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Abstract: Phenolic acids, found in cereals, legumes, vegetables, and fruits, have various biological
functions. We aimed to compare the antihypertensive potential of different phenolic acids by eval-
uating their ACE inhibitory activity and cytoprotective capacity in EA.hy 926 endothelial cells. In
addition, we explored the mechanism underlying the antihypertensive activity of sinapic acid. Of
all the phenolic acids studied, sinapic acid, caffeic acid, coumaric acid, and ferulic acid significantly
inhibited ACE activity. Moreover, gallic acid, sinapic acid, and ferulic acid significantly enhanced
intracellular NO production. Based on the results of GSH depletion, ROS production, and MDA level
analyses, sinapic acid was selected to study the mechanism underlying the antihypertensive effect.
Sinapic acid decreases endothelial dysfunction by enhancing the expression of antioxidant-related
proteins. Sinapic acid increased phosphorylation of eNOS and Akt in a dose-dependent manner.
These findings indicate the potential of sinapic acid as a treatment for hypertension.
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1. Introduction

Cardiovascular diseases (CVDs), including coronary artery disease, atherosclerosis,
and hypertension, are a group of diseases that acutely threaten human health [1]. Endothe-
lial dysfunction, a hallmark of hypertension, can be caused by oxidative stress. Nitric oxide
(NO) is a crucial mediator of endothelium-dependent relaxation in blood pressure regula-
tion [2]. Increased radicals rapidly react with NO, resulting in altered NO bioavailability
and impaired endothelial relaxation [3]. Reactive oxygen species (ROS) affect the structure
and function of vascular media. Vascular remodeling by ROS leads to enhanced medial
thickness [4]. Therefore, preventing oxidation and ROS generation may help improve
hypertension-related diseases [5]. Nuclear factor-E2-related factor 2 (Nrf2), an antioxidant
transcription factor important in CVD resistance [6], is highly sensitive to oxidative damage.
Nrf2 promotes the transcription of antioxidant genes, including heme oxygenase-1 (HO-1),
NADPH quinone oxidoreductase (NQO-1), and glutamate-cysteine ligase catalytic subunit
(GCLC). A previous study demonstrated that accumulation of Nrf2 in the nucleus and
activation of protein kinase B (Akt) accompanied HO-1 and NQO-1 expression [7]. In the
endothelium, many growth factors and hormones act as agonists to induce the activation of
Akt and phosphorylation of endothelial nitric oxide synthase (eNOS), which increases NO
production [8]. As various endothelial signaling pathways converge on Akt, it may be an
ideal target protein for eNOS responses [9]. Therefore, the Akt/eNOS and Nrf2 signaling
pathways are crucial checkpoints for the induction of phase II enzymes and treatment of
endothelial dysfunction.

Phenolic compounds are the most abundant phytochemicals in plant-based foods.
Phenolic acids are a major class of phenolic compounds that can suppress ROS, thus re-
ducing oxidative stress to biomolecules within cells [10]. Phenolic acids exert various
biological activities, including antioxidant, anticancer, antidiabetic, anti-inflammatory, and
antihypertension [11]. The ameliorative effect of phenolic acids on chronic diseases may
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be due to their high antioxidative potential [12]. Gallic acid suppressed hypertension in
L-NAME-treated mice and spontaneously hypertensive rats [13,14]. Ferulic acid reduced
oxidative injury by increasing the bioavailability of NO in arterial vasculature [15]. More-
over, chlorogenic acid and caffeic acid lowered blood pressure and decreased the properties
of enzymes associated with the pathogenesis of hypertension [16]. However, information
on the comparative efficacy of phenolic acids in modulating endothelial dysfunction and
hypertension is limited. This study aimed to compare the inhibitory effect of phenolic acids
on endothelial dysfunction against the oxidative damages in EA.hy 926 endothelial cells.

2. Materials and Methods
2.1. Chemicals

Griess reagent, benzoic acid, hydroxybenzoic acid, caffeic acid, cinnamic acid, coumaric
acid, ferulic acid, gallic acid, protocatechuic acid, sinapic acid, syringic acid, vanillic acid,
quercetin, angiotensin-converting enzyme (ACE), captopril, hydrogen peroxide (H2O2),
and diacetyldichlorofluorescein were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Antibodies against p-eNOS, eNOS, p-Akt, Akt, Nrf-2, NQO-1, PCNA, HO-1, GCLC, and
β-actin were obtained from Cell Signaling Technology (Beverly, MA, USA). Dulbecco’s
modified Eagle’s medium (DMEM), fetal bovine serum (FBS), and penicillinstreptomycin
were purchased from Hyclone (General Electric Healthcare Life Sciences, Mississauga,
Canada). The structure of phenolic acids is indicated in Table 1.

Table 1. The structure of phenolic acids.

Name Structure Name Structure

Benzoic acid
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2.3. Cell Culture and Sample Treatment

EA.hy 926 cells were incubated in DMEM supplemented with 10% FBS at 37 ◦C in
humidified air with 5% CO2. Endothelial cells were seeded at a density of 6 × 105 cells/mL
in a 96-well plate. The cells were pre-treated with a serum-free medium containing 50 µM
phenolic acids for 1 h and then exposed to 600 µM H2O2 with phenolic acids for 24 h. Cell
cytotoxicity was determined using a thiazolyl blue tetrazolium bromide reagent.

2.4. Measurement of Intracellular ROS, GSH, Malondialdehyde, and NO Levels

Endothelial cells were treated with 50 µM phenolic acid and 600 µM H2O2. Next, the
cells were washed with PBS and stained with 25 µM diacetyldichlorofluorescein. The fluo-
rescence intensity was analyzed. Glutathione and malondialdehyde levels were measured
using the DTNB-GSSG reductase recycling and TBARS assays, respectively. Nitric oxide
levels were measured using Griess reagent.

2.5. Western Blot Analysis

The EA.hy 926 endothelial cells were cultured in a 6-well plate with or without sinapic
acid at a density of 6 × 105 cells/mL. Total proteins and nuclear proteins were extracted
using the Pro-PrepTM protein extraction solution (iNtRON Biotechnology, Seongnam,
Korea) and NE-PER® nuclear and cytoplasmic extraction reagents (Thermo Fisher Scientific,
Inc., Worcester, MA, USA), respectively. Membranes were incubated with primary and
secondary antibodies (1:2000 dilution for β-actin; 1:1000 dilution for p-eNOS, eNOS, p-Akt,
Akt, NQO-1, PCNA, HO-1, GCLC, anti-mouse, and anti-rabbit; 1:500 dilution for Nrf-2).
The bands were visualized using X-ray film.

2.6. Statistical Analysis

Data were analyzed using Duncan’s multiple comparison test and Tukey’s post hoc
test using SAS (version 8.1; SAS Institute, Cary, NC, USA) and GraphPad Prism software
(version 5; GraphPad Software Inc., La Jolla, CA, USA).

3. Results and Discussion
3.1. Effect of Phenolic Acids on ACE Inhibition and NO Production

ACE plays a crucial role in regulating blood pressure [18]. Many synthetic ACE
inhibitors are currently being used for the treatment of hypertension. However, these drugs
may cause adverse effects. Most natural compounds are safe and do not cause adverse
effects. A previous study reported that plant phenolics have the potential to inhibit ACE
in vitro [19]. Zhang et al. (2018) demonstrated the ACE inhibition effect of phenolic extracts
and fractions derived from lentils, black soybean, and black turtle bean [20]. To confirm
the antihypertensive effect of phenolic acids, we measured the ACE inhibitory activity. As
shown in Figure 1, among the selected phenolic acids, sinapic acid showed the highest ACE
inhibition rate (89%), followed by caffeic acid (78%). In this study, we used the EA.hy 926
endothelial cell line to evaluate the effect of phenolic acids on NO production. Treatment
with phenolic acids (50 µM) did not affect the cytotoxicity of endothelial cells (Figure 2A).
Reduced NO levels contribute to hypertension and endothelial dysfunction. NO plays an
essential role in the vasorelaxation of large arteries [21]. We found that treatment with gallic
acid, sinapic acid, and ferulic acid significantly increased NO production by 85.1, 50.5, and
31.9%, respectively, compared with that in the control group cells (Figure 2B). These results
indicate that phenolic acids may improve endothelial dysfunction, consequently regulating
blood pressure.



Molecules 2022, 27, 6185 4 of 9

Molecules 2022, 27, 6185 8 of 15 
 

 

the EA.hy 926 endothelial cell line to evaluate the effect of phenolic acids on NO produc-
tion. Treatment with phenolic acids (50 μM) did not affect the cytotoxicity of endothelial 
cells (Figure 2A). Reduced NO levels contribute to hypertension and endothelial dysfunc-
tion. NO plays an essential role in the vasorelaxation of large arteries [21]. We found that 
treatment with gallic acid, sinapic acid, and ferulic acid significantly increased NO pro-
duction by 85.1, 50.5, and 31.9%, respectively, compared with that in the control group 
cells (Figure 2B). These results indicate that phenolic acids may improve endothelial dys-
function, consequently regulating blood pressure. 

Ben
zo

ic 
ac

id

Hyd
roxy

ben
zo

ic 
ac

id

Caff
eic

 ac
id

Cinnam
ic 

ac
id

Coumari
c a

cid

Feru
lic

 ac
id

Gall
ic 

ac
id

Protoca
tec

huic 
ac

id

Sinap
ic 

ac
id

Syri
ngic 

ac
id

Van
illi

c a
cid

Cap
topril

0

20

40

60

80

100 a
b b b

cc cc c
dde

e

AC
E 

in
hi

bi
to

n 
ra

te
 (%

)

 
Figure 1. Inhibitory effect of selected phenolic acids (10 mM) on angiotensin I converting enzyme. 
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Figure 1. Inhibitory effect of selected phenolic acids (10 mM) on angiotensin I converting enzyme.
Captopril (1.15 µM) was used as positive control. Each value was expressed as the mean ± standard
error (n = 3). Different letters above the bars indicate significant differences based on the Duncan’s
test (p < 0.05).
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Figure 2. Effect of selected phenolic acids (50 µM) on cell cytotoxicity (A) and NO production (B) in
EA.hy 926 cells. Quercetin (25 µM) was used as positive control. Each value was expressed as the
mean ± standard error (n = 3). Statistical significance was analyzed using the Tukey test. ## p < 0.01
and ### p < 0.001 versus nontreated cells.

3.2. Cytoprotective Effect of Phenolic Acids against Hydrogen Peroxide

Excessive ROS levels lead to endothelial dysfunction and elevated blood pressure [22].
MDA, a marker of oxidative damage, can cause an abnormal physiological state in the
body [23]. GSH, an active peptide with good antioxidant activity, can modulate oxidative
balance and suppress oxidative damage [24]. In this study, we investigated the cytoprotec-
tive effects of phenolic acids on H2O2-induced oxidative stress in EA.hy 926 endothelial
cells. Treatment with H2O2 (600 µM) decreased cell viability by 24.8%. However, treat-
ments by caffeic, ferulic, gallic, and sinapic acid markedly increased the cell viability by
43.4, 43.6, 35.5, and 39.1%, respectively, compared to H2O2-induced cells (Figure 3A). To
examine whether phenolic acids protect endothelial cells against oxidative damage, we
measured ROS, GSH, and MDA levels (Figure 3B–D). Sinapic acid markedly reduced
ROS generation by 44.1% compared to that in H2O2-treated cells. Caffeic acid, cinnamic
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acid, coumaric acid, ferulic acid, gallic acid, sinapic acid, and syringic acid significantly
enhanced the GSH levels. Our findings show that H2O2 treatment increased ROS levels
and decreased intracellular GSH levels, whereas treatment with phenolic acids significantly
reduced oxidative damage-induced ROS production and GSH depletion. In addition, we
investigated the effect of phenolic acids on oxidative stress-induced lipid peroxidation in
EA.hy 926 cells. Among the phenolic acids, sinapic acid showed the strongest inhibitory
effect on lipid peroxidation. Lee and Lee (2021) reported that protocatechuic acid and gallic
acid significantly decreased ROS levels, thereby regulating insulin resistance [25]. Caffeic
acid and chlorogenic acid decreased blood pressure in hypertensive rats by increasing GSH
and reducing MDA levels [16]. Taken together, these results suggest that sinapic acid plays a
crucial role in the protection of endothelial cells by regulating ROS, MDA, and GSH levels.
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Figure 3. Effect of selected phenolic acids (50 µM) on cell viability (A), the generation of reactive
oxygen species (B), glutathione (C), and malondialdehyde (D) against hydrogen peroxide (600 µM)
in EA.hy 926 cells. Quercetin (25 µM) was used as positive control. Each value was expressed as the
mean ± standard error (n = 3). Statistical significance was analyzed using the Tukey test. ### p < 0.001
versus nontreated cells. * p < 0.05, ** p < 0.01, and *** p < 0.001 versus hydrogen-peroxide-treated cells.
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3.3. Effects of Sinapic Acid on the Expression of Phase II Enzymes and the Activation of Nrf2

Based on our results, sinapic acid was selected for exploring the mechanism underlying
the antihypertensive effect of phenolic acid. We measured the protein expression levels
of HO-1, NQO-1, GCLC, and Nrf2. As shown in Figure 4, treatment with sinapic acid
enhanced HO-1, NQO-1, and GCLC expression levels in a dose-dependent manner. In
addition, sinapic acid significantly increased the nuclear translocation of Nrf2. The Nrf2
pathway is important for protection against various stressors [26]. Cytotoxicity caused
by t-BHP-induced oxidative damage was recovered by caffeic acid via an increase in the
expression of detoxifying enzymes, including HO-1 and GCLC [27]. Luo et al. (2018)
reported that HO-1 ameliorates oxidative stress-induced endothelial aging by modulating
eNOS activation [28]. Ginsenoside Rg3 upregulates the Nrf2 signaling pathway via Akt
activation and improves endothelial dysfunction [29]. Moreover, sinapic acid reduces renal
apoptosis, inflammation, and oxidative damage [30]. These results suggest that sinapic
acid-mediated endothelial cell protection against oxidative damage may be associated with
the antioxidative properties of sinapic acid.
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Figure 4. Effect of sinapic acids on HO-1 (A), NQO-1 (B), and GCLC (C) protein expression and Nrf-2
expression levels in nucleus (D) and cytosol (E) against hydrogen peroxide (600 µM) in EA.hy 926 cells.
Each value was expressed as the mean ± standard error (n = 3). Statistical significance was analyzed
using the Tukey test. * p < 0.05, ** p < 0.01, and *** p < 0.001 versus hydrogen-peroxide-treated cells.
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3.4. Effects of Phenolic Acids on Endothelial Dysfunction

NO is essential for maintaining vascular function in the endothelium. Phosphory-
lation of eNOS can regulate NO production [31] and is essential for the improvement of
CVD [32]. Akt mediates NO production via phosphorylation of eNOS, which promotes
endothelial cell migration and angiogenesis [33]. A previous study reported that eNOS
phosphorylation facilitates vasorelaxation via the PI3K/Akt signaling pathway in HU-
VECs [34]. Therefore, phosphorylation of eNOS and Akt is important for the treatment
of endothelial dysfunction. As shown in Figure 5, treatment with H2O2 (600 µM) signifi-
cantly reduced the phosphorylation of eNOS and Akt. However, sinapic acid treatment
at concentrations of 12.5, 25, and 50 µM enhanced the phosphorylation of eNOS by 14.1,
26.3, and 48%, respectively, compared to that in the H2O2-treated group. Sinapic acid
increased Akt phosphorylation in a dose-dependent manner. Chen et al. (2020) reported
that phenolic acids extracted from ginseng protect against vascular endothelial cell injury
via the activation of the PI3K/Akt/eNOS pathway [35]. Yan et al. (2020) reported that gallic
acid attenuated vascular dysfunction and hypertension in angiotensin II-induced C57BL/6J
mice by suppressing eNOS degradation [36]. Taken together, our results showed that sinapic
acid may be effective in the treatment of endothelial dysfunction via phosphorylation of eNOS
and Akt.
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Figure 5. Effect of sinapic acids on p-eNOS (A) and p-Akt (B) protein expression against hydrogen
peroxide (600 µM) in EA.hy 926 cells. Each value was expressed as the mean ± standard error (n = 3).
Statistical significance was analyzed using the Tukey test. # p < 0.05 and ## p < 0.01 versus nontreated
cells. * p < 0.05, ** p < 0.01, and *** p < 0.001 versus hydrogen-peroxide-treated cells.

4. Conclusions

This study showed that phenolic acids significantly protected endothelial cells against
H2O2-induced oxidative damage by modulating NO, GSH, MDA, and ROS levels. Sinapic
acid alleviated endothelial dysfunction by enhancing HO-1, NQO-1, GCLC, p-Akt, and
p-eNOS expression levels, as well as activating Nrf2 nuclear translocation. Overall, these
results illustrate that sinapic acid, which exists abundantly in cereals, spices, vegetables, oil
seed crops, citrus, and berry fruits, has the potential as a treatment option for hypertension.
However, further in vivo studies and clinical trials are needed to determine the underlying
mechanism of action.
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