is not capable of detecting
discontinuous steps in the wavefront. The CCD o CMOS detector requires a period of
time (integration time) to accumulate enough photons to sample the wavefront and ob-
tain a centroid. This implies that the WFS integrates the incoming wavefront during the
integration time.

Figure 2. Wavefront sensor.

2.2. Deformable Mirror

A deformable mirror (DM) is an opto-mechanical reflective device that is capable of
deforming the shape of its surface (see Figure 3). The shape of the DM can be controlled to
correct the optical aberrations that are measured by a wavefront sensor in an AO system.
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This correction depends of the number of actuators, the actuator pitch (distance between
actuator centres), the actuator stroke (maximum possible actuator displacement), the
unfluence function i(characteristic surface shape corresponding to a single actuator), and
the actuator coupling (displacement of the neighbours actuators).

Figure 3. Operation of a deformable mirror.

2.3. AO Controller

The controller in an AO system sends the adequate signal to the deformable mirror to
correct the disturbed wavefront that was measured by the WFS. Because the computation
of the controller is demanding, the wavefront aberrations are represented by a linear
combination of orthogonal basis elements. This linear combination allows for the separation
of the control problem into independent modal controls, such as tip, tilt, and defocus [23,24].

The most used basis functions to describe aberrated wavefronts in optics are the
Zernike polynomials, from which we obtain several orthogonal modes [23]. On the other
hand, the varied nature of disturbances are perceived in different ways. For example, the
mechanical vibration that is caused by excitations of on-site instruments usually exhibits
narrow-band high-frequency components, the structural responses of large telescopes
are within a low frequency band of natural resonances, and the atmospheric turbulences
exhibit a (roughly) constant component below a corner frequency and a roll-off at high
frequency on a Zernike basis [25]. In addition, the compensation of tip and tilt are one of
the main tasks of AO [2,23,26]. Hence, an adequate identification of the disturbance source
model is of great interest, which, in turn, allows for the development and implementation
of effective control techniques.

A proportional-integral (PI) controller is a widely used control algorithm in AO [27–29].
However, with the construction of extremely large telescopes, the demanding require-
ments and challenging features increase, which causes the new generation of AO sys-
tems to require the implementation of more sophisticated identification and control tech-
niques [1], such as linear-quadratic Gaussian (LQG) [1,5,7,29], minimum variance control
(MVC) [26,30], or model predictive control (MPC) [31]. Notice that, in [26], the authors
show that MVC is an equivalent representation of the typically used LQG controller for
AO systems.

3. Disturbance Model in AO Systems

Typically, in the AO literature, the modelling and identification of disturbances in AO
systems have been addressed using a second-order auto-regressive (AR(2)) discrete-time
model with both time-domain data [26,29,32] and frequency-domain data [6,7,33–35]. In
particular, in [35], an identification approach using a NLS fitting method was presented.
This approach was successfully used to design a control strategy to mitigate the vibra-
tions. Nevertheless, this model can present low accuracy at high frequencies (in the range
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[4Fs/10, Fs/2], where Fs is the sampling frequency). This, in turn, can lead to an unsatisfac-
tory control performance in this high frequency range, especially for large telescopes. This
behaviour is not desirable, since, for instance, high-order aberrations can be induced by
misaligned components in an the AO system [23].

3.1. Equivalent AO System Model

In AO systems for astronomical observation, the WFS integrates the residual phase
ϕres(t) during a time interval [tk−1, tk], where tk is a sampling time, accumulating photons
over a time interval ∆ [22]. Thus, the discrete-time residual phase is given by:

ϕres
k =

1
∆

∫ tk

tk−1

ϕres(t)dt; tk = k∆, (2)

where k ∈ N0 and ∆ represent the sampling period. The corresponding discrete-time
transfer function of the WFS in Equation (2) is given by [22]:

D(z−1) = D0z−µ, (3)

where D0 is the gain and µ is the measurement delay.
Typically, the transfer function of the DM is modelled as the following discrete-time

transfer function [5,11,22,26,35]

M(z−1) = M0z−τ , (4)

where M0 is the gain and τ is the correction delay.
On the other hand, we consider that all of the elements in Figure 1 are linear. Subse-

quently, ϕres
k is a linear function of the past values of ηk. The output of the system presented

in Figure 1 is given by

yk = D0 ϕres
k−µ + ηk, (5)

where ϕres
k is the discrete-time residual phase that is given by:

ϕres
k = ϕTot

k − ϕcor
k , (6)

and ηk is a zero-mean white Gaussian noise. Subsequently, the variance of the output yk is
given by:

var{yk} = σ2
η + D2

0 var
{

ϕres
k−µ

}
, (7)

thus, minimising the variance of yk is the same as minimising the variance of ϕres
k . Based

on the equivalent block diagram for the AO system shown in Figure 1 that was presented
in [26], a simple control system theory interpretation of this diagram is shown in Figure 4,
where K(z−1) is the discrete-time transfer function of the controller, M(z−1) is the DM
discrete-time transfer function, D(z−1) is the WFS discrete-time transfer function, uk is
the output of controller, and yk is the system output. Note that G(z−1) is the equivalent
discrete-time transfer function of the plant.

When considering the equivalent block diagram shown in Figure 4, the output signal
is given by:

yk = −D0 ϕcor
k−µ + χk, (8)

where
χk = ηk + D0 ϕTot

k−µ, (9)

corresponds to the disturbances of the AO system. Subsequently,

yk = D0

[
ϕTot

k−µ − ϕcor
k−µ

]
+ ηk. (10)
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Note that ϕTot
k can be modelled in different ways. In Section 3.2 we present the

typical model utilised in AO systems. In Section 4, we present our proposed model for
the disturbances.

+ +K(z−1) M(z−1)
ukRef = 0

χk
yk

−

ηk
+

ϕTot
k

D(z−1)

D(z−1)

ρk

G(z−1)

Figure 4. Equivalent block diagram model for AO system. The auxiliary variable ρk = −ϕcor
k .

3.2. Classical Sampled-Data Model for Disturbances in AO Systems

Typically the continuous-time AO disturbance model is expressed, as follows [22]:

ϕTot(t) =
m

∑
l=0

βl
s2 + 4ζlπαls + (2παl)2 ν̇l(t),

=
m

∑
l=0

βl

s2 + 2ζlvls + v2
l

ν̇l(t), (11)

where βl is the gain, αl (Hz) is the natural frequency, ζl is the damping coefficient, and ν̇l(t)
is a continuous-time zero-mean white Gaussian noise with variance σ2

l = 1δD(t), ∀l (δD(t)
is the Dirac delta). We assume that the noises ν̇l(t), l = 0, · · · , m are jointly uncorrelated.
We use (vl = 2παl) for simplicity in the presentation.

In AO, the disturbances in discrete-time are typically modelled as:

ϕTot
k =

m

∑
l=0

Hl(z−1)ε l,k, (12)

where ε l,k is a zero-mean white Gaussian noise with variance σ2
ε l,k

= 1, ∀l, jointly indepen-
dent, H0(z−1) is the discrete-time transfer function that is associated with the turbulence
term and Hl(z−1), l = 1, · · · , m, and the transfer function associated with the vibrations
terms. The discrete-time transfer function Hl(z−1) is modelled using the following approx-
imated auto-regressive (AR(2)) discrete-time representation [5–7,11,26,34,35]:

Hl(z−1) =
γl

1− a1l z
−1 + a2l z

−2 , (13)

where γl , a1l and a2l are the parameters for the autoregressive model. For the vibrations
models, the parameters are defined by:

a1l = 2e−ζl vl ∆ cos
(

vl

√
1− ζ2

l ∆
)

, (14)

a2l = −e−2ζl vl ∆. (15)

Remark 1. In the approximated model, the mathematical expression for the gains γl in (13) are
not provided in the AO literature. Thus, they have to be estimated from the experimental data.
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The atmospheric turbulence is typically assumed to be time-invariant and statistically
stationary for a fixed period of time [36–38]. This condition is referred to as the frozen-law
approximation. It is widely understood that the model of the turbulence is very complex
and a very accurate model will lead to a high computational load for AO systems. It has
been shown in [6,39] that an adequate relaxation of the model can be achieved by fitting
models that are simple enough for understanding (modelling) the corresponding phase
distortion and carrying out fast computations (of the controllers), such as AR(1). In [40], it
was shown that the AR(2) models better describe second order statistics of the atmospheric
turbulence. In addition, in [20,34], an AR(2) model for the turbulences mode was proposed
with the following parameters:

a10 = 2e−ζ0v0T cos
(

v0

√
1− ζ2

0T
)

, (16)

a20 = −e−2ζ0v0T , (17)

v0 = 0.6π(n(i) + 1)
V0

D , (18)

where n(i) is the radial order of the Zernike mode i, T is the exposure time of the system,
D is the aperture diameter, and V0 is the wind constant velocity. Hence, in this paper, we
model the atmospheric turbulence as a second order system.

Remark 2. In the case that the atmosphere can be modelled as a sum of second order systems, our
identification technique could be used to adequately estimate such a model provided the numbers of
second order systems is sufficiently large enough.

4. Proposed Modelling for Disturbances

In this section, we present a methodology to obtain an exact sampled-data model of
the continuous-time disturbance model in Equation (11). The model in Equation (11) can
be represented in state-space form as a CAR system:

ẋ(t) = Acx(t) + κcΨc(t), (19)

ϕTot(t) = ḃ(t) = Ccx(t), (20)

where Ac ∈ R2m×2m, x(t) ∈ R2m×1, κc ∈ R2m×m, Ψc ∈ Rm×1, Cc ∈ R1×2m, m is the number
of damping oscillators used, and the noise variance is Qc = κcκc

T . These continuous-time
system matrices are given by:

Ac =


0 1 0 · · · 0
−v2

1 −2ζ1v1 0 · · · 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · −v2

m −2ζmvm

, (21)

κc =



0 . . . . . . . . . 0

β1 0 . . . . . .
...

0 0
. . . . . .

...
... β2

. . . . . .
...

... 0
. . . . . .

...
...

... 0
. . .

...
...

...
...

. . . 0
0 0 0 0 βm



, Ψc(t) =


ω̇1(t)
ω̇2(t)

...
ω̇m(t)

, (22)
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Cc =
[

1 0 1 0 · · · 1 0
]
, (23)

where the vertical lines that are shown in Equation (23) represent the grouping of duple
elements, corresponding to each term of the sum in Equation (11).

Note that it is necessary to define the auxiliary variable ḃ(t) to obtain the exact discrete-
time model [41].

We consider that the WFS integrates the residual phase in order to obtain the sampled-
data model for the continuous-time disturbance model in Equation (11):

ϕres
k =

1
∆

∫ tk

tk−1

ϕres(t)dt, (24)

this could be understood as an averaging anti-aliasing filter (AAF) that is used before taking
samples (see [17,42]). For this kind of sampling, we define a system with an extended
state X (t) =

[
xT(t) b(t)

]T [41]. Subsequently, the continuous-time state-space model is
as follows:

Ẋ (t) = A X (t) +
[

κc
0

]
Ψc(t), (25)

where

A =

[
Ac 0
Cc 0

]
. (26)

Thus, the corresponding discrete-time state equation model is given by [41]:

Xk+1 = eA ∆Xk + nk+1, (27)

if we consider that Ac is invertible, we have the following result [43]:

eA ∆ =

[
eAc∆ 0

Cc A−1
c (eAc∆ − I) I

]
, (28)

where I is the identity matrix and nk+1 is a correlated discrete-time zero-mean white
Gaussian noise with variance Q [41,44],

nk+1 =
∫ ∆

0
e
[

Ac 0
Cc 0

]
ξ
[

κc
0

]
Ψk+1−ηdξ. (29)

The variance Q and the exponential matrix can be obtained using that presented
in [45]:

e
[
−A Q∗c

0 A T

]
∆
=

[
P11 P12
0 P22

]
, (30)

where:

Q∗c =

[
κc
0

][
κc
0

]T

, (31)

then,

eA ∆ = PT
22, (32)

Q =
∫ ∆

0
eA ξ Q∗c eA ξT

dξ = PT
22P12, (33)

=

[
Q11 Q12
QT

12 Q22

]
,

where Q11 ∈ R2m×2m, Q12 ∈ R1×2m and Q22 ∈ R1×1.
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Thus, we have that[
xk+1
bk+1

]
=

[
eAc∆ 0

Cc A−1
c (eAc∆ − I) I

][
xk
bk

]
+ n(tk+1), (34)

xk+1 = Axk + wk+1,

ϕTot
k+1∆ = bk+1 − bk = Cxk + vk+1,

(35)

where:

A = eAc∆, (36)

C = Cc Ac
−1{A− I}, (37)

and the signals wk+1 and vk+1 are correlated discrete-time zero-mean white Gaussian noises
with covariance matrix Q.

Remark 3. If we represent the plant (G(z−1) = M(z−1)D(z−1)) in state-space form as:

ẋp(t) = Apc x(t) + Bpc , (38)

ḃp(t) = Cpc xp(t), (39)

where a ZOH and an averaging AAF are utilised, then the corresponding discrete-time system is
given by [41]:

xpk+1 = Apxpk + Bpuk, (40)
bpk+1 − bpk

∆
= Cpxpk + Dpuk, (41)

where:

Ap = eApc ∆, (42)

Bp =
∫ ∆

0
eApc ξ Bpc dξ, (43)

Cp =
1
∆

∫ ∆

0
eApc ξ dξ, (44)

Dp =
1
∆

Cpc

∫ ∆

0

∫ ξ

0
eApc φdφdξ. (45)

On the other hand, the design of controllers, such as MVC, typically require only
one discrete-time transfer function with one noise signal. In order to obtain this, we need
to compute the spectral factorization H(z−1) [46] via numerical approximation, solving
a Riccati equation [46–48]. Subsequently, the proposed model of the disturbances is as
follows (for more details on spectral factorization, see [46] (pp. 71–78)):

ϕTot
k = H(z−1)ek, (46)

where ek is a discrete-time zero-mean white Gaussian noise with variance λ2. Note that
both H(z−1) and λ2 depend on the continuous-time parameters.

In order to develop an identification algorithm we define the discrete-time power
spectral density (PSD) as follows [34,35]:

S(eiωj∆) = |H(eiωj∆)|2λ2, (47)

where i =
√
−1, j = 1, 2, · · · , N and 0 < ωj ≤ 2π(Fs/2), and ωj = (2π j)/∆.

Finally, we summarize the procedure to obtain the discrete-time PSD shown in Algorithm 1.
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Algorithm 1 Discrete-time PSD

1: Obtain the continuous-time state-space model of the disturbances using Equations (19)
and (20)

2: Obtain the continuous-time state-space model of the extended system in Equation (25)
3: Compute the discrete-time state equation of the extended system in Equation (27)
4: Compute the discrete-time system matrices, A and C, of the disturbances using Equa-

tions (36) and (37)
5: Obtain the spectral factorization H(z−1) and λ2

6: Obtain the discrete-time PSD in Equation (47)

5. Identification of Disturbances

In this section, we present two forms to obtain the disturbance model parameters. First,
we show the method presented in [35], in which the typical AR(2) discrete-time disturbance
model is used (see Equation (13)). Next, we propose to use the Whittle’s likelihood method
to obtain the continuous-time disturbance parameters using the proposed model from the
previous section.

5.1. Nonlinear Least Square Fitting Method

In [35], the authors estimated the disturbance frequencies, the damping coefficients,
and the variances of the discrete-time noises (ε) signals assuming the model in Equa-
tion (12) and that the discrete gains were all equal to one. Using this method, in this paper,
we assume the noise variance σ2

ε = 1 for all disturbance components, and we identify the
disturbance frequencies, the damping coefficients, and the discrete gains. Despite these as-
sumptions differing from the original approach in [35], it can be successfully implemented,
since they are just a normalization procedure.

In order to formulate the NLS estimation algorithm, we define the vector of parameters
to be estimated,~θNLS, as follows:

~θNLS =
[
~ζT ~γT

]T
, (48)

where ~ζ = [ζ1 ζ2 · · · ζm]
T is the vector that contains all of the damping coefficients,

and ~γ = [γ1 γ2 · · · γm]
T is the vector that contains all of the discrete-time gains.

Following [35], we use the periodogram of the sampled-data and fit it with model
S̄l(e

iωj∆) in Equation (49). The different frequencies (Hz) in~α = [α1 α2 · · · αm]
T were

found in the periodogram as the frequency peaks.
The discrete-time PSD is given by:

S̄l(e
iωj∆) =

∣∣∣∣∣ γl

1− a1l e
−iωj∆ − a2l e

−2iωj∆

∣∣∣∣∣
2

, (49)

and the NLS cost function Fl(θNLS) is obtained from

εl(e
iωj∆) = 10 log

[
Il(e

iωj∆)

S̄l(e
iωj∆)

]
, (50)

where I(eiωj∆) is the periodogram of the sampled-data series ϕTot, and it is given by:

I(eiωj∆) =

∣∣∣∣∣ 1√
N

N

∑
t=1

ϕTot
t e−iωj∆

∣∣∣∣∣
2

, (51)

then,

Fl(~θNLS) =
1
2

εl(e
iωj∆)Tεl(e

iωj∆). (52)
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Note that the periodogram must be divided in m sections according to the frequencies
that were previously obtained, since each AR(2) system is fitted independently (not jointly)
of the others.

Finally, the estimation problem can be written as the following optimisation problem:

θ̂NLSl = arg min
~θNLSl

(Fl(~θNLS)), s.t.
{

0 < ζl < 1
γl > 0

, l = 0, · · · , m. (53)

5.2. Whittle’s Likelihood

The Whittle’s likelihood function is a widely used frequency-domain approximation
of the traditional likelihood function [49–51].

It is well known that the (time-domain) Whittle log-likelihood function is given by:

`N(~θ) = −
1
N

N

∑
j=1

log S(eiωj∆)− 1
N

N

∑
j=1

I(eiωj∆)

S(eiωj∆)
, (54)

where N is the data length and~θ is the vector of parameters to be estimated that is given by:

~θ =
[
~αT ~ζT ~βT

]T
, (55)

~α = [α1 α2 · · · αm]
T is the vector that contain all the natural frequencies (in Hz),

~ζ = [ζ1 ζ2 · · · ζm]
T is the vector that contains all the damping coefficients, and

~β = [β1 β2 · · · βm]
T is the vector that contains all the gains. In Equation (54) S(eiωj∆)

is the discrete-time PSD of the disturbances given in Equation (47) and I(eiωj∆) is the
periodogram that is given in Equation (51).

Notice that the Whittle log-likelihood is a function of the continuous-time system
parameters (to be estimated)~θ, since the spectrum S(eiωj∆) depends on them.

Afterwards, the ML estimation problem is given by:

θ̂ML = arg min
~θ
− `N(~θ), s.t.


0 <~α < Fs/2

0 < ~ζ < 1
~β > 0

. (56)

Finally, we summarize our identification technique in Algorithm 2.

Algorithm 2 Identification algorithm

1: Compute the periodogram I(eiωj∆) using Equation (51) with ωj = (2π j)/∆, and
j = 1, 2, · · · , N

2: Choose an initial guess θ̂(0)

3: Obtain the discrete-time spectrum S(eiω∆) in function of the vector of continuous-time
parameters~θ using the Algorithm 1

4: Define the Whittle’s likelihood using Equation (54)
5: Solve the ML estimation problem in Equation (56) e.g., using Matlab® fmincon function

6. MVC Performance in AO Systems
6.1. Minimum Variance Control Design

In classical AO, the goal is to mitigate the wavefront distortions that are caused by
atmospheric turbulences and mechanical vibrations in the astronomical images. That is
equivalent to minimising the continuous-time residual phase variance, var{ϕres(t)} [22].
However, in [22], the authors demonstrated that minimising the continuous-time residual
phase variance is equivalent to minimising the discrete-time residual phase variance,
var
{

ϕres
k
}

.
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The goal of MVC is to minimise the variance of the output signal var{yk} [42]. For sim-
plicity of the presentation, we consider that the measurement noise, ηk, is an independent
and identically distributed (iid) signal. We also assume that the atmospheric turbulence
ϕtur, the vibrations ϕvib, and the measurement noise η, are mutually independent. In this
setup, the measurement noise ηk is assumed negligible. The atmospheric turbulence and
vibrations will be modelled using the same model structure with different parameters.
Thus the output of the AO loop is given by:

yk = z−dD0M0uk + H(z−1)ek, (57)

where d = µ + τ and uk is the output of the controller. H(z−1) is the discrete-time transfer
function obtained from the spectral factorization [46] of the spectrum of the signal χk in
Equation (9). The signal ek is a zero-mean white noise with variance λ2 that is also obtained
from the spectral factorization procedure.

In order to obtain the MVC [42,52] we rewrite H(z−1) as

H(z−1) = F(z−1) + z−dR(z−1), (58)

where F(z−1) is a finite impulse response (FIR) filter that corresponds to the first d samples
of the impulse response of H(z−1), given by:

F(z−1) = 1 + f1z−1 + f2z−2 + · · ·+ fd−1z−(d−1), (59)

where fι is the ιth coefficient of the FIR filter F(z−1), and R(z−1) is a causal filter that can
be obtained from Equation (58):

R(z−1) =
(

H(z−1)− F(z−1)
)

zd. (60)

Finally the discrete-time transfer function of the minimum variance controller is given
by [42,52]:

K(z−1) =
R(z−1)

F(z−1)D0M0
, (61)

which corresponds to the controller in Figure 4.

6.2. Performance of MVC Subject to Model Error

It is well known that the performance of MVC is greatly affected by the accuracy of the
model utilised in the design of the controller [42]. In order to analyse the effect of model
error in its performance, we model the estimates of the disturbance transfer function in
terms of the true value and an error term as:

Ĥ(z−1) = H(z−1)
(

1 + HE (z−1)ϑ
)

, (62)

where H(z−1) is the true discrete-time transfer function and HE (z−1)ϑ is the multiplica-
tive model error. The subscript E indicates multiplicative errors, whilst the parameter ϑ
represents the gain of the multiplicative model error. When carrying out an identification
procedure, the gain of the multiplicative model error can be set to ϑ = 1 in order to obtain
and subsequently analyse HE (z−1). In some cases, a different set-up (e.g., a different
measurement noise variance) could lead to the same HE (z−1), but with a different gain.

In Table 1, we present the parameters of a continuous-time disturbance model that is
comprised of 6 oscillators. To evaluate the performance of the MVC for this model, it is
necessary to obtain the spectral factorization of χk by solving a Riccati equation [46–48].
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Table 1. The values used for six continuous-time damped oscillators.

αl(Hz) 2 14 20 29 43 60

ζl 0.9 0.05 0.05 0.05 0.05 0.05

βl(×104) 1.439 3.493 3.734 4.253 5.540 9.711

In order to illustrate the effect of the error term on the estimated disturbance transfer
function, we consider the continuous-time system (see Equation (11)) that is defined by the
parameters in Table 1. Utilizing Algorithm 1, we obtain the corresponding PSD. We estimate
the system model from the NLS method that is presented in [35] and, by fixing ϑ = 1, we
obtain the multiplicative model error (HE (z−1)) using Equation (62). Finally, we select
different values of ϑ and obtain the frequency response of the different multiplicative model
errors. Figure 5 shows these frequency responses. We observe that there is uncertainty
in the magnitude of the frequency peaks, since they correspond to the different natural
frequencies of the oscillators in the model. We consider this uncertainty as multiplicative
model error since the natural frequency of the disturbance (vl) are “easy” to obtain (e.g.,
using the power spectral density), but the damping coefficients (ζl) and the gains (γl) are
not necessarily easy to obtain.
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ϑ = 1
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Figure 5. Frequency response of the multiplicative model error HE (z−1)ϑ for different values of ϑ.

For a more detailed analysis, in Figure 6 we present the true frequency response of the
true disturbance discrete-time transfer function for this example and the estimated discrete-
time transfer function using the method in [35] (with ϑ = 1). The true system discrete-time
transfer function was obtained from the continuous-time equation in Equation (11), the
parameters in Table 1, and utilising Algorithm 1. We observe that, for some frequencies, the
phase exhibits a very different behaviour when compared to the true frequency response,
especially at low frequencies.

On the other hand, the performance of MVC can be obtained using the sensitivity
function (S) [23,42,48]. The sensitivity function represents the closed-loop transfer function
between the external perturbations and system output. The sensitivity function of the AO
system in Figure 4 is defined as:

S(z−1) =
1

1 + K(z−1)G(z−1)
, (63)

thus, when considering the disturbance model with uncertainty Ĥ(z−1) = F̂(z−1) +
z−dR̂(z−1), we obtain

S(z−1) =
F̂(z−1)

F̂(z−1) + z−dR̂(z−1)
=

F̂(z−1)

Ĥ(z−1)
. (64)
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If the true H(z−1) was known (Ĥ(z−1) = H(z−1)), the output of the system can be
obtained from the definition of the sensitivity as [48]:

ŷk = S(z−1)H(z−1)ek = F(z−1)ek. (65)

From the last expression, the variance of the output signal is given by:

vary0 = var{yk} =
(

1 + f 2
1 + f 2

2 + · · ·+ f 2
d−1

)
λ2. (66)

However, since we only have an estimation of H(z−1), defined as Ĥ(z−1), the expres-
sion for the output signal is given by:

ŷk = S(z−1)H(z−1)ek =
F̂(z−1)H(z−1)

Ĥ(z−1)
ek. (67)

Notice that the model mismatch between the true and estimated transfer functions
has the effect of increasing the output signal variance, Therefore, the identification of the
AO system is an important issue in the attainment of good control performance, which, in
turn, allows for improving the quality of astronomical images.
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Figure 6. Frequency Response of the true discrete-time disturbance transfer function and the es-
timated discrete-time disturbance transfer function. The solid blue line represents the frequency
response of the true disturbance model, H(z−1), and the dashed red line represents the frequency
response of the estimated model with ϑ = 1.
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6.3. Control Performance under Model Mismatch

In order to evaluate the impact of model accuracy on the control performance, we
define the following coefficient as a performance metric:

E =

(
varŷ

vary0

− 1
)

100 %, (68)

where varŷ is the output variance using the estimated disturbance transfer function Ĥ(z−1)
and vary0 is output variance obtain when the disturbance model matches the true distur-
bance, Ĥ(z−1) = H(z−1).

Finally, in order to illustrate the performance of MVC, we use a mirror gain M0 = 1
and WFS gain D0 = 1. We also select a measurement delay µ = 1 and correction delay
τ = 1, i.e., d = 2. Subsequently, using the true disturbance transfer function (H(z−1))
and the estimated disturbance transfer function Ĥ(z−1) we can obtain the sensitivity
function and the output variance to evaluate the performance of MVC. Table 2 shows the
performance (E) for different values of ϑ, where it is clear that ϑ = 0 is the ideal case, i.e.,
the estimated model without uncertainty. The E(%) denotes the percentage variation of
the output variance with respect to the ideal case. We observe that the model accuracy has
a big impact on the performance of MVC.

Table 2. Performance of MVC for different disturbance model.

ϑ 0 0.5 1 1.5

E(%) 0 3.85 16.52 44.79

7. Numerical Example

In this example, we consider the six damped oscillators that are shown in Table 1
(which corresponds to the numerical example presented in [26]), and we consider that this
is the true system. Figure 7 shows the discrete-time PSD of the disturbances, where we can
clearly observe the disturbance frequencies. Note that this example has a similar shape and
structure as the ones obtained during the 2014b observing run by the University of Arizona
MagAO Team on the night of 31 October 2014, at the Clay Telescope in Las Campanas
Observatory [26], which we include in Figure 8 for the completeness of the presentation.
However, the PSD in Figure 8 corresponds to the data that were obtained in closed-loop,
while the simulated data in Figure 7 are in an open-loop. Because of this fact, both of the
PSDs have the same resonance peaks, but different magnitudes.
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Figure 7. Discrete-time PSD
(
|H(eiωj∆)|2λ2

)
of the disturbance signal.
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Figure 8. Discrete-time PSD of the turbulence-plus-vibrations perturbation signal in the Clay Tele-
scope at the Las Campanas Observatory. 2014b observing run by the University of Arizona MagAO
Team on the night of 31 October 2014.

7.1. Disturbance Identification

We identify the continuous-time system parameters from a set of simulated data
(generated with the six damped oscillators shown in Table 1) using the proposed system
model in Equation (46) with the Whittle’s likelihood identification technique, and the
system model in Equation (13) with the NLS fitting method proposed in [35]. We utilise a
sampling period of ∆ = 5 ms, 100 Monte-Carlo (MC) simulations, and two data lengths,
namely N = 500 and N = 1000. The estimation problems in Equations (53) and (56) are
solved with a local optimisation algorithm using the Matlab® function fmincon, setting the
interior-point algorithm, the continuous-time, and discrete-time constraints.

Figure 9 shows the estimation results from the MC simulations of the system with six
oscillators for a) Whittle’s likelihood method and b) NLS fitting method. Each identification
approach yields a different (HE (z−1)). In this Figure, the solid blue line represents the
average of all the periodograms, the dashed black line represents the true discrete-time PSD,
the dotted red line represents the average of all the estimated discrete-time PSDs, and the
gray shaded region represents the area in which all of the estimated spectra lie. Despite that
Whittle’s likelihood is an asymptotic approximation (N → ∞) to the traditional likelihood
function, in Figure 9 we can observe that the estimation with this approach exhibits good
accuracy for small data length, namely N = 500. Moreover, we observe that, the greater
the N, the smaller the gray-shaded region. In contrast, the NLS fitting method does not
exhibit an accurate estimation.

Tables 3 and 4 show the average and standard deviation of all the estimated parameters.
The true values are presented in Table 1. It is clear that, for the proposed method, the
estimates are very accurate, exhibiting a mean value that is almost identical to the true
values and small standard deviations.

Table 3. Estimated parameters of six disturbance for Whittle’s likelihood method, using N = 1000.

α̂ (Hz) ζ̂ β̂(×104)

1 2.143± 0.320 0.861± 0.152 1.559± 0.331
2 14.024± 0.194 0.059± 0.014 3.775± 0.316
3 20.026± 0.296 0.055± 0.012 3.807± 0.287
4 29.010± 0.385 0.054± 0.010 4.307± 0.301
5 43.020± 0.473 0.050± 0.009 5.503± 0.305
6 60.085± 0.411 0.050± 0.006 9.678± 0.416
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Table 4. Estimated parameters of six disturbance for NLS fitting method, using N = 1000.

α (Hz) ζ γ̂d

1 0.704± 0.424 0.999± 0.009 3.665± 0.697
2 13.964± 0.473 0.077± 0.024 14.567± 1.595
3 19.930± 0.540 0.088± 0.097 16.340± 7.776
4 28.878± 0.813 0.108± 0.054 19.363± 5.393
5 42.912± 0.969 0.142± 0.053 24.132± 4.714
6 59.794± 1.082 0.118± 0.033 23.031± 3.630
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(b) NLS fitting method

Figure 9. Monte-Carlo simulation results to discrete-time PSD of six disturbance for (a) Whittle’s
likelihood method and (b) NLS fitting method. We use for simulation the values show in Table 1,
∆ = 5 ms, data length N = 500 and N = 1000. The solid blue line represents the average of all
the periodograms, the dashed black line represents the true discrete-time PSD, the dotted red line
represents the average of all the estimated PSDs. The gray shaded region represents the area in which
all the estimated spectra lie.

In addition, the dashed-red line frequency response plot shown in Figure 6 corre-
sponds to the estimated model of the disturbances that were obtained with the average of
all the estimated parameters using the NLS fitting method in this example.
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7.2. Performance of MVC in AO System

In order to illustrate the performance of MVC, we consider a mirror gain M0 = 1 and
WFS gain D0 = 1. We also select a measurement delay µ = 1 and correction delay τ = 1,
i.e. d = 2. The MVC algorithm used in this section is summarised in Algorithm 3.

Algorithm 3 MVC algorithm

1: Compute the disturbance continuous-time model using the Algorithm 2 or other
identification method

2: Obtain the discrete-time model of disturbance in state-space consider that the sampling
period can be different for control

3: Compute the spectral factorization
4: Compute the coefficients of the finite impulse response filter F(z−1) using Equation (59)
5: Compute the transfer function R(z−1) using Equation (58)
6: Compute the controller K(z−1) using Equation (61)
7: Compute de output variance vary using Equation (66)

On the other hand, Table 5 shows the performance of MVC (E), for ∆ = 5 ms, when
using the estimated model that was obtained from both our proposal and the NLS method
from [35]. For illustrative purposes, we modified the value of ϑ, from 1 to 0.5 and 1.5, in
order to verify how the performance of MVC varies for different values of ϑ. The results
show that our method outperforms [35] in every case. In addition, the performance of
the MVC does not change significantly when designing the MVC using the estimated
model from our proposal for different values of ϑ. The same could not be said about the
method in [35]. From these results, we can conclude that our proposal yields more accurate
estimates that, in turn, can result in more effective controllers. Note that the performance
of MVC for NLS fitting method is the same as that shown in Table 2, i.e., using typical
AR(2) model.

Table 5. Performance of MVC (E) for different identifications techniques of disturbance, and different
values of ϑ. We use ∆ = 5 ms, and N = 1000.

Ĥ(z−1)

ϑ Proposed Method NLS [35]

0 0 0
0.5 1.56 % 3.85 %
1 0.870 % 16.52 %

1.5 2.29 % 44.79 %

In Figure 10, we show the discrete-time PSD of the controlled output using the true
model Sy0(eiω∆) that is represented by the solid orange line with square marks, the model
obtained by Whittle’s likelihood method (Sy(eiω∆)) represented by the dashed blue line,
and the discrete-time PSD of the controlled output using the AR(2) model that is obtained
by the NLS fitting method (S̄y(eiω∆)) represented by the dotted black line. Note that these
controlled outputs are obtained in closed-loop. We also present the discrete-time PSD of
the disturbance signal (SϕTot

(eiω∆)) in open-loop represented by the densely dotted red
line, corresponding to the input signal. We observe that the controlled output using the
proposed modelling and identification methods exhibits better performance than using the
NLS method. It is clear that the controlled output obtained with our proposal and the true
controlled output are almost identical. To see the latter, we compute the normalized mean
square error (NMSE), as follows:

NMSE =

√
∑N

k=1(|Sy0(eiωk∆)| − |Sy(eiωk∆)|)2√
∑N

k=1(|Sy0(eiωk∆)|)2
= 0.0067, (69)
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where | · | denotes the magnitude. We observe that the NMSE value is very small, indicating
that both outputs are almost the same and corroborating the benefits of our identification
technique on MVC performance.
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Figure 10. Discrete-time PSD of the disturbance (input signal) and controlled outputs. We use the
estimated values that are shown in Tables 3 and 4, ∆ = 5 ms, and N = 1000. The densely dotted red
line represents the discrete-time PSD of disturbance or input signal, the solid orange line with square
mark represents discrete-time PSD of the controlled output using the true model, the dashed blue
line represents discrete-time PSD of the controlled output using the model obtained by Whittle’s
likelihood method, the dotted black line represents discrete-time PSD of the controlled output using
the model obtained by NLS fitting method.

Note that the controlled output using the estimated AR(2) model and NLS fitting
method do not exhibit the disturbance peaks for low frequencies, but, for high frequencies,
the disturbances are amplified. This is a consequence of the so-called waterbed effect [48],
where the magnitude of the frequency response is reduced in one part of the spectrum, but
it is increased in other parts of the spectrum.

Finally we evaluate the effect of the accuracy the estimated model in the control
performance when we use a different sampling period, namely ∆ = 10 ms. The results
are the following: E = 2.83 % for the proposed method and E = 18.08 % for the NLS. It
is clear that the control performance does not exhibit a great variation with respect to the
results with ∆ = 5 ms. Moreover, the new estimates were directly obtained by replacing
∆ = 0.010 in Equation (46), without the need of running new experiments. In contrast, the
approach that is presented in [35] requires carrying out the identification method again
with a new sampling period and a new set of samples to obtain the new estimates and then
the performance of MVC.

8. Discussion and Conclusions

In this paper we addressed the problem of disturbance modelling for minimum vari-
ance control in AO systems. We analysed the impact of the accuracy of the disturbance
model in the control performance. We showed that the model mismatch (from the pa-
rameter estimation) has an impact on the control performance when we used a typical
auto-regressive discrete-time disturbance model. We presented a discrete-time model
(arising from a continuous-time autoregressive model) for the disturbance that is more
accurate at high frequencies.

We obtained a sampled-data state-space model that is more compact and of smaller
order than the one that is presented in [30]. We show that the model of the disturbance and
the plant can be obtained separately, thus simplifying the design of the controller.

From our simulations we can conclude that Whittle’s likelihood method allows for
the identification of continuous-time parameters by directly optimising an explicit function
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of them. The corresponding cost function is similar to the typical cost function that is
obtained from the AR(2) model. However, our proposal yields more accurate estimates
whilst maintaining a low computational cost.

We showed that the output of the AO closed-loop system, when using our modelling
and estimation proposal, has the best performance, eliminating all of the disturbance peaks
for the frequency range of interest. We observed that, when we used the MVC with the
correct identification, we improved the performance of controller in 19% with respect to the
MVC with the estimated model utilising the classical estimation technique shown in [35].
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