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Abstract: The structural characterization of the lipopolysaccharide (LPS) from extremophiles has
important implications in several biomedical and therapeutic applications. The polyextremophile
Gram-negative bacterium Halobacteroides lacunaris TB21, isolated from one of the most extreme
habitats on our planet, the deep-sea hypersaline anoxic basin Thetis, represents a fascinating
microorganism to investigate in terms of its LPS component. Here we report the elucidation of
the full structure of the R-type LPS isolated from H. lacunaris TB21 that was attained through a
multi-technique approach comprising chemical analyses, NMR spectroscopy, and Matrix-Assisted
Laser Desorption Ionization (MALDI) mass spectrometry. Furthermore, cellular immunology studies
were executed on the pure R-LPS revealing a very interesting effect on human innate immunity as an
inhibitor of the toxic Escherichia coli LPS.
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1. Introduction

In the last 30 years, the fascinating world of microorganisms able not only to survive but also
to proliferate at extreme conditions has attracted researchers in several multidisciplinary scientific
fields. Spanning through the three domains of life, such microorganisms, known as extremophiles,
were roughly distinguished on the basis of their optimal growth conditions [1,2]. Within this
frame, halophiles are organisms that require highly saline conditions for survival and proliferation.
They inhabit various types of NaCl-saturated environments occurring throughout Earth’s biosphere,
spanning a wide range of scales from solar salterns, inland salt-lakes, and deep-sea hypersaline anoxic
brines (DHABs) [1,2].

The latter ecosystem is one of the harshest environments on planet Earth and is considered
unconducive to the survival of common marine microorganisms. Nevertheless, highly heterogeneous
and stratified microbial communities populate the brines and the interfaces of such basins [3].
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Halobacteroides lacunaris TB21 is an obligate halophilic Gram-negative eubacterium of the order
Halanaerobiales, able to actively grow in the presence of NaCl concentrations between 1.7 M and 5.5 M.
It was recently isolated from the brine of the lately discovered DHAB in the Eastern Mediterranean
Sea, Thetis [4]. Considered as one of the most saline habitats ever reported to date (350 PSU), Thetis is
also characterized by anoxia and high pressure (33.5 MPa) conditions. As a consequence, H. lacunaris
TB21 can be classified as an anaerobic halophilic and barophilic bacterium, namely a polyextremophile.
Halophiles and hyperhalophiles are capable, through several strategies, to control the ionic strength
inside their cells in order to maintain cellular osmotic pressure. Indeed, it was demonstrated that
extremely halophilic obligate anaerobes accumulate high intracellular concentrations of Na+ and K+ to
maintain the cell turgor and to resist the osmotic stress of the hypersaline environment (the so-called
“salt inside” strategy) [3,4]. In addition, it was previously demonstrated that barophilic microorganisms
have adapted their membrane lipids in order to reach a more fluid architecture thus counteracting
the effects of the increase in viscosity due to the high hydrostatic pressure [5,6]. Therefore, these
microorganisms have evolved structural and chemical adaptations allowing them to survive and grow
in such extreme milieus.

As the majority of Gram-negative bacteria, the external leaflet of the H. lacunaris TB21 outer
membrane is mainly covered by lipopolysaccharides (LPS) directly interacting with the surrounding
environment. Lipopolysaccharides are amphiphilic macromolecules typically built up of three
domains: a glycolipid region termed lipid A, embedded in the outer membrane, and a highly variable
glycan portion, designated as the O-chain moiety; the bridge between the lipid A and the O-chain
is represented by the core oligosaccharide (core OS) [7,8]. The occurrence of the O-chain moiety
determines the terminology used to define an LPS molecule: namely, a rough-type LPS (R-LPS) or
lipooligosaccharide (LOS) exhibits no O-chain moiety whereas a smooth-type LPS (S-LPS) shows
all the above three domains [7,8]. The LPS is widely known to be recognized by the host immune
receptorial complex made up of Toll-Like Receptor 4 (TLR4) and myeloid differentiation protein-2
(MD-2), triggering, in a structure-dependent fashion, both the innate and the adaptive immune
responses [9–11]. Being continuously exposed to environmental stress factors that can likely affect
their general structure, LPSs isolated from extremophilic Gram-negative bacteria frequently show
unusual chemical features that, as previously mentioned, influence their biological effects on the host
immune system. Indeed, it was previously reported that LPSs from non-pathogenic bacteria can act as
TLR4/MD-2 antagonists or partial antagonists towards toxic LPSs [12]. As a consequence, there is a
constant search for LPS antagonist candidates inspired by a natural source: namely LPS analogues
able to bind the receptorial complex, thus competing with toxic LPSs, but not capable of triggering an
effective immune response [13].

Given these premises, the establishment of both the structure and the immunological activity
of the LPS isolated from a polyextremophile such as H. lacunaris TB21 represented an intriguing
target to pursue under an evolutionary, chemical, and immunological point of view. Herein we
report the structural characterization of the R-LPS from H. lacunaris TB21, that turned out to express
a unique structure that was established by a combination of organic chemistry, NMR spectroscopy,
and mass spectrometry performed on the whole macromolecule and on its fully deacylated product.
Furthermore, an accurate investigation of the H. lacunaris TB21 R-LPS pro-inflammatory activity
on human and murine cell lines and against the toxic LPS from Escherichia coli clearly showed its
inhibitory action.

2. Results

2.1. Isolation, Purification, and Compositional Analyses of the R-LPS Isolated from H. lacunaris TB21

The LPS material was extracted from lyophilized bacterial cells by the hot phenol/water
procedure [14]. The relative purity and the nature of the extracted sample was evaluated through
Sodium Dodecyl Sulphate-PolyAcrylamide Gel Electrophoresis (SDS-PAGE) after silver nitrate gel
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staining [15] which showed a run to the bottom of the gel typical of a low molecular mass R-type
LPS. The extracted R-LPS was subjected to an enzymatic digestion followed by dialysis and size
exclusion chromatography to remove cell contaminants. An aliquot of pure R-LPS underwent a
detailed monosaccharide and fatty acid compositional investigation.

Monosaccharide analysis revealed the occurrence of D-mannose (D-Man), D-glucose (D-Glc),
D-glucuronic acid (D-GlcA), 2-amino-2-deoxy-D-glucose (D-GlcN), L-glycero-D-manno-heptose (L,D
Hep), and 3-deoxy-manno-oct-2-ulopyranosonic acid (Kdo). Linkage analysis highlighted the presence
of terminal Man, terminal Glc, terminal GlcA, terminal, 3- and 6-substituted GlcN, 2,3-disubstituted
Hep, and 5-substituted Kdo.

Investigation of the total fatty acids content on pure R-LPS showed the occurrence of
3-hydroxydodecanoic acid ((R)-12:0 (3-OH)), decanoic (10:0), and decenoic acids (10:1); of the latter we
have not determined either the position of the double bond or the stereochemistry.

2.2. NMR Spectroscopy Structural Characterization of the R-LPS Core OS Isolated from H. lacunaris TB21

In order to determine the structure of the core oligosaccharide region of H. lacunaris TB21 R-LPS,
a full deacylation, by using anhydrous hydrazine followed by hot strong alkaline treatment [16] on
pure R-LPS, was executed to obtain the saccharide fraction (OS) that was then further purified by
size-exclusion chromatography. The monosaccharide compositional analysis performed on the OS
product confirmed the occurrence of the sugar units found in the pure R-LPS fraction.

The OS product was then subjected to a complete set of homo- and heteronuclear 2D NMR
experiments (DQF-COSY, TOCSY, ROESY, NOESY, 1H, 13C HSQC, 1H, 13C HMBC and 1H, 31P HSQC)
that allowed the characterization of the whole core OS primary structure. Briefly, each spin system
could be assigned by analysis of the DQF-COSY and TOCSY spectra, with the 1H, 13C HSQC spectrum
that led to the identification of each carbon atom. The anomeric configuration of the sugar units was
established on the basis of the intra-residue NOE contacts and of the 3JH-1,H-2 constant values attained
from the DQF-COSY spectrum. In this context, the magnitude of 3JH-1,H-2 with values of 7–9 Hz
is associated with the diaxial coupling of a β-configured sugar unit, whereas 2–4 Hz is indicative
of an equatorial-axial coupling of α-configured residues. Vicinal 3JH,H coupling constants allowed
the assignment of the relative configuration of each sugar residue. The combination of inter-residue
NOE effects and long range correlations in the 1H, 13C HMBC spectrum was fundamental to the
establishment of the saccharide domain of the H. lacunaris TB21 R-LPS. Finally, 31P and 1H, 31P HSQC
experiments were used to establish the location of the phosphate groups decorating the core OS moiety.

The 1H NMR spectrum of the OS product is reported in Figure 1. In the anomeric region of the
spectrum, eight different signals were observed as major signals (A–H, Figure 1, Table 1), whereas
at 1.91/2.09 ppm the H-3 methylene proton signals of the Kdo residue (K, Figure 1, Table 1) were
identified. All the monosaccharide residues were present as pyranose rings, according to both the
13C chemical shift values and the presence of long range correlations between C-1/H-1 and H-5/C-5
in the 1H, 13C HMBC spectrum (for the Kdo residue between C-2 and H-6) [17–20]. The 31P and
1H, 31P HSQC experiments (not shown) revealed three different monophosphate ester groups with
chemical shifts between −0.70 ppm and 3.55 ppm (Table 1), all of which were correlated with sugar
proton signals.

Spin systems A and F (H-1 at δ 5.52 and 4.83 ppm, respectively, Table 1) were assigned to α-GlcN and
β-GlcN of the lipid A domain based on their H-2 proton signals correlating with two nitrogen-bearing
carbon atoms at δ 54.7 and 55.6 ppm (Figure 2), respectively. Their gluco configuration was indicated
by the high 3JH,H ring proton values (8–10 Hz). The observation of the inter-residue NOE correlation
between H-1 of F and H-6 of A (δ 4.17 ppm, Table 1), attained from the NOESY spectrum (Figure 3),
validated the assignment of residues A and F to the lipid A disaccharide backbone. Both GlcN units
were phosphorylated, as proven by the observation of downfield shifts for C-1/H-1 A (δ 90.4/5.52 ppm)
and C-4/H-4 F (δ 74.0/3.63 ppm) in addition to the occurrence of correlations in the 1H, 31P HSQC
spectrum (not shown), with the signal at δ 3.55 ppm for residue A and at δ 2.02 ppm for residue F.
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obtained after a full deacylation step of H. lacunaris TB21 R‐ LPS. The key inter‐residue NOE contacts 

are indicated. 
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Figure 1. 1H NMR spectrum of the core oligosaccharide (OS) from H. lacunaris TB21 rough-type LPS
(R-LPS) obtained after a full deacylation step.
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Figure 2. Zoom of the 1H, 13C Heteronuclear Single Quantum Coherence spectroscopy (HSQC)
spectrum of the core OS product obtained after a full deacylation step of H. lacunaris TB21 R-LPS. Most
of the hetero-nuclear correlations are indicated. The color of the cross peaks indicates the phase: blue
indicates CH and CH3 signals whereas red indicates CH2 signals.
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Figure 3. Zoom of the overlapped NOESY (black) and TOCSY (red) spectra of the core OS product
obtained after a full deacylation step of H. lacunaris TB21 R- LPS. The key inter-residue NOE contacts
are indicated.
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The spin systems C (H-1 at δ 5.15 ppm) and D (H-1 at δ 5.10 ppm) were identified as α-manno
configured residues due to the low coupling constant values 3JH1,H2 and 3JH2,H3 (below 3 Hz), indicative
of the H-2 equatorial orientation; furthermore, in the TOCSY spectrum, it was possible to assign from
H-2 all the other ring proton resonances allowing their assignment as heptose units. The chemical shift
value of C-6 of C and D (Figure 2, Table 1) led to their final identification as L-glycero-D-manno-heptose
residues, in agreement with the compositional analysis. Spin systems B (H-1 at δ 5.37 ppm) and B’
(H-1 at δ 5.31 ppm), assigned to gluco-configured residues, possessed a signal for C-2 at δ 54.3 ppm
(Figure 2, Table 1) indicating that C-2 of both spin systems was a nitrogen-bearing carbon atom; thus,
spin systems B and B’ were identified as α-GlcN residues. Spin system E (H-1 at δ 5.07 ppm) was
identified as an α-Man, as proven by the 3JH,H coupling constant values, whereas the α-anomeric
configuration was assigned, as stated above, on the basis of the 1JC,H values and the intra-residue NOE
connectivity of H-1 only with H-2. Spin system G (H-1 at δ 4.35 ppm) was assigned to a β-GlcA unit as
proven by its C-6 occurring at 175.8 ppm, its large 3JH-1,H-2 value and the presence of NOE correlations
between the anomeric proton signal and both H-3 and H-5 signals. Finally, spin system H (H-1 at
δ 4.28 ppm) was attributed to a β-Glc unit. The identification of the Kdo (K) was achieved starting
from the diastereotopic methylene signal (δ 1.91/2.09 ppm, Figure 1 and Table 1), and its anomeric
α-configuration was assigned on the basis of the chemical shift values of H-3 and of the 3JH-7,Ha-8 and
3JH-7,Hb-8 coupling constants [18–21].

Low-field shifted carbon signals, observed in the 1H, 13C HSQC spectrum (Figure 2), were pivotal
to identify substitutions at O-2 and O-3 of residue C, O-2 and O-3 of D, O-3 of B’, O-6 of A and F, and
O-5 of K; whereas B, E, G, and H were identified as terminal sugar units.

By merging the data from the NOESY, ROESY, and 1H, 13C HMBC spectra, it was possible to
define the primary sequence of the H. lacunaris TB21 R-LPS core OS. In detail, starting from the lipid
A disaccharide backbone composed of residues A and F, this latter was found to be substituted at
position O-6 by the Kdo residue (K). This was also confirmed by the observation of the weak downfield
shift of signal of C-6 of residue F, which is consistent with the expected α-(2→6) ketosidic linkage of
Kdo with the β-GlcN unit [22,23]. The Kdo residue was, in turn, substituted at O-5 by L,D-heptose
D, as proven by the NOE correlation observed between the anomeric proton signal of D (δ 5.10 ppm)
and H-5 signal of K (δ 4.18 ppm) (Figure 3); this was further confirmed by the observation of the
respective long range correlation in the 1H, 13C HMBC spectrum (not shown). Heptose D was, in turn,
substituted by heptose C at its O-3 position and by β-GlcA G unit at its O-2 position, as suggested
by the NOE contacts found between H-1 G (δ 4.35 ppm) and H-2 D (δ 4.18 ppm) and between H-1 C
(δ 5.15 ppm) with H-3 of D (δ 4.19 ppm) (Figure 3).

The GlcN B/B’ unit was found linked to position O-2 of heptose C, as proven by the NOE
correlation between the anomeric proton signal of B/B’ (δ 5.37/5.31 ppm) and H-2 of C (δ 4.14 ppm)
(Figure 3). The heptose C was also substituted, at its O-3 position, by α-Man E as attested by the
NOE contact visible between H-1 of E (δ 5.07 ppm) and H-3 of C (δ 4.13 ppm) (Figure 3). Finally,
the observation of a NOE correlation between H-1 of β-Glc unit H and H-3 of residue B’ (δ 3.90 ppm)
(Figure 3), in addition to the respective HMBC correlation, allowed us to define the linkage H1→3B’.

Together, methylation analysis and NMR spectroscopy led to establishing the complete OS
sequence from the H. lacunaris TB21 R-LPS, as a heptasaccharide containing a terminal β-Glc unit in a
non-stoichiometric fashion. The elucidated core OS structure is depicted in Scheme 1 and Figure S1.
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Table 1. 1H, 13C (italic), and 31P (bold) chemical shifts (ppm) of deacylated R-LPS from H. lacunaris TB21.

Unit 1 2 3 4 5 6 7 8

A
6-α-GlcN1P

5.52 3.28 3.79 3.34 4.06 4.17/4.10 - -
90.4 54.7 69.8 69.3 72.7 69.6 - -
3.55 - - - - - - -

B
t-α-GlcN

5.37 3.23 3.77 3.41 3.77 3.84/3.48 - -
94.7 54.3 69.8 69.3 72.9 62.7 - -

B’
3-α-GlcN

5.31 3.25 3.90 3.58 3.76 3.84/3.48 - -
98.0 54.3 74.0 71.9 73.0 62.7 - -

C
2,3-α-Hep

5.15 4.14 4.13 3.71 3.63 3.87 3.61 -
100.8 78.7 74.0 71.3 71.2 68.4 63.0 -

D
2,3-α-Hep

5.10 4.18 4.19 3.73 3.88 3.83 3.62 -
98.0 78.1 76.8 71.2 70.5 69.7 63.0 -

E
t-α-Man

5.07 4.05 4.00 3.75 3.70 3.81/3.61 - -
102.2 70.1 70.3 66.2 73.3 61.0 - -

F
6-β-GlcN4P

4.83 2.95 3.75 3.63 3.43 3.60/3.43 - -
99.3 55.6 72.8 74.0 75.2 62.3 - -

- - - 2.02 - - - -

G
t-β-GlcA

4.35 3.24 3.40 3.38 3.63 - - -
102.3 72.4 75.2 72.4 77.3 175.8 - -

H
t-β-Glc

4.28 3.16 3.24 3.20 3.32 3.75/3.66 - -
102.8 73.2 75.8 69.8 76.2 60.6 - -

K
5-α-Kdo4P

- - 1.91/2.09 4.44 4.18 3.82 3.68 3.81/3.53
- - 34.4 69.7 72.2 73.2 71.4 63.2
- - - −0.70 - - - -
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Scheme 1. Core OS structure of the R-LPS from H. lacunaris TB21.

2.3. MALDI Mass Spectrometry Investigation of the Lipid A Isolated from H. lacunaris TB21 R-LPS.

In order to unveil the complete structure of the glycolipid portion of the R-LPS from H. lacunaris
TB21, an aliquot of the pure R-LPS underwent a mild acid hydrolysis to cleave the labile glycosidic
linkage between the Kdo and the non-reducing glucosamine of the lipid A disaccharide backbone.

MALDI MS and MS/MS investigation on isolated lipid A was executed. The reflectron MALDI
mass spectrum, recorded in negative polarity, is reported in Figure 4. It clearly showed the occurrence
of a mixture of lipid A species differing in the pattern of fatty acids and in phosphate content.
In detail and on the basis of fatty acid analysis, the ion at m/z 1597.9 (Figure 4) was attributed to
a bis-phosphorylated hexa-acylated lipid A species carrying four units of 12:0 (3-OH), one 10:0 and one
10:1. The relative mono-phosphorylated lipid A form was also assignable to the species at m/z 1518.0
(Figure 4). A bis-phosphorylated penta-acylated lipid A species lacking one 12:0 (3-OH) residue was
attributed to the peak at m/z 1399.8, whose mono-phosphorylated form could be assigned to the peak
at m/z 1319.8. The mass range m/z 1147.7–1247.7 showed peaks assignable to tetra-acylated lipid A
species; as an example, the ion peak at m/z 1167.7 was attributed to a mono-phosphorylated lipid A
species lacking one 12:0 (3-OH) and one 10:1 unit, whereas the ion peak at m/z 1245.6 was assigned to
a bis-phosphorylated form lacking one 10:0 and one 12:0 (3-OH) residue (Figure 4).
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A detailed negative-ion MS/MS analysis was conducted to reveal the location of the lipid A
acyl moieties with respect to the glucosamine backbone. In detail, the MS/MS spectrum of the
precursor ion at m/z 1597.9 (Figure 5) showed a main product ion at m/z 1381.8 matching with a lipid
A fragment lacking one 12:0 (3-OH) unit. Further product ions were also detected at m/z 1425.9 and
1427.7 indicative of one 10:0 and one 10:1 fatty acid loss, respectively. Similarly, the MS/MS spectrum
of the precursor ion at m/z 1399.7 (Figure S2), relative to a bis-phosphorylated penta-acylated lipid A
species, revealed product ions at m/z 1227.8 and 1229.7 matching with the lipid A fragments originated
from one 10:0 and one 10:1 fatty acid loss, respectively.
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Figure 4. Reflectron Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) mass
spectrum of the lipid A from H. lacunaris R-LPS. Only deprotonated ions [M − H]− are formed in these
conditions. The lipid A species are outlined. The structural composition of the ion at m/z 1597.9 is listed
to the right.
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Figure 5. MALDI tandem mass spectrometry (MS/MS) analysis of the hexa-acylated lipid A species
at m/z 1597.9 from H. lacunaris TB21 R-LPS. Fragment assignments are indicated. The double bond
position is tentative and remains to be defined.
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More interestingly, a product ion at m/z 1029.5 was identified as a fragment lacking both 12:0
(3-OH) and 10:0 fatty acids. MS/MS analysis executed on the precursor ion at m/z 1245.6 (Figure S3),
relative to a bis-phosphorylated tetra-acylated lipid A species, allowed for the location of the primary
acyl chains with respect to the disaccharide backbone. Briefly, the negative-ion MS/MS spectrum
highlighted, besides product ions arising from the lipid A fragments lacking one 12:0 (3-OH) fatty acid
(m/z 1029.6) or one 10:1 fatty acid (m/z 1075.6), also an important peak originating from the cleavage of
the glycosidic linkage (Y1) [24] at m/z 654.4 (Figure S3). This product ion allowed the definition of the
acyl chain moieties decorating the reducing glucosamine unit, namely two 12:0 (3-OH) residues, thus
suggesting the occurrence, on the non-reducing glucosamine, of one 12:0 (3-OH) and one 10:1 moieties.
A further confirmation of such a structure was furnished by the negative-ion MS/MS analysis executed
on the precursor ion at m/z 1047.5 (Figure S4), relative to a bis-phosphorylated tri-acylated lipid A
species carrying two 12:0 (3-OH) in amide-linkage and one 10:1 as primary ester-linked fatty acid of
the non-reducing glucosamine unit. This was proven by the presence, in the MS/MS spectrum, of the
Y1 ion at m/z 456.1 and of a product ion at m/z 877.4 assigned to a lipid A fragment originated from the
loss of a 10:1 fatty acid (Figure S4).

2.4. Immunological Properties of Isolated H. lacunaris TB21 R-LPS

We evaluated the impact of H. lacunaris TB21 R-LPS on the human innate immune system
in vitro. First, in order to confirm the absence of contamination, the pure R-LPS was tested for
the presence of bacterial lipoproteins (BLP) in HEK 293 cells expressing TLR2 [25], which is the
receptor of BLP (Figure S4). Both the NF-κB activation and IL-8 release represented the read out
of the experiment. No activation of NF-κB as well as no release of IL-8 were recorded (Figure S5).
In view of this, the immunological properties of H. lacunaris TB21 R-LPS were assessed in the model
of HEK293 cells stably expressing human CD14, MD-2, and human TLR4. HEK 293 hTLR4 cells
were exposed to different H. lacunaris TB21 R-LPS concentrations (namely 1, 10, and 100 ng/mL).
The hexa-acylated potent agonistic LPS from E. coli was used as a positive control at the same
concentrations as above. NF-κB activation was evaluated through the assessment of luciferase activity
after 4 h stimulation; whereas IL-8 release was recorded via enzyme-linked immunosorbent assay
(ELISA) after 18 h stimulation.

The luciferase assay results highlighted that the H. lacunaris TB21 R-LPS induced a significantly
lower NF-κB activation with respect to cells treated with E. coli LPS (R-LPS of H. lacunaris TB21 vs.
LPS of E. coli p < 0.01 at 10 ng/mL and p < 0.001 at 100 ng/mL) (Figure 6a). In agreement with these
results, the level of IL-8 release was lower after stimulation with H. lacunaris TB21 R-LPS with respect
to LPS from E. coli LPS (H. lacunaris TB21 R-LPS vs. E. coli LPS p < 0.01 at 10 ng/mL and p < 0.001 at
100 ng/mL) (Figure 6b).
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Figure 6. Stimulation of HEK 293-hTLR4/MD-2/CD14 with R-LPS derived from H. lacunaris TB21.
Fold of activation of NF-κB (a) and IL-8 (b) release after 4 h and 18 h, respectively, of stimulation
with 1, 10, and 100 ng/mL of R-LPS; commercial LPS of E. coli was used as a control. Significant
difference between H. lacunaris TB21 R-LPS generated values and the corresponding E. coli LPS values
are indicated (H. lacunaris TB21 R-LPS vs. E. coli LPS) (** p < 0.01; *** p < 0.001).
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Then, we expanded the assessment of the immunopotential of H. lacunaris TB21 R-LPS through its
analysis in mouse bone marrow derived macrophages (BMDMs), which are a cell population naturally
committed to sense bacterial PAMPs (Pathogen Associated Molecular Patterns). BMDMs were exposed
to different H. lacunaris TB21 R-LPS concentrations (1, 10, and 100 ng/mL) for 6 h. The LPS from
E. coli was used as a positive control in parallel, as above. The measurement of the release of relevant
inflammatory cytokines, i.e., Tumor necrosis factor-α (TNF-α), chemokine (KC) (IL-8), Interleukin-6
(IL-6), and C-C Motif Chemokine Ligand 5 (CCL-5) was the read-out of this experiment. As shown in
Figure S6, the H. lacunaris TB21 R-LPS produced minimal release of these cytokines thereby confirming
that it was unable to elicit an inflammatory response.

We then proceeded to evaluate the capability of H. lacunaris TB21 R-LPS to interfere with the
TLR4-mediated signaling induced by E. coli LPS. In order to assess this property, HEK 293 hTLR4
cells were pre-incubated for 1 h with different amounts (1, 10, and 100 ng/mL) of H. lacunaris TB21
R-LPS and then exposed to 10 ng/mL of E. coli LPS for 4 h. H. lacunaris TB21 R-LPS significantly
antagonized E. coli LPS-dependent TLR4-mediated NF-κB activation as well as IL-8 expression at all
the concentrations tested (NF-κB activation, H. lacunaris TB21 R-LPS vs. E. coli LPS p < 0.01 at 1, 10,
and 100 ng/mL; IL-8 release, H. lacunaris TB21 R-LPS vs. E. coli LPS p < 0.01 at 1 ng/mL and p < 0.05
at 10 and 100 ng/mL) (Figure 7a,b). Intriguingly, when HEK 293 hTLR4 cells were pre-incubated
with H. lacunaris TB21 R-LPS and then exposed to 100 ng/mL of E. coli LPS, the inhibitory activity
of the polyextremophile R-LPS resulted in higher measurements for both the NF-κB and IL-8 levels
(NF-κB activation, H. lacunaris TB21 R-LPS vs. E. coli LPS p < 0.01 at 1 and 100 ng/mL and p < 0.001
at 10 ng/mL; IL-8 release, H. lacunaris TB21 R-LPS vs. E. coli LPS p < 0.01 at 1 and 100 ng/mL and
p < 0.001 at 10 ng/mL) (Figure 7a,b).

Mar. Drugs 2017, 15, 201    9 of 16 

 

Then, we expanded the assessment of the immunopotential of H. lacunaris TB21 R‐LPS through 

its analysis  in mouse bone marrow derived macrophages  (BMDMs), which are a  cell population 

naturally committed to sense bacterial PAMPs (Pathogen Associated Molecular Patterns). BMDMs 

were exposed to different H. lacunaris TB21 R‐LPS concentrations (1, 10, and 100 ng/mL) for 6 h. The 

LPS from E. coli was used as a positive control in parallel, as above. The measurement of the release 

of relevant  inflammatory cytokines,  i.e., Tumor necrosis  factor‐α  (TNF‐α), chemokine  (KC)  (IL‐8), 

Interleukin‐6  (IL‐6),  and  C‐C  Motif  Chemokine  Ligand  5  (CCL‐5)  was  the  read‐out  of  this 

experiment. As shown in Figure S6, the H. lacunaris TB21 R‐LPS produced minimal release of these 

cytokines thereby confirming that it was unable to elicit an inflammatory response. 

We then proceeded to evaluate the capability of H. lacunaris TB21 R‐LPS to interfere with the 

TLR4‐mediated signaling induced by E. coli LPS. In order to assess this property, HEK 293 hTLR4 

cells were pre‐incubated for 1 h with different amounts (1, 10, and 100 ng/mL) of H. lacunaris TB21 

R‐LPS and  then exposed  to 10 ng/mL of E. coli LPS  for 4 h. H. lacunaris TB21 R‐LPS significantly 

antagonized E. coli LPS‐dependent TLR4‐mediated NF‐κB activation as well as IL‐8 expression at all 

the concentrations tested (NF‐κB activation, H. lacunaris TB21 R‐LPS vs. E. coli LPS p < 0.01 at 1, 10, 

and 100 ng/mL; IL‐8 release, H. lacunaris TB21 R‐LPS vs. E. coli LPS p < 0.01 at 1 ng/mL and p < 0.05 at 

10 and 100 ng/mL) (Figure 7a,b). Intriguingly, when HEK 293 hTLR4 cells were pre‐incubated with 

H. lacunaris TB21 R‐LPS and then exposed to 100 ng/mL of E. coli LPS, the inhibitory activity of the 

polyextremophile R‐LPS resulted in higher measurements for both the NF‐κB and IL‐8 levels (NF‐κB 

activation, H. lacunaris TB21 R‐LPS vs. E. coli LPS p < 0.01 at 1 and 100 ng/mL and p < 0.001 at 10 

ng/mL; IL‐8 release, H. lacunaris TB21 R‐LPS vs. E. coli LPS p < 0.01 at 1 and 100 ng/mL and p < 0.001 

at 10 ng/mL) (Figure 7a,b). 

 

Figure  7.  Competition  assay.  (a)  Fold  of  NF‐κB  activation  and  (b)  IL‐8  release  in  HEK  293 

hTLR4/MD‐2/CD14 stimulated with different concentrations  (1, 10, and 100 ng/mL) of H. lacunaris 

TB21 R‐LPS and then re‐stimulated with 10 ng/mL and 100 ng/mL of E. coli LPS (LPS‐EB ultrapure, 

InvivoGen).  Significant  difference  between  H.  lacunaris  TB21  R‐LPS  generated  values  and  the 

corresponding E. coli LPS values are indicated (H. lacunaris TB21 R‐LPS vs. E. coli LPS) (* p < 0.05; ** p 

< 0.01; *** p < 0.001). 

The combination of these data led to the conclusion that H. lacunaris TB21 R‐LPS exerts a very 

low immunostimulant activity on HEK 293 hTLR4 cells. More interestingly, it additionally exerts a 

good TLR4/MD‐2 antagonistic activity towards the potent agonist E. coli LPS at all the concentrations 

used in the assays. 

3. Discussion 

In  this  paper  the  characterization  of  the  full  structure  of  the  R‐LPS  isolated  from  the 

polyextremophilic bacterium H. lacunaris TB21, is reported. Briefly, the core OS moiety turned out to 

be a mono‐phosphorylated heptasaccharide containing, among others, heptoses and glucuronic acid. 

The lipid A was revealed to be composed of a glucosamine disaccharide backbone decorated by one 

0

2

4

6

8

10

12

14

F
o

ld
o

fN
F

-k
B

a
c

ti
v

a
ti

o
n

1 10 100 1 10 100E. coli
10 ng/ml

E. coli
100 ng/mlLPS H. lacunaris

+
E. coli 10ng/ml

LPS H. lacunaris
+

E. coli 10ng/ml

**

**
***

**

0

1000

2000

3000

4000

5000

6000

IL
-8

 R
e

le
as

e
 (

p
g

/m
l)

1 10 100 1 10 100E. coli
10 ng/ml

E. coli
100 ng/mlLPS H. lacunaris

+
E. coli 10ng/ml

LPS H. lacunaris
+

E. coli 100ng/ml

**
*

*

**
***

**

(a) (b)

Figure 7. Competition assay. (a) Fold of NF-κB activation and (b) IL-8 release in HEK 293
hTLR4/MD-2/CD14 stimulated with different concentrations (1, 10, and 100 ng/mL) of H. lacunaris
TB21 R-LPS and then re-stimulated with 10 ng/mL and 100 ng/mL of E. coli LPS (LPS-EB ultrapure,
InvivoGen). Significant difference between H. lacunaris TB21 R-LPS generated values and the
corresponding E. coli LPS values are indicated (H. lacunaris TB21 R-LPS vs. E. coli LPS) (* p < 0.05;
** p < 0.01; *** p < 0.001).

The combination of these data led to the conclusion that H. lacunaris TB21 R-LPS exerts a very low
immunostimulant activity on HEK 293 hTLR4 cells. More interestingly, it additionally exerts a good
TLR4/MD-2 antagonistic activity towards the potent agonist E. coli LPS at all the concentrations used
in the assays.

3. Discussion

In this paper the characterization of the full structure of the R-LPS isolated from the
polyextremophilic bacterium H. lacunaris TB21, is reported. Briefly, the core OS moiety turned out to
be a mono-phosphorylated heptasaccharide containing, among others, heptoses and glucuronic acid.
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The lipid A was revealed to be composed of a glucosamine disaccharide backbone decorated by one or
two phosphate groups and acylated by (R)-12:0 (3-OH) in amide linkage, (R)-12:0 (3-OH) and 10:1 as
primary ester-linked fatty acids, and (R)-12:0 (3-OH) as a secondary acyl chain.

The structural investigation highlighted an R-LPS which was highly negatively charged at
physiological pH since it exhibits three phosphate groups and two sugar units bearing carboxyl
groups (namely, the Kdo and the glucuronic acid residues). The occurrence of various decorations by
anionic substituents on the R-LPS may be designed as an important evolutionary adaptation since such
negative charges could act as a buffering system, able to regulate the pH on the external membrane
surface, thus protecting the bacterium from the extreme salinity conditions. Furthermore, the presence
of short, as well as, unsaturated acyl chains composing the lipid A moiety can be considered a direct
consequence of the necessity of H. lacunaris TB21 to reach a good outer membrane fluidity, thus
protecting the entire bacterial cell from the high pressure conditions of the DHAB Thetis [14].

It is widely known that LPS is involved in innate immune system elicitation where the
hexa-acylated bis-phosphorylated lipid A from E. coli exhibits a high immunostimulant activity binding
to TLR4/MD-2 complex and triggering the downstream signaling [9–11]. It is established that subtle
chemical modifications in certain parts of the LPS structure are responsible for fine-tuning of the innate
immunity response [9–11,26]. The search for LPS analogues, isolated from a natural source, that can act
as antagonists on TLR4/MD-2 is a hot topic with a growing interest in many research fields. Indeed,
this paves the way to the possibility to develop ad-hoc synthesized compounds able to limit the lethal
consequences due to the excessive and deregulated TLR4 activation and signaling. This fascinating
opportunity prompted us to investigate the immunostimulatory activity of H. lacunaris TB21 R-LPS
which revealed a very weak ability to engage the TLR4/MD-2/CD14 pathway compared to the LPS
of E. coli. This represents an intriguing discovery since H. lacunaris TB21 R-LPS was characterized
by a mixture of tetra-, penta-, and hexa-acylated lipid A species with this latter form considered,
as stated above, the prototype of the agonistic activity on the TLR4/MD-2 complex. Nevertheless,
several structural differences may be at the basis of the divergent immunological activity exerted by
E. coli LPS and H. lacunaris TB21 R-LPS, namely (i) the symmetric distribution of the acyl moieties
of H. lacunaris TB21 lipid A which is characterized, in its hexa-acylated form, by three fatty acids on
each glucosamine unit; (ii) the presence in the polyextremophile lipid A of acyl chains shorter than
those of E. coli (10 and 12 carbon atoms vs. 14 and 12 carbon atoms) as well as the occurrence of
unsaturated acyl moieties (namely 10:1). More intriguingly, the H. lacunaris TB21 R-LPS exhibited
a potent inhibitory activity towards the toxic effects of E. coli LPS on HEK 293 hTLR4 cells. This
interesting property has been extensively reported for tetra-acylated lipid A, such as lipid IVA [27],
and also for some other extremophilic LPSs, such as those isolated from the thermophile Thermomonas
hydrothermalis [28] and the halophile Halomonas megadiensis [29]. The TLR4/MD-2 antagonistic activity
of H. lacunaris TB21 R-LPS may be explained with the occurrence of hypo-acylated lipid A species,
namely tetra- and penta-forms, in addition to the hexa-acylated forms, thus resulting in a very weak
elicitation of an immune response but with a fascinating capability to robustly compete with the toxic
E. coli LPS for binding to the TLR4/MD-2 complex.

Therefore, besides the peculiar structural properties observed for H. lacunaris TB21 R-LPS, this
work clearly demonstrates that the lipid A isolated from this polyextremophilic bacterium represents a
further attractive example of the potential use of extremophiles in the research of LPS-analogues that
can act as immunomodulators of the immune response [14].

4. Materials and Methods

4.1. Bacteria Isolation and Growth

Brine samples (salinity, 340 g/kg) were obtained from deep-sea hypersaline anoxic lake Thetis
(34.6698◦ N and 22.1455◦ E) from the depth of 3300 m. Sampling was done during MICRODEEP12
cruise (September 2012) on board the RV Urania. For cultivation, 50 mL of brine was mixed with sterile
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mineral base medium containing (g/L): 240 NaCl, 5 KCl, 2 K2HPO4, and 0.5 NH4Cl. The mineral
base medium was supplemented with yeast extract (40 mg/L), selenite/tungstate (20 mg/L), trace
elements, and vitamins solution (1 mL/L each) [30]. The medium was previously adjusted to pH 7.0
with 50 mM of HEPES and 1.0 M NaOH, boiled under N2-CO2 atmosphere (80:20 v/v), dispensed
into 120 mL serum bottles under N2:CO2 (80:20 v/v) and autoclaved. After sterilization, 0.5 g/L filter
sterilized Na2S and 15 mM of glycine betaine (GB) were added. Cultures were incubated at 20 ◦C
temperature in the dark for 2 months. Positive enrichments were transferred into fresh medium
(salinity, 240 g/L) supplemented with 15 mM of GB and used for further isolation and phylogenetic
analysis. Hypersaline (salinity, 320 g/L) DSMZ 764 medium [30] was used for the isolation of bacterial
members of the Thetis enrichment. Pure cultures were obtained by serial dilutions to extinction and
the final isolates were checked microscopically and by 16S rRNA sequencing. Colony formation was
possible only in Hungate roll tubes or on plates incubated in anaerobic jars. The colony transfer was
repeated at least twice before the cultures were considered pure.

To obtain a sufficient amount of biomass for R-LPS isolation and characterization, growth of
polyextremophilic bacterium H. lacunaris TB21 was performed at 37 ◦C in 120 mL serum bottles with
butyl rubber stoppers filled to 90% with liquid DSMZ 764 medium. The medium was made anoxic first
by “cold boiling” upon evacuation followed by 3 cycles of flushing with argon-evacuation. Anaerobic
conditions were achieved by the final addition of 0.2 mM H2S. The cultures were incubated for 10 days
with periodic shaking of the flasks.

4.2. Isolation and Purification of the R-LPS from H. lacunaris TB21

Lyophilized bacterial cells were extracted following the hot phenol/water protocol [14].
The extracted material was exhaustively dialyzed against distilled water. In order to define the
nature of the extracted material, an SDS-PAGE followed by silver nitrate gel staining [15] was executed
revealing the rough nature of the isolated LPS. To remove cell contaminants, such as proteins and
nucleic acids, an enzymatic digestion with RNase (Sigma-Aldrich, Darmstadt, Germany), DNase
(Sigma-Aldrich, Darmstadt, Germany), and Proteinase K (Sigma-Aldrich, Darmstadt, Germany) (37 ◦C
and 56 ◦C) was performed. To further purify the R-LPS material, an ultracentrifugation step (4 ◦C,
100,000 g, 16 h) and a size-exclusion chromatography on a Sephacryl High Resolution S-200 (GE
Healthcare, Little Chalfont, UK) column were executed.

4.3. Chemical Analyses

The monosaccharide content, both on intact R-LPS and the isolated core OS product, was
determined by analysis of the acetylated O-methyl glycoside derivatives obtained by treatment with
HCl/MeOH (1.25 M, 85 ◦C) followed by an acetylation step with acetic anhydride in pyridine (85 ◦C,
30 min). The absolute configuration was defined through the evaluation of the O-octylglycoside
derivatives as previously described [31]. To establish the sugar linkage pattern, an aliquot of R-LPS
was methylated with CH3I, hydrolyzed with trifluoroacetic acid (4 M, 100 ◦C, 4 h), carbonyl reduced
with NaBD4, and acetylated [32,33].

The total fatty acid content was determined on intact R-LPS by treating with HCl (4 M, 100 ◦C,
4 h) followed by NaOH (5 M, 100 ◦C, 30 min). The pH was adjusted to 3. An extraction in chloroform
allowed us to isolate the fatty acids that were then methylated with diazomethane. The absolute
configuration of acyl chains was determined as previously described [34]. Authentic 3-hydroxy fatty
acids were used to assign the (R) configuration to the R-LPS fatty acids.

All chemical analyses were performed by means of gas-liquid chromatography (GLC-MS) Agilent
Technologies 6850A (Santa Clara, CA, USA) equipped with a mass selective detector 5973N and a
Zebron ZB-5 capillary column (Phenomenex, 30 m × 0.25 mm i.d., 0.25 µm as film thickness, flow rate
1 mL/min, He as carrier gas) and using the temperature program 140 ◦C for 3 min, 140 ◦C/240 ◦C
at 3 ◦C/min.
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4.4. Isolation of the Core OS from the H. lacunaris TB21 R-LPS

An aliquot of pure R-LPS was treated with anhydrous hydrazine under magnetic stirring (37 ◦C,
90 min), cooled, poured into ice-cold acetone, and allowed to precipitate. The precipitate was
then centrifuged (3000 g, 30 min), washed with ice-cold acetone, dried, dissolved in water, and
lyophilized. The O-deacylated product was then N-deacylated with KOH (4 M, 120 ◦C). A gel filtration
chromatography was performed to remove salts [16]. To further purify the core OS product, a further
gel filtration on a BioRad Bio-Gel P4 Fine packed column was executed. Gel filtration chromatography
was run at room temperature with a flow rate of 8 cm/hr, using distilled and degassed water as eluent.
The column was calibrated using Bio-Rad’s Gel Filtration Standards.

4.5. NMR Spectroscopy

1D and 2D 1H NMR spectra were performed at 298 K in D2O at pD = 7 with a Bruker 600
DRX spectrometer (Billerica, MA, USA) equipped with a cryoprobe. The spectra were calibrated
with internal acetone (δH = 2.225 ppm; δC = 31.45 ppm). 31P NMR experiments were carried out
with a Bruker DRX-400 spectrometer; aqueous 85% phosphoric acid was used as external reference
(δ = 0.00 ppm). Total correlation spectroscopy (TOCSY) experiments were performed with spinlock
times of 100 ms by using data sets (t1 × t2) of 4096 × 512 points. Rotating frame Overhauser
enhancement spectroscopy (ROESY) and Nuclear Overhauser enhancement spectroscopy (NOESY)
experiments were executed by using data sets (t1× t2) of 4096× 512 points with mixing times between
100 and 300 ms. Double-quantum-filtered phase sensitive correlation spectroscopy (DQF-COSY)
experiments were executed by using data sets of 4096 × 900 points. The data matrix in all the
homonuclear experiments was zero-filled in both dimensions to give a matrix of 4K × 2K points and
was resolution-enhanced in both dimensions by a cosine-bell function before Fourier transformation.
Coupling constants were determined by 2D phase-sensitive DQF-COSY [35,36].

Heteronuclear single quantum coherence (HSQC) and heteronuclear multiple bond correlation
(HMBC) experiments were executed in 1H-detection mode by single-quantum coherence with proton
decoupling in the 13C domain using data sets of 2048 × 256 points. HSQC was performed using
sensitivity improvement and in the phase-sensitive mode using Echo/Antiecho gradient selection,
with multiplicity editing during the selection step [37]. HMBC was optimized on long range coupling
constants, with a low-pass J-filter to suppress one-bond correlations, using gradient pulses for selection,
and a 60 ms delay was used for the evolution of long-range correlations. 1H, 31P HSQC was optimized
for an 8 Hz coupling constant. The data matrix in all the heteronuclear experiments was extended to
2048 × 1024 points by using forward linear prediction extrapolation [38].

4.6. MALDI Mass Spectrometry

MALDI TOF MS of the lipid A fraction, recorded in reflectron mode and negative polarity, was
executed on a 4800 Proteomic analyzer (SCIEX, Concord, ON, Canada) supplied with a Nd: YAG laser
(wavelength of 355 nm). Lipid A preparation was performed as previously described [17,18]. Briefly,
the sample was dissolved in CHCl3/CH3OH (50:50 v/v) at a concentration of 25 pmol/µL. The matrix
solution was trihydroxyacetophenone (THAP) dissolved in CH3OH/0.1% TFA/CH3CN (7:2:1 v/v/v)
at a concentration of 75 mg/mL. A sample/matrix solution mixture (1:1 v/v) was deposited (1 µL)
onto a stainless steel gold-plated 100-sample MALDI probe tip, and left to dry at room temperature.
Mass accuracy was found below 75 ppm. 2000 laser shots were approximately accumulated for each
mass spectrum, whereas 4000/6000 shots were summed for MS/MS acquisitions. A series of MALDI
TOF/TOF experiments were performed with helium, argon, xenon or air as the collision gas, and
the resulting fragmentation spectra were compared with those obtained without collision induced
dissociation (CID); no significant differences were observed in all the observed cases in the mass range
above m/z 200. Below this mass, product ions corresponding to the phosphate fragments at m/z 79 and
97 were much more abundant in the CID spectra regardless of the collision gas.
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4.7. Cell Cultures

The stably transfected human embryonic kidney epithelial cell line HEK 293-hTLR4/MD2-CD14
and HEK293 hTLR2 (InvivoGen, San Diego, CA, USA) were cultured in DMEM with 10% FBS (Eurclone,
Milan, Italy), 10 µg/mL Blasticidin-S and 50 µg/mL HygroGold® (both by InvivoGen, San Diego,
CA, USA).

4.8. BMDMs Isolation and Culture

C57BL/6 mice were purchased from Charles River (Charles River ITALY). BMDMs were derived
from the bone marrow cells collected from five-week old female mice, as already reported [39].
Subsequently, BMDMs were differentiated during 5 days in RPMI1640 (Lonza, Basel, Switzerland),
supplemented with 10% FBS (Hyclone, San Angelo, TX, USA), 1% Glutamine (Lonza, Basel,
Switzerland), 1% Na pyruvate (Lonza, Basel, Switzerland), 1% NEAA (Lonza, Basel, Switzerland),
0.5% 2-ME (Thermo Fisher Scientific, Milan„ Italy), and 30 ng/mL macrophage colony-stimulating
factor (M-CSF; Miltenyi Biotec, Bergisch Gladbach, Germany).

4.9. Cytokine Measurement

Human cytokine IL-8 was determined in the supernatants of stimulated HEK 293-TLR4/MD2-CD14
and HEK 293-TLR2 cells by using R&D Systems DuoSet ELISA (R&D Systems, Minneapolis, MN, USA).
Murine cytokines were determined in supernatants of stimulated BMDMs by using R&D Systems
DuoSet ELISA (R&D Systems, Minneapolis, MN, USA) kits for TNF-α, IL-6, KC, and CCL-5 according
to the manufacturers’ instructions.

4.10. HEK 293 hTLR4/CD14/MD2 Cell Culture, Transfection, and Stimulation

Stably transfected cell line HEK 293-TLR4/MD2-CD14 or HEK 293 hTLR2 were seeded into
96-well plates at the concentration of 3 × 105 cells/mL. The next day cells were transiently transfected
with PolyFect Transfection Reagent (Qiagen, Hilden, Germany) with a reaction mix composed by
150 ng of Firefly luciferase reporter constructs, pGL3.ELAM.tk (containing NF-κB promoter sequences),
and 15 ng of Renilla luciferase reporter plasmid, pRLTK (as an internal control). Twenty-four hours
post-transfection cells were untreated or incubated with different concentrations (1, 10, and 100 ng/mL)
of R-LPS of H. lacunaris TB21 or of purified E. coli LPS (LPS-EB ultrapure; InvivoGen, San Diego,
California, USA) for 4 h to analyze the NF-κB activity or for 18 h to measure the IL-8 release,
respectively. For the competition assays, HEK 293-TLR4/MD2-CD14 cells were primed with LPS (1, 10
and 100 ng/mL) of R-LPS of H. lacunaris TB21 for 1 h and then stimulated with 10 or 100 ng/mL of
E. coli LPS for 4 h. After this time, the NF-κB activity and IL-8 release were measured.

HEK 293 hTLR2 were exposed to R-LPS of H. lacunaris TB21 as above and Pam3CSK4 (1 µg/mL,
InvivoGen, San Diego, CA, USA) was used as the positive control. After 6 h, NF-κB activity was
measured and IL-8 release was recorded via ELISA assay after 18 h of stimulation.

Supplementary Materials: The following are available online at www.mdpi.com/1660-3397/15/7/201/s1.
Figure S1: Chemical structure of the H. lacunaris TB21 R-LPS core oligosaccharide; Figure S2: MALDI MS/MS
analysis of the penta-acylated lipid A species at m/z 1399.7 from H. lacunaris TB21 R-LPS. Fragment assignments
are indicated. The double bond position is tentative and remains to be defined; Figure S3: MALDI MS/MS
analysis of the tetra-acylated lipid A species at m/z 1245.6 from H. lacunaris TB21 R-LPS. Fragment assignments are
indicated. The double bond position is tentative and remains to be defined; Figure S4: MALDI MS/MS analysis of
the tri-acylated lipid A species at m/z 1047.5 from H. lacunaris TB21 R-LPS. Fragment assignments are indicated.
The double bond position is tentative and remains to be defined; Figure S5: Assessment of contaminations in
R-LPS. Fold of NF-κB activation and IL-8 release upon stimulation of HEK 293 hTLR2 with 1, 10 and 100 ng/mL
of H. lacunaris TB21 R-LPS for 6 h and 18 h respectively. Hexa-acylated E. coli LPS and Pam3CSK4 were used as
controls. * p < 0.05, ** p<0.01, *** p < 0.001 in the Student’s t-test (H. lacunaris TB21 R-LPS vs. E. coli LPS); Figure S6:
Cytokine release in BMDMs stimulated with H. lacunaris TB21 R-LPS. TNF-α, KC, IL-6 and CCL-5 released by
BMDMs after stimulation with 1, 10 and 100 ng/mL of H. lacunaris TB21 R-LPS and E. coli LPS, measured by
ELISA at 18 h. Significant difference between H. lacunaris TB21 R-LPS generated values and the corresponding
E. coli LPS values are indicated (H. lacunaris TB21 R-LPS vs. E. coli LPS) (* p < 0.05; ** p <0.01; *** p < 0.001).

www.mdpi.com/1660-3397/15/7/201/s1
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