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ABSTRACT: The growing capabilities of synthetic biology and
organic chemistry demand tools to guide syntheses toward useful
molecules. Here, we present Molecular AutoenCoding Auto-
Workaround (MACAW), a tool that uses a novel approach to
generate molecules predicted to meet a desired property
specification (e.g., a binding affinity of 50 nM or an octane
number of 90). MACAW describes molecules by embedding them
into a smooth multidimensional numerical space, avoiding
uninformative dimensions that previous methods often introduce.
The coordinates in this embedding provide a natural choice of
features for accurately predicting molecular properties, which we
demonstrate with examples for cetane and octane numbers, flash
points, and histamine H1 receptor binding affinity. The approach is computationally efficient and well-suited to the small- and
medium-size datasets commonly used in biosciences. We showcase the utility of MACAW for virtual screening by identifying
molecules with high predicted binding affinity to the histamine H1 receptor and limited affinity to the muscarinic M2 receptor,
which are targets of medicinal relevance. Combining these predictive capabilities with a novel generative algorithm for molecules
allows us to recommend molecules with a desired property value (i.e., inverse molecular design). We demonstrate this capability by
recommending molecules with predicted octane numbers of 40, 80, and 120, which is an important characteristic of biofuels. Thus,
MACAW augments classical retrosynthesis tools by providing recommendations for molecules on specification.

1. INTRODUCTION
Synthetic biologists and organic chemists are continuously
expanding the universe of synthesizable small molecules. A few
of these molecules could enable new pharmaceuticals, fuels,
cosmetics, phytochemicals, pesticides, flavors and fragrances, or
polymer precursors, if they have properties suitable to the
application.1,2 For example, a new pharmaceutical molecule may
be required to exhibit high binding affinity and specificity for its
target receptor, adequate pharmacokinetic properties, and
minimal toxicity. A new biofuel additive may be required to
exhibit high octane number, a high flash point, and a low sooting
index. Identifying molecules useful for an application amongst
the myriad that could be synthesized is a lengthy and costly
process. Advances in cheminformatic tools can help accelerate
this process.

The data-driven prediction of molecular properties relies on a
numerical description of molecules as input to machine-learning
models.3 Traditionally, conventional molecular descriptors have
been used to describe molecules.4−7 However, considerable
time is often needed to select descriptors that are useful for the
model at hand, amongst the thousands of descriptors available.
Recently, deep learningmethods have allowed the embedding or
mapping of molecules into a numerical space (latent space) that
can be used in modeling.8,9 However, these methods require
large sets of molecules (typically >105) to train deep networks10

and often need to be fine-tuned to the relevant chemical
subspace using transfer learning, an artful process that requires
time and expertise.9,11 More recently, molecular generative
approaches have been developed, which are not constrained to
predefined lists of molecules.8 However, the expertise required
to use some of these tools and to direct the generation toward
promising regions of the chemical space can limit their
accessibility.

In this work, we present Molecular AutoenCoding Auto-
Workaround (MACAW), a cheminformatic tool to recommend
molecules that fit a desired specification in a computationally
efficient manner (inverse molecular design). MACAW
combines two approaches to achieve this: a novel mapping of
molecules onto a continuous vectorial space of selectable
dimensions (embedding, Figure 1) and a novel way to generate
and evolve molecules on a SELFIES alphabet (Figure 2).12

MACAW embeddings are richer in structural information and
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capture relevant molecular information more consistently than
conventional molecular descriptors. We find that these
characteristics enhance the predictive ability of machine-
learning methods to predict molecular properties. The
MACAW generative approach, based on these embeddings,
can provide molecules with prespecified properties without the
need for the expertise and time needed to train neural networks.

The application of MACAW is demonstrated for property
prediction, virtual screening, and inverse molecular design.
MACAW embeddings are used for the prediction of complex
properties, including research octane number (RON), cetane
number (CN), melting point (MP), and flash point (FP) of
molecules, as well as the binding of small molecules to the
histamine H1 receptor and the muscarinic M2 receptor. These
properties are demonstrative of both biofuel and medicinal
applications. We also demonstrate the use of MACAW
embeddings in virtual screening: the rapid embedding and
prediction of properties for tens of thousands of molecules
enables the identification of molecules that bind strongly to the
histamine H1 receptor but weakly to the muscarinic M2
receptor. Furthermore, MACAW embeddings can help
recommend molecules with prespecified properties (inverse
design problem). For this, we propose a directed evolution
strategy in silico that involves a novel probabilistic molecular
generator. This inverse design method avoids the need for the
expertise and time to train a complex decoder network and is
well-suited to the dynamic nature of MACAW embeddings.

Overall, MACAW enables successful molecular property
modeling and inverse molecular design in a few lines of user
code, at low computational cost, without the need for variable
cleaning or selection, and with the flexibility of a dynamic
molecular representation method.

2. MATERIALS AND METHODS
2.1. Encoding. MACAW encodes molecules into numeric

vectors that can be used as inputs to mathematical and machine-
learning models. Thus, each molecule is mapped to a point in a
D-dimensional space, in a way that molecules that are more
similar to each other are located closer in the numerical space
and molecules that are more dissimilar are located further away.
MACAW offers different options to measure molecular
similarity, which can be tuned to the problem at hand. An
overview of the encoding pipeline is illustrated in Figure 1.

The encoding of molecules is done through the MACAW
class. Initializing a MACAW object requires providing a list of
molecules in SMILES format as input. The user can specify the
number of L landmark molecules to use (optional n_landmarks
argument, defaults to 50) and the desired dimensionality D of
the embedding (optional n_components argument, defaults to
15), with D ≤ L. A subset of L molecules is then designated as
landmarks (Figure 1.1). Landmark molecules are chosen at
random (default) or, if property values are also provided
(optional Y argument), they are picked after binning the
molecules by property value (10 bins by default). Thus, a
landmark molecule has the same probability of being chosen
from each bin, regardless of the number of molecules in each.
This binned landmark selection method is particularly
recommended for skewed datasets. Other options include the
choice of landmarks to be the molecules with the highest or
lowest property values (optional Yset argument).

Distances between molecules in MACAW depend on a
combination of molecular fingerprint type (or types) and a
similarity metric. Molecular fingerprints describe molecules
through a characteristic bit or Boolean vector representation. A
wide variety of molecular fingerprints have been developed,13

Figure 1. MACAW provides a simple and advantageous molecular embedding approach. (1) A small subset of L training molecules is defined as
landmark molecules (circled in red). (2) Distances are computed between every pair of landmark molecules through any of the many distance metrics
available for this end. (3) A projection of the landmark molecules onto the desired number of dimensions, D, is computed, which tries to preserve the
relative distances between the landmark molecules in the embedding space. (4) The distances between the rest of the molecules and the landmark
molecules are computed. (5) The molecules are rapidly projected to the embedding space by triangulation. (6) Each input molecule is thus assigned a
D-dimensional numeric vector or embedding. Each embedding coordinate can be regarded as a feature and can then be used for modeling tasks just like
conventional molecular descriptors. New query molecules can be projected onto an existing MACAW embedding starting from step 4. If desired, the
embedding space can also be leveraged for generative tasks (see Section 3.2).
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involving, for example, assessing the presence or absence of
patterns in the molecule, counting the number of certain motifs,
or hashing or folding an intermediate vector into a fingerprint of
the desired length, among others. On the other hand, similarity
metrics capture in a single number the resemblance of a pair of
bit vectors. A well-known example of these similarity metrics is
Tanimoto similarity,14 which assesses the fraction of “on” bits
that are common between two bit vectors, but there are many
more.15,16

MACAW features a variety of distance metrics between
molecules, enabled by rdkit. This is done by specifying a
combination of molecular fingerprint type {morgan2, morgan3,
rdk5, rdk7, featmorgan2, featmorgan3, maccs, avalon, atompairs,
torsion, pattern, secfp, layered, daylight} and similarity metric
{Tanimoto, dice, cosine, Sokal, Kulczynski, Mcconnaughey,
Braun-Blanquet, Blay-Roger, Rogot-Goldberg, asymmetric,
Manhattan}.13 MACAW also allows concatenating different
types of fingerprints prior to their projection, which might
strengthen the performance of the resulting embedding in some
cases. For example, one can specify “pattern + atompairs” as the
fingerprint type to achieve an embedding based on these two
types of fingerprints. See the accompanying Jupyter Notebook 1
for additional examples. The similarity s between two molecules
mi and mj is a scalar in the interval s(mi,mj) ∈ [0,1], which is then
converted to a distance metric d(mi,mj) in MACAW using eq 1.

d m m s m m( , ) 1 ( , )i j i j= (1)

Given the relative distances between pairs of molecules, they can
be projected as points in a numerical space, while preserving
these relative distances as much as possible. To preserve relative
distances while reducing the number of dimensions, a
multidimensional scaling (MDS) algorithm can be used.17

However, conventional MDS is computationally slow for large
numbers of molecules. Instead, MACAW employs a landmark-
MDS projection algorithm,18 which only requires computing the
distances to a subset of landmark molecules (Figure 1.2,4). In
this case, the landmark molecules are projected first using the
classic MDS algorithm (Figure 1.3), while the rest of the
molecules are projected afterward by triangulation (Figure 1.5).
Alternative algorithms to landmark-MDS are also available in
MACAW, including isomap projection (algorithm = “isomap”),
principal component analysis (PCA) projection (algorithm =
“PCA”), independent component analysis (algorithm = “ICA”),
and factor analysis (algorithm = “FA”). Compared to MDS, the
other projection algorithms give different weights to the
distances to different landmarks; for example, in isomap
projection, the algorithm tries to preserve the geodesic distances
to neighboring landmarks only. In all cases, the embedder is
computed based on the distances between landmark molecules.
Then, it can be applied to any new molecules rapidly, with the
embedding time scaling linearly with the number of molecules
N, that is, N L( )· . As a result, each molecule is mapped to a
point in the MACAW embedding space, whose coordinates can
be used as molecular features.

Figure 2. MACAW provides a novel way for inverse molecular design. (1) A dataset of molecules along with their property values and design
specification are input to the library_maker function. (2) The library_maker function transforms SMILES into SELFIES and computes a probability
matrix. The probability matrix illustrated is the relative frequency of each SELFIES symbol in each position of the molecular string, to which some
normal noise is added. (3) Up to k1 molecules are generated using a probability matrix to choose a SELFIES symbol for each position and then
converting the resulting string into SMILES for final output. (4) The molecules are then embedded using a given MACAW embedder (Figure 1), and
(5) the embeddings are used as features to predict property values. (6) After considering the predictions in the current round and the k2 predictions
from the previous round (if any), the k2 molecules closest to the specification are selected and used as input in another round of molecule generation.
(7) After a number of rounds, the molecules closest to the design specification are returned. This algorithm is implemented in the library_evolver
function, with the use of examples given in the Jupyter Notebook 4. This approach relies on the robustness of the SELFIES molecular representation,
which allows concatenating random combinations of a set of SELFIES symbols and decoding them into SMILES strings with ∼100% validity.
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A MACAW instance can be used to embed any input
molecule provided in SMILES format. In particular, when
declaring a MACAW Python object, it has to be initialized
through its train method. This method chooses and embeds the
landmark molecules from the list of molecules supplied (steps 1,
2, and 3 in Figure 1). TheMACAW instance can then be used to
embed any list of N molecules (smiles) by applying the
transform (smiles) method (step 4 in Figure 1). One can also
initialize the embedder and embed the input molecules at once
using the fit_transform (smiles) method. This method also
avoids recomputing the pairwise distances between landmark
molecules. The output of the transform or fit_transformmethod
is an array of size N × D, with each row being the embedding of
the corresponding molecule in the input list (see Jupyter
Notebook 1). These embeddings can be used as predictors in
machine-learning models, like those in scikit-learn,19 TPOT,20

or ART.21

MACAW has several hyperparameters that can be tuned to
optimize the performance of the embedding. To simplify this
choice, the functionMACAW_optimus automatically explores a
variety of fingerprint type and distance metric combinations and
returns a recommended embedding for the problem at hand.
This automated, heuristic selection is based on the performance
of different embeddings in the cross-validation of a support
vector machine (SVM)model. This functionality is illustrated in
the accompanying Jupyter Notebook 1. The MACAW class also
has several setter methods (set_type_fp, set_metric, set_n_-
components, and set_algorithm) that allow changing hyper-
parameters of the MACAW embedding while minimizing the
computations needed. For example, changing the desired
dimensionality of the embedding does not require recomputing
distances. These methods can be useful to explore a variety of
hyperparameters using a grid search, for example.

2.2. Datasets. 2.2.1. Biofuel Properties. A dataset of 194
molecules along with experimentally measured research octane
number (RON) values was compiled from a variety of
sources.22−26 A dataset of 545 molecules and their correspond-
ing experimental cetane number (CN) values was compiled
from the literature.22,27 We also modeled molecular melting
points (28,266 molecules),28 yield sooting indices (610
molecules),29 and flash points (631 molecules).27

2.2.2. Histamine and Muscarinic Receptor Binding. A set of
1214 compounds was evaluated for their binding affinity to the
histamine H1 receptor using compounds retrieved from
ChEMBL version 27 with binding assays used to measure
binding Ki values. Similarly, a set of 1145 compounds from
ChEMBL were evaluated against the muscarinic M2 receptor to
measure binding Ki values. Assay data was collected from
multiple publications, example studies include refs 30 and 31.
The M2 receptor is considered in this work as an undesired off-
target in the design of new H1 inhibitors.32

To discover new potential ligands specific against H1, we
compiled a virtual library by combining the Enamine Antiviral
Library (3200 compounds), the Enamine Discovery Diversity
Set 10 (10,240 compounds), the Enamine Nucleoside Mimetics
Library (290 compounds), and the Enamine Phenotypic
Screening Library (5760 compounds), resulting in 19,490
screening compounds.

2.3. Conventional Molecular Descriptors. MACAW was
compared to conventional molecular descriptors as an
established method to numerically encode molecules. A set of
molecular descriptors was computed with the free software rdkit
2020.09.4, using the custom function indicated in Jupyter

Notebook 5. A larger set of molecular descriptors was computed
using the commercial software alvaDesc 2.0.2. Descriptors that
were invalid for any molecule were dropped, resulting in 196
rdkit descriptors and 2950 alvaDesc descriptors.

The informativeness of conventional molecular descriptors
and MACAW embeddings were evaluated using mutual
information (MI). The MI between a predictor and a property
quantifies how informative the predictor is of the property of
interest. MI can be regarded as a more general measure of
association than Pearson correlation, as it also takes into account
nonlinear dependence, which some machine-learning models
are able to learn. More specifically, MI quantifies the reduction
in information entropy of the target variable Y that is attained by
knowing the predictor X (eq 2)

MI X Y H Y H Y X( , ) ( ) ( )= | (2)

where H(Y) is the marginal information entropy and H(Y|X) is
the conditional information entropy.33,34 A value of zero
indicates that Y and X are uninformative of each other, and a
high value indicates that they are closely interrelated. For each
molecular property dataset, a subset of 194 molecules and
property values were sampled to estimate the MI using the
mutual_info_regression function in scikit-learn 0.24.1.19

The performance of conventional molecular descriptors as
regressors was evaluated (Figure S4 and Jupyter Notebook 5).
Given the large numbers of conventional molecular descriptors
that are typically computed (hundreds to thousands), a variable
selection step was conducted to select a small subset of
informative descriptors with which to build a model. The
selection was carried out using a heuristic forward stepwise
selection algorithm, which is commonly applied to conventional
molecular descriptors.35−37 This algorithm tends to give good
results, although it can be time-consuming, as it requires to train
and evaluate N × D × F models, where N is the number of
variables considered for the selection (several hundred in this
case), D is the number of desired descriptors being eventually
selected (15 in this case), and F is the number of cross-validation
folds used to evaluate each model (5 in this case). Furthermore,
the algorithm requires specifying a model for the intermediate
variable selections. Since the optimal model is unknown a priori,
a linear model was used for the variable selection to prevent
overfitting. The 15 selected features were then used to train
SVM models analogous to those trained on MACAW features,
including the same hyperparameter optimization.

2.4. Property Modeling. We used support vector machines
(SVMs) as the default model choice because the focus of this
work is to show the general applicability of MACAW molecular
embeddings to facilitate modeling and molecular design, rather
than developing the best possible model for every property.
SVMs offer a reasonable tradeoff between speed, flexibility, and
ease of implementation, particularly for small and medium-size
datasets. The models were built using scikit-learn 0.24.1.19

MACAW embeddings were computed and used as predictors. In
all cases, we perform 10-fold cross-validation by splitting the
dataset into validation and train sets, where the validation set is
obtained by randomly splitting the whole dataset into 10 almost
equal partitions and the train set is the remainder. For each of the
folds, the model is trained on the train set and tested on the
validation, such that the accuracy metrics, R2, mean absolute
error (MAE), and root mean squared error (RMSE), are
calculated for predictions on unseen data. Furthermore, tuning
of the SVR models was done by grid search of hyperparameters
(regularization parameter C and epsilon) considering the
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model’s 5-fold cross-validation performance on the training
partition. Notably, the validation sets were not involved in the
computation of the embeddings or the tuning of any
hyperparameters for each of the folds. Property modeling
examples are provided in the accompanying Jupyter Notebook
2.

2.5. Molecule Generation. We have developed an original
method that generates libraries of molecules of arbitrary size in a
probabilistic manner around an input set of molecules. This
method is implemented in MACAW’s library_maker function
(Figure S1). The method works by encoding the molecules
input by the user into a one-hot SELFIES representation.12 A
new molecule is generated by drawing SELFIES tokens from an
alphabet in a probabilistic manner. The probabilities are
specified by a matrix extracted from the input molecules (see
below). The SELFIES tokens are concatenated to form a string,
which is then decoded as a SMILES by the SELFIES interpreter.
The process is repeated to generate as many molecules as
desired; the resulting SMILES are then canonicalized and any
duplicates are removed. The generated molecular library can be
used as any other library and be embedded into the D-
dimensional MACAW space.

To achieve a more robust production of valid molecules, by
default, we use an alphabet of SELFIES tokens observed in the
input molecules for which chemical valence rules are
implemented in the SELFIES package (i.e., state-dependent
derivation rules have been hard-coded). By default, molecules
are generated with their SELFIES length drawn from a discrete
distribution (by default, p(n) ∝ exp(n), where n is the length up
to the maximum requested length max_len). If not specified,
max_len will be set to the length of the longest SELFIES
observed in the input.

The probability matrix is computed by counting frequencies
of SELFIES tokens and then adding some noise. Different
options on how the frequencymatrix is constructed are available,
which are specified by the algorithm input to library_maker:

• If algorithm = “position” (default setting), the matrix
captures the frequency of each SELFIES token as a
function of its position in the input SELFIES strings. The
dimensions of the probability matrix will be (SELFIES
alphabet length, max_len).

• If algorithm = “transition”, the matrix captures the
frequency of each SELFIES token following another
token. In this case, the probability matrix will be a square
matrix of dimensions (SELFIES alphabet length,
SELFIES alphabet length).

• If algorithm = “dual”, the matrix captures the frequency of
observing a SELFIES token after another token in each
specific position of the SELFIES string. In this case, the
probability matrix will be a three-dimensional (3D)
matrix of dimensions (SELFIES alphabet length,
SELFIES alphabet length, max_len).

In all three cases, the resulting matrix of frequencies is
normalized row-wise and is combined with a uniform probability
matrix in an affine combination. The resemblance to the uniform
probability matrix is controlled by the argument noise_factor. It
can take values between 0 and 1, with higher values leading to a
more random drawing of tokens (Figure S1).

The library_maker function is also able to generate molecules
when no SMILES are provided as input. In this case, a
predefined alphabet of tokens and a uniform probability matrix
are used to generate molecules.

2.6. Hit Identification. To retrieve molecules satisfying a
specification from an embedded library of molecules, two search
algorithms (hit_finder and hit_finder_grad) have been
developed that only require evaluating a few molecules in the
library. The algorithms require providing a predictive model and
a desired property specification along with the library of
molecules. The algorithms avoid having to exhaustively evaluate
the property model on the whole library, whichmay be useful for
models that are expensive to evaluate (e.g., kernel-based models
trained on a large dataset). The algorithms can be applied to the
MACAW embedding of an existing molecular library or to a
library generated with the library_maker function.

In the first search algorithm, hit_finder, the MACAW-
embedded library is first organized for quick access using
sklearn’s BallTree algorithm. This algorithm organizes a
collection of points for lookup by partitioning the search space
into a tree once, speeding up the retrieval of subsequent
queries19 (Figure S2). The choice of the distance metric to build
the tree is important as it affects which molecules are in the
vicinity of any given molecule. For use with MACAW
embeddings, we recommend the Manhattan distance (p = 1)
over other Minkowski norms (p > 1), as this penalizes less
molecules further away from the query seed molecule in some
dimension, as long as they are relatively close in other
dimensions. Taking this idea a step further, we introduce a
custom V-distance, which is invoked when 0 < p < 1 and that is
defined as follows using eq 3

v v p p v v

p

V distance ( , , ) (sort(abs( ))

for 0 1

i

D
i

i1 2
1

1
1 2=

< <
=

(3)

where v1 and v2 are D-dimensional vectors, and the function sort
arranges the elements of a vector in increasing order. Note that
for p = 1, the V-distance equals the Manhattan distance metric.

Next, we take the k1 most promising molecules from the
training dataset and consider their projection in the MACAW
vectorial space. The most promising molecules in this context
are those with property values closest to the desired specification
provided by the user. Querying the BallTree, we then retrieve
the k2 closest molecules to the k1 seed molecules (measured
with the selected distance metric), retrieving a maximum of k1 ×
k2 library molecules. The property values of these molecules are
predicted using the property model supplied, and the most
promising molecular designs are returned to the user.

A second function, hit_finder_grad, is also provided, which
leverages the smoothness of MACAW embeddings and the
predictive model using a scipy gradient-based minimization
algorithm. In this case, the algorithm is started k1 times from
random molecules throughout the library to find points that
minimize the square of the difference between the specification
and the predicted property value. Next, the BallTree is queried
for the k2 molecules nearest to each minimum and their
property values are predicted. Finally, those molecules closest to
the requested specification are returned to the user in SMILES
format.

2.7. Inverse Design. We propose an original evolutionary
strategy to recommend new molecules satisfying a desired
design specification. The strategy involves an increasingly
focused generation of molecules along with the selection of
the most promising molecular designs. This process is achieved
using MACAW’s library_evolver function (Figure 2), which
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requires as inputs a starting set of molecules in SMILES format, a
MACAW embedder, a predictive property model, and the
desired property specification. The use of this function is
illustrated in the accompanying Jupyter Notebook 4.

The method encompasses a number of iterations or rounds
(n_rounds = 8 by default). In each round, a set of molecules is
used to seed the library_maker function described above. Up to
k1 molecules are generated through library_maker (k1 = 3000
by default), which are then embedded using the MACAW
embedder supplied, and their property values are predicted
using the model supplied. The k2molecules closer to the desired
specification (k2 = 100 by default) are selected and carried over
to the next round to seed a new library_maker run (these
molecules are also included in the new dataset from which the
most promising molecules will be selected). In total, up to (k1 ×
n_rounds) molecules are evaluated across the MACAW
embedding space, sampled from regions of the space with
predicted property values increasingly closer to the desired
specification. The n_hits (10 by default) molecules closest to the
desired specification in the final round are returned to the user
along with their predicted property values.

3. RESULTS AND DISCUSSION
3.1. Effect of Embedding Hyperparameters. The

MACAW process of mapping discrete molecules onto a
continuous numerical space involves three main steps (Figure
1 and Section 2). First, molecules are characterized in the form
of a bit vector molecular fingerprint (e.g., rdk5, Morgan2,
MACCS, Avalon, or Torsion). Second, these fingerprints are
then used to compute relative distances between some of the
molecules in the dataset, which is expected to extract the most
relevant information from the fingerprints. Finally, a fast
algorithm is used to place the molecules in the numerical
embedding space in such a way that these relative distances are
preserved as much as possible. The coordinates of the
embedding can then be used as molecular predictors. In this
process, there are some choices of hyperparameters that can be
optionally specified.

MACAW hyperparameters can be tuned to optimize the
performance of the embedding for subsequent predictive
modeling. The hyperparameters include the number of
landmarks, the dimensionality of the embedding, and the choice
of fingerprint type and similarity metric. Analyzing the effect of
these hyperparameters (Figures 3 and S3), we found that using
15−25 MACAW embedding dimensions is sufficient for most
problems. Using more dimensions for the MACAW embedding
generally does not have a detrimental impact on model
performance (Figures 3a and S3), at least when landmark
molecules are chosen randomly as in the cases studied. On the
other hand, the performance of the embeddings seems
minimally affected by the choice and number of landmarks, as
long as a sufficient number of them is used (Figures 3c and S3).

Different strategies to select landmarks have been proposed,
with a random choice working well in many cases.18,38 In this
case, robust performance can be obtained by choosing
substantially more landmarks than required for the embedding
(L ≫ D), as pointed out by the narrowing of the error bars in
Figure 3c. However, when the distribution of property values in
the dataset is skewed, like the yield sooting index dataset in this
work, performance with random landmarks can suffer. With this
in mind, we developed a new binned landmark choice strategy in
MACAW (see Section 2). This landmark selection method
often provides similar or better results than random choice and it

is particularly recommended when the distribution of property
values is skewed.

The choice of molecular distance can have a significant impact
on the performance of the embedding (Figure 3b), and
MACAW can automatically recommend a setting. The
molecular distance is specified by a combination of fingerprint
type and similarity metric, with the optimal choice depending on
the problem. By default, MACAW uses Morgan fingerprints of
radius 2 and a Tanimoto similarity metric. The setter methods in
the MACAW class allow to efficiently vary the hyperparameters
and conduct a grid search. Moreover, the function MAC-
AW_optimus automates the selection of fingerprint and

Figure 3. MACAW’s hyperparameters have limited impact on
predictive capabilities, except for the choice of fingerprints and distance
metric. Typical effect on the model performance of (a) the
dimensionality of the MACAW embedding, (b) the fingerprint and
distance metric used, and (c) the number of landmarks chosen. D = 10,
L = 50, and Morgan2 fingerprints with Tanimoto similarity were used
unless indicated otherwise. An SVR model with C = 100 and ε = 5 was
used in all cases to model the cetane number dataset.
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similarity metric for a given problem by assessing the
performance of an SVM trained on different embeddings. Its
use is illustrated in the accompanying Jupyter Notebook 1.

3.2. Efficient Prediction of Molecular Properties. Using
MACAW embeddings, good performance could be easily
obtained in a variety of property prediction tasks (Figure 4).
For example, four different molecule datasets (cetane number,
research octane number, flash point, and melting point) were
embedded into 10-D or 15-D spaces using landmark molecules
from the training datasets with the automated MACAW_opti-
mus function. The features were used as inputs to train the
support vector regressor (SVR). After grid search optimization
of the regressor’s hyperparameters using nested cross-validation
(see Section 2), R2 values on cross-validated predictions larger
than 0.67 could be obtained for the four properties (Figure 4).
These are very encouraging results despite the complex
properties being modeled. Note that the flash point, cetane
number, and octane number are all high-order properties of
great interest for biofuels, for which accurate predictions from
first principles are very challenging.22,39 These may be complex
functions of other properties like vapor pressure, diffusivity,
bond energies, thermodynamic properties, as well as the
reactivity of the dozens of radical species and intermediates
that may be generated from any given compound in the fuel

combustion process.40 A comparison of MACAW embeddings
with other types of molecular features is presented in Section
3.3.

3.3. Comparison of MACAW Embeddings and Conven-
tional Molecular Descriptors. Conventional molecular
descriptors can be considered a type of molecular embedding
since they map molecules onto a numerical space, which may be
continuous or discrete. Many conventional two-dimensional
(2D) descriptors are obtained from algebraic operations over
graph representations of molecules. While some of the most
widely used tools to compute descriptors involve commercial
packages, like alvaDesc, Dragon, or MOE, some free alternatives
are available, such as rdkit, ChemDes,6 Mordred,7 or PaDEL.41

One challenge with conventional molecular descriptors is that a
given descriptor may be useful for one problem but not for
another. Besides, many descriptors suffer from collinearities, or
the algorithms to compute them break when applied to different
types of molecules. Thus, considerable feature cleaning and
selection work is often needed before they can be used for
modeling purposes. Furthermore, conventional molecular
descriptors may define a rugged high-dimensional embedding,
since some descriptors are discrete or may vary by orders of
magnitude, so they may be challenging to use for inverse design
tasks. Here, we compare MACAW embeddings with the rdkit

Figure 4. MACAW embeddings provide excellent molecular representations for predicting a variety of molecular properties. Observations and cross-
validated predictions for different (bio)fuel properties are shown: (a) cetane number (AtomPairs + Rogot-Goldberg), (b) research octane number
(AtomPairs + Dice), (c) flash point (Pattern + AtomPairs + Rogot-Goldberg), and (d) melting point (MACCS + Tanimoto). SVRs with radial basis
function were trained in all cases. Predictive accuracy metrics are calculated using 10-fold cross-validation. See Jupyter Notebook 2 for details. The
MACAW embeddings set the stage for predictions that are the same or better than conventional molecular descriptors (Figure S4).
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and alvaDesc molecular descriptors, Chemical Checker (CC)
signatures, and mol2vec embeddings.

The mutual information (MI) quantifies how informative a
given descriptor is of a variable of interest (Figure 5). MI can be
regarded as a generalization of the correlation coefficient. It
takes values equal to or greater than zero, with higher values
indicating a stronger association between the variables. Unlike
the linear correlation coefficient, however, the mutual
information captures information about all-dependence be-
tween two variables, both linear and nonlinear.33,34

A given conventional molecular descriptor (Figure 5a) can be
informative for some problem datasets (highMI, clear color) but
not useful in another (low MI, dark color). Thus, identifying
those descriptors useful for a given task out of the many
descriptors available (variable selection) can be a challenge. This
process tends to be time-consuming, as it generally involves
evaluating and comparing models trained with different subsets
of the descriptors (see Jupyter Notebook 5). Some chem-
informatic packages allow to compute more descriptors than
others (Figure 5b), but this may not necessarily translate into
better results and can further complicate the variable selection.
Moreover, feature cleaning is often necessary when working with
conventional molecular descriptors. Of note, out of 4179
molecular descriptors implemented in the software alvaDesc, a

state-of-the-art commercial package, 1233 could not be
calculated for some molecules in the dataset and had to be
dropped. On the other hand, Figure 5 also suggests that
modeling the molecular binding affinities to the histamine H1 or
muscarinic M2 receptors may be more challenging than
modeling the cetane number or flash points using these features,
as their mutual information is in general lower.

A variety of alternative molecular representations have been
proposed recently, providing pretrained molecular embedders.
For example, mol2vec42 provides 300-D embeddings of
molecules resulting from regarding molecules as sentences and
substructures as words and deriving an embedding from a very
large chemical library (19.9 M compounds) in an approach
inspired by word2vec.43 As another notable example, Chemical
Checker (CC) signatures have been proposed as a method to
embed molecules in a continuous numerical space.44,45 Twenty-
five different 128-D embeddings or signatures can be computed
for each molecule, which differ in the amount and nature of the
molecular property data that was used to train the specific
embedder. Around 800,000 small molecules and associated data
were used in the construction of the embedders. Results for two
different CC embeddings are illustrated in Figure 5c,d. Unlike
MACAW embeddings, the dimensionality of CC signatures and
mol2vec embeddings is predetermined, and the embedders are

Figure 5. MACAW embeddings capture molecular information useful to describe a variety of properties more effectively than conventional molecular
descriptors. The heat maps show the mutual information (MI) for regression between every feature (horizontal axis) and the target variable (vertical
axis) for seven datasets in this work; (a) 195 molecular descriptors computed using rdkit 2020.09.4 after removing invalid descriptors; (b) 2950
molecular descriptors computed using alvaDesc 2.0.2 after removing invalid descriptors; (c) 180-DCC 3D fingerprint signatures; (d) 180-DCCMOA
signatures; and (e) 5-D MACAW embeddings and (f) 15-D MACAW embeddings using the default MACAW_optimus settings. MACAW
embeddings exhibit a relatively high mutual information in the different datasets compared to the conventional molecular descriptors, and all of the
dimensions of the MACAW embedding tend to remain relatively informative.
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pretrained. Their relatively high dimensionality suggests that
additional feature selection may be beneficial for small datasets,
as some dimensions may be irrelevant for the modeling problem
at hand (Figure 5).

MACAW embeddings (Figure 5e) seem to capture relevant
molecular information more consistently across the different
datasets than conventional molecular descriptors, which is
expected to facilitate predictive modeling (see below). This is
indicated by the MI values being comparatively high and
uniform for a given problem dataset. Note that MACAW’s
performance can be further optimized to each problem by fine-
tuning its hyperparameters, such as the number of landmarks or
the type of fingerprint and molecular similarity metric used. On
the other hand, when increasing the dimensionality of the
MACAW embeddings 3-fold (Figure 5f), useful chemical
information is spread across the different dimensions, so that
they all tend to remain informative. This is illustrated by the MI
values remaining comparatively high even after increasing the
dimensionality of the embedding. Thus, MACAW embeddings
avoid the feature selection step that is often needed for
conventional molecular descriptors, expediting the modeling
process.

MACAW embeddings allow us to train models that perform
similarly or better than models trained on conventional
molecular descriptors without the need for feature selection,

saving significant time (Figures 4 and S4). A subset of
conventional molecular descriptors was selected to model
each molecular property through a variable selection algorithm
(see Section 2). Different descriptors were selected for different
datasets, in line with the observation that a given descriptor
tends to not perform well across different properties. We
managed to train SVM models on the selected descriptors that
offered very reasonable predictive performances (Figure S4 and
Jupyter Notebook 5). Notwithstanding, the predictive perform-
ances of models trained on conventional descriptors were
matched or improved upon by similar models trained on
MACAW embeddings (Figures 4 and S4). This agrees with the
observation that MACAW embeddings tend to be more
informative than most conventional molecular descriptors
(Figure 5).

Another positive aspect of MACAW is that the embedding is
defined by the input data, and thus it is not limited to a
pretrained representation, enabling the flexible modeling of
diverse properties and specific regions of the chemical space. We
explored the use of different 128-D CC signatures as
replacements for conventional descriptors, including a 15-D
variable selection step. We noticed that the choice of the
signaturizer can have a significant effect on the performance of
the resulting predictor, and choosing the optimal one is not
trivial (Figure S5 and Jupyter Notebook 6). Similarly, we

Figure 6. MACAW embeddings may help identify molecules with high binding affinity to the histamine H1 receptor and limited affinity to the
muscarinic M2 receptor. (a) Parity plot of the H1 receptor binding model. (b) Parity plot of theM2 receptor binding model. (c) Virtual screening of a
custom library (19,490molecules) defining the region of interest. Some promisingmolecules with high predicted binding affinity and specificity for the
histamine H1 receptor are also indicated. See Jupyter Notebook 3 for details.
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explored the use of 300-D mol2vec embeddings as a
replacement for conventional descriptors with a 15-D variable
selection step (Figure S6). When compared to the performances
offered by MACAW embeddings, we find that the lower
dimensionality of MACAW embeddings and their definition
based on the chemical subspace relevant to the task at hand are
well-suited to the small-size datasets illustrated in this work,
which are commonly found in the biosciences.

3.4. Virtual Screening for Molecules with Desirable
Properties. MACAW can be applied to rapidly embed large
molecular libraries, enabling virtual screening (Figure 6). In
virtual screening, large, predefined catalogs of molecules are
evaluated computationally to facilitate the discovery of chemical
matter suitable for a given application. To illustrate this, we
trained models using MACAW embeddings to predict the
binding affinity of compounds to the histamine H1 receptor, a
well-known pharmaceutical target46,47 (Figure 6a). A separate
model was similarly trained to predict binding affinity to the
muscarinic M2 receptor, a related protein considered a potential
off-target. High binding affinity to the H1 receptor is desired, as
it is a prerequisite for pharmacological activity (target
inhibition), whereas low binding affinity to the M2 receptor is
desired, as the compound may otherwise lead to undesired side
effects.

Both binding affinity models were trained on newly generated
experimental data for this work, which was embedded using
MACAW. Afterward, the models were exhaustively applied to a
custom virtual library of molecules to predict binding affinities to
both receptors. Promising virtual hits could be identified, which
showed a high predicted binding affinity to the H1 receptor and
considerably lower predicted binding affinity to the M2 receptor

(Figure 6b). Some of these virtual hits are illustrated in Figure 6c
and represent excellent starting material for experimental tests.

In cases where the predictive model is expensive to evaluate
(e.g., a kernel-based model trained on a large dataset), the
functions hit_finder and hit_finder_grad in the MACAW
package allow searching for promising molecules across an
embedded library without having to exhaustively evaluate all of
the molecules. hit_finder_grad uses a multistart gradient-based
minimization algorithm, which is suitable for smooth models, as
it is often the case for those trained onMACAWembeddings. By
contrast, hit_finder does not estimate the gradient of the
predictive model function; it only assumes that molecules with
similar property values lie in similar regions of the embedding
space. A diagram of the hit_finder algorithm is shown in Figure
S2. Used examples of these functions are provided in Jupyter
Notebook 4.

3.5. Inverse Molecular Design. MACAW embeddings can
also help with the generation of molecules de novo satisfying a
given property specification (inverse molecular design). Several
approaches can be envisioned for this purpose. For example,
since embedding arbitrary input molecules using MACAW is
quite fast, it may be possible to generate largemolecular libraries,
embed them, and train a neural network to act as a decoder.8

Since the embedding is not being trained, this process might be
even done in an active learning fashion. However, one advantage
of MACAW is that it avoids the complexity of training an
encoder network. Thus, here we report an approximate strategy
that does not require training a decoder either and that directly
provides molecules matching a desired property specification.
The approach is summarized in Figure 2 and is discussed next.

Table 1. MACAW’s Library_evolver Tool Enables the Directed Evolution of Molecules with Prespecified Properties In Silico,
Like the Research Octane Number (RON)a

aA limited set of molecules with known RON was used to train a relevance vector regressor (RVR), a type of machine-learning model (Jupyter
Notebook 4). The tool generates a library of molecules around the input molecules, selects a subset close to the desired specification, and then uses
the updated subset to generate a new library more focused on the promising regions of the chemical space. The table illustrates the outputs after
eight library generation iterations for different RON specification values. The errors represent the standard deviation of predictive distribution
learned by the RVR at the query points. See Jupyter Notebook 4 for details.
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A prerequisite for inverse molecular design is the ability to
generate newmolecules, and there is much interest in generating
new molecules based on small datasets.9,11 In MACAW,
molecular generation from small datasets is achieved efficiently
using the library_maker function. The generative algorithm
leverages the robustness of the SELFIES molecular representa-
tion,12 which allows concatenating random combinations of a
set of SELFIES symbols and decoding them into SMILES strings
with ∼100% validity. In MACAW’s library_maker, the choice of
symbols is not totally random, but it is informed by the set of
input molecules provided so that the molecules generated are
“centered” to some extent around the input distribution of
molecules. In particular, molecules are generated in a
probabilistic manner based on the distribution of one-hot
SELFIES representations observed in the input molecules after
adding some stochasticity. By default, the transition probabilities
observed between two SELFIES tokens are used in the
generative process but other options are available (see Section
2). The library_maker function also filters the resulting library to
avoid duplicates and synonyms. The output is a list of molecules
in canonical SMILES format. Libraries of 104−106 molecules
can be generated in seconds to minutes in a laptop computer (4
cores, 4 GB RAM) using this approach (Figure S7).

Besides generating new molecules, it would be desirable to be
able to control the focus or spread of the molecular distribution
generated.48 MACAW allows a facile control of this focus by
setting the noise_factor argument with values between 0 and 1.
An illustration of the effect of this parameter on the molecules
generated is shown in Figure S7 as a uniform manifold
approximation and projection (UMAP).49 Notably, MACAW’s
algorithm allows generating distributions of molecules around
input datasets as small as 102 molecules with adjustable focus.

A computational directed evolution approach to inverse
molecular design is proposed, which builds on top of MACAW’s
molecular generator (Figure 2). The approach is implemented
in MACAW’s library_evolver function. It requires a MACAW
embedder and a predictive property model, as well as the ability
to generate new molecules centered around a given set of
molecules (provided by the library_maker tool described
above). First, k1 molecules (3000 by default) are generated
throughout the embedding space based on the input dataset.
Then, the molecules are embedded using MACAW, their
property values are predicted, and the k2 (100 by default) most
promising ones (i.e., those with predicted property values closest
to the desired specification) are identified. These k2 molecules
are then used to inform a new molecular generation round. The
k2 most promising molecules from one round are also carried
over to the next round. The process is repeated several rounds
(n_rounds = 8 by default), and the most promising molecules in
the final round (n_hits = 10 molecules by default) are returned
to the user in SMILES format, along with their predicted
property values. The accompanying Jupyter Notebook 4
illustrates the use of the library_evolver function, among others.

MACAW is able to generate compounds that fit the desired
specification following the molecular generation strategy
introduced. For illustrative purposes, we requested the design
ofmolecules with three different RON specifications: 40, 80, and
120. The tool succeeds at proposing diverse molecules whose
predicted properties satisfy the desired design specification
(Table 1). Although some chemical properties beyond what the
training dataset can teach may not be properly captured, the
outputs are by and large very consistent with domain-specific
knowledge:24,25,50 molecules that are longer, with lower

branching, and fewer unsaturations are proposed to achieve a
low RON specification (i.e., a low antiknocking capacity),
whereas shorter molecules, branched, with unsaturations and/or
oxygenated are proposed when requesting a high RON
specification.

MACAW can also address multiple design specifications
simultaneously by combining them in a single objective function
and providing it as the input model to the library evolver. Jupyter
Notebook 4 illustrates one way to consider the prediction
uncertainty and the synthetic accessibility51 in the recommen-
dation of new molecules. Future research will explore additional
features forMACAWupdates, such as the incorporation of other
similarity metrics and kernels52 for the computation of
molecular distances, new projection methods, the use of
parallelization, or a model-based decoder as an alternative for
the inverse design of new molecules.

4. CONCLUSIONS
In this work, we propose MACAW, a novel algorithm for
molecule embedding and generating molecules that meet a
desired property specification. The MACAW low-dimensional
embeddings are rich in structural information, fast to compute,
and tuned to the molecular dataset at hand. MACAW
embeddings are obtained through a fast multidimensional
scaling approach focused on a few landmark molecules, followed
by projection of the remaining (nonlandmark molecules) onto
the embedding space via triangulation (Figure 1). The use of
landmark embedding methods combined with an improved
landmark selection strategy allows for a high-quality embedding
at a low computational cost. Notably, instead of computing N ×
N distances between the N query molecules, we only need to
compute N × L molecular distances between the queries and the
landmarks.

The embeddings can be used as a replacement for
conventional descriptors in modeling molecular properties and
virtual screening, without the need for variable cleaning and
selection. MACAW embeddings are shown to perform favorably
compared to conventional molecular descriptors, simplifying the
modeling, saving time, and improving the accuracy of the
models trained on them. The speed of MACAW also allows its
application to large molecular libraries for use in virtual
screening applications.

Besides enabling the prediction of molecular properties,
MACAW can solve inverse design problems. For this, we created
a molecule generator algorithm based on SELFIES that is fast
and efficient. The molecule generator performs well even in very
small datasets and allows certain control on the focus of the
molecular distribution being generated. MACAW generates
molecules in a probabilistic manner from a given set of
molecules, considering either the probability of symbols as a
function of their absolute position in the molecular string or the
probability of transitions between consecutive symbols. The
resulting molecule generator can be coupled with a selection
step based on a molecular property of interest. This allows it to
automatically evolve focused molecular libraries toward the
desired property specification. Thus, we believe that MACAW
will be a useful addition to the cheminformatic toolkit for
molecular modeling and inverse design in synthetic biology,
chemistry, and engineering. It also represents a welcome
addition to existing retrobiosynthesis tools by not only helping
predict properties but also suggesting molecules that exhibit the
desired property.
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features extracted from mol2vec embeddings trained on
19.9 M compounds (Figure S6); MACAW’s library_-
maker tool allows the rapid generation of molecular
libraries with variable diversity from small molecular
datasets (Figure S7) (PDF)
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