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Abstract.—Species distribution data are fundamental to the understanding of biodiversity patterns and processes. Yet,
such data are strongly affected by sampling biases, mostly related to site accessibility. The understanding of these biases is
therefore crucial in systematics, biogeography, and conservation. Here we present a novel approach for quantifying sampling
effort and its impact on biodiversity knowledge, focusing on Africa. In contrast to previous studies assessing sampling
completeness (percentage of species recorded in relation to predicted), we investigate whether the lack of knowledge of a
site attracts scientists to visit these areas and collect samples of species. We then estimate the time required to sample 90%
of the continent under a Weibull distributed biodiversity sampling rate and the number of sampling events required to
record ≥50% of the species. Using linear and spatial regression models, we show that previous sampling has been strongly
influencing the resampling of areas, attracting repeated visits. This bias has existed for over two centuries, has increased in
recent decades, and is most pronounced among mammals. It may take between 172 and 274 years, depending on the group,
to achieve at least one sampling event per grid cell in the entire continent. Just one visit will, however, not be enough: in
order to record ≥50% of the current diversity, it will require at least 12 sampling events for amphibians, 13 for mammals, and
27 for birds. Our results demonstrate the importance of sampling areas that lack primary biodiversity data and the urgency
with which this needs to be done. Current practice is insufficient to adequately classify and map African biodiversity; it can
lead to incorrect conclusions being drawn from biogeographic analyses and can result in misleading and self-reinforcing
conservation priorities. [Amphibians; birds; mammals; sampling bias; sampling gaps; Wallacean shortfall.]

Although the number of scientists, scientific
organizations, and publications are increasing
worldwide (Stork and Astrin 2014), our knowledge
on the distribution of biodiversity—a cornerstone in our
understanding of life on Earth—may not be expanding
to the same extent (Bini et al. 2006; Boakes et al. 2010;
Feeley and Silman 2011; Stropp et al. 2016).

Georeferenced specimens in natural history
collections and observations are fundamental for
the classification and understanding of biodiversity
patterns. Besides the increasing availability of
observational data derived from citizen science
initiatives, museum specimens are still the main source
of information for taxonomic, systematic, and ecological
studies (Shaffer et al. 1998; Graham et al. 2004).
However, there remain important gaps of knowledge
in the distribution of organisms—the “Wallacean
shortfall” (Lomolino 2004). Species distribution data
sets are often strongly affected by temporal, spatial, and
taxonomic biases (Meyer et al. 2016). Temporal biases
can be influenced by intensive collecting periods or by
seasonality (Ward 2012). Spatial biases often relate to
accessibility (Reddy and Dávalos 2003), protected areas
and particular habitats (Sánchez-Fernández et al. 2008),
or climatic zones (Loiselle et al. 2008). Sampling biases
are also known to be strongly affected by variables such

as body size and taxonomic group (Schmidt-Lebuhn
et al. 2013; Troudet et al. 2017). As an additional concern,
there are differences between whether how well-studied
groups are and how represented they are in taxonomic
collections. One example is the reluctance of taking
vouchers of supposedly “well-studied” groups such as
birds (Bates et al. 2004; Schmitt et al. 2019).

Although it has been widely documented that certain
parts of continents are visited and sampled more
frequently than others (Meyer et al. 2015), the underlying
causes for this unevenness may be attributed to several
factors. These include language barriers (Harford 2015),
lack of basic resources, and poor infrastructure (Walker
et al. 2006; Foster and Briceño-Garmendia 2009; Beegle
et al. 2016). Additional factors such as political regimes
(Rydén et al. 2019), corruption (Mbaku 2010; Bello-
Schünemann and Moyer 2018), dangerous tropical
diseases (Hotez and Kamath 2009; Amarasinghe et al.
2011; Bhatt et al. 2015), and expensive or burdensome
permit requirements (Engel et al. 2015) may further
discourage work in particular countries and regions.
Although many of these factors have been previously
described in the literature and are well known to
the systematic community, the influence of existing
previous knowledge of the biodiversity of a site
in attracting scientists remains unknown. Scientists
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may either preferentially visit areas that are more
accessible or, alternatively, prefer to sample in well-
known areas. Quantifying (Zizka et al. 2020) and creating
awareness around sampling biases are crucial to the
efficient implementation of conservation policies and are
essential to both scientists and decision-makers.

Here we test whether the degree of previous
knowledge of biodiversity within an area increases the
likelihood that additional sampling will be done in the
same cell. We then estimate the time and effort necessary
to sample Africa’s biodiversity under current practices.
We perform our analyses on data from amphibians,
mammals, and birds, given their relatively high level
of baseline knowledge derived from digitally available
natural history collections, as compared with many other
organisms.

We outline two possible scenarios. Under the first
scenario, researchers may actively seek data-deficient
areas because they offer an opportunity to find new
species and fill gaps in biodiversity knowledge. Under
this scenario, researchers may be more likely to sample
accessible areas but the extent of knowledge of an area
should reduce the desire to revisit it for additional
sampling—a phenomenon previously documented for
the collection of individual species (Steege et al. 2011).
This is, for example, the case for certain biological
surveys in the 16th and 17th centuries, when collected
specimens were often treated as art pieces and hidden
from competitors until their economic value was
estimated (Ritterbush 1969; Impey and MacGregor 1985).

Under the second scenario, sampling planning may
not be primarily driven by the attempt to fill in gaps, but
rather by the likelihood of retrieving data, often under
time constraints. Therefore, researchers may return to
visited areas because finding a focal species to obtain
appropriate tissue for molecular phylogenetic analyses
may be easier, more certain, and more cost-efficient.
One example of this scenario is the Mount Namuli in
Mozambique, surveyed repeatedly in 1931–1932, 1998,
2007, 2011, 2014, and 2016, which rendered it considerably
better sampled than any surrounding areas (Vincent
1933; Ryan et al. 1999; Timberlake et al. 2009; Portik
et al. 2013; Farooq and Conradie 2015; Conradie et al.
2016). This repeated sampling resulted in new range
expansions (Farooq and Conradie 2015), new species
(Conradie et al. 2018), and a better understanding of the
biogeography of the region through phylogenetic studies
(Branch et al. 2014; Bittencourt-Silva et al. 2016).

MATERIALS AND METHODS

Using a grid-cell size equivalent to 100 by 100 km
(more specifically the cells were 100 by 100 km at 30
degrees North or South; cells at lower latitudes were
wider and lower, whereas cells are higher latitude were
thinner and higher), we tested whether knowledge of
biodiversity within a cell changes the likelihood of
additional sampling within it. One advantage of this
approach is that it shows whether sampling is spatially

restricted because some sites are easier to reach, or if
the very existence of knowledge is causing scientists to
revisit well-known areas.

For all analyses, we worked on a cylindrical equal-
area Berhmann projection. We estimated the time it
would take to sample at least once in 90% of the land
area of Africa, and the number of sampling events
required to record at least 50% of the species of an area
of 10,000 km2. Our estimation of the time to sample
90% of Africa was based on the assumption that the
rate of biodiversity sampling since the 1800s can be
adequately described by a Weibull distribution, whereas
in the sampling effort analysis, we removed the temporal
aspect by randomizing the years 100 times.

All analyses were conducted using three
groups: amphibians, mammals, and birds. Our
species occurrence data set consisted of records
retrieved from the Global Biodiversity Information
Facility (GBIF) for amphibians (https://doi.
org/10.15468/dl.hyyea9), mammals (https://doi.org/
10.15468/dl.gms3up) excluding bats, and birds
(https://doi.org/10.15468/dl.unxn5u) recorded in
Africa from 1801 until the end of 2019 (31 December
2019). Bats and marine mammals were excluded from
the analyses of mammals because they are generally
sampled by different methods and researchers than for
non-flying terrestrial mammals.

We focused on species occurrence records contributed
by scientists, because these provide the primary source
of information and material for the community of
professional systematists. Citizen science observations,
although important for popular engagement and data
gathering, were therefore excluded due to their mixed
systematic value (e.g., Troudet et al. 2018). Although
not all countries in Africa are formal participants
of the GBIF Network, which could potentially lead
to underestimation of the completeness of each grid
cell, most species collections in Africa are housed
by members of the GBIF network, such as in South
Africa, western European countries, and the United
States. Other intrinsic limitations of GBIF are that
it does not provide access to records collected and
stored in nonparticipant countries or in scientific
articles or reports where no voucher was collected,
such as in photography-based inventories characteristic
of Environmental impact assessments. This might
also contribute to the underestimation of the true
completeness rate.

To update and synonymize the taxonomy from GBIF,
we used the R package RangeBuilder (version 1.4)
(Rabosky et al. 2016) and removed the records of species
not present in the IUCN’s polygon list. We applied the R
package CoordinateCleaner (Zizka et al. 2019) to exclude
duplicates and records outside the IUCN range for each
species.

We define a sampling event in each cell as sampling
within a given calendar year.

To estimate a simple measure of sampling
completeness, we followed a similar approach to

https://doi.org/10.15468/dl.hyyea9
https://doi.org/10.15468/dl.hyyea9
https://doi.org/10.15468/dl.gms3up
https://doi.org/10.15468/dl.gms3up
https://doi.org/10.15468/dl.unxn5u
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Meyer et al. (2015). We assume that the range polygons
created by IUCN using version 2019-3 (IUCN 2019)
are accurate. We consider as unsampled those cells
overlapped by a range polygon but without the
respective species record, whereas any records outside
the range polygons are assumed to be errors. Although
we acknowledge that none of these assumptions fully
capture the complexity of species distributions and
occurrences, we consider them sufficiently close to
reality for the purpose of our analysis and unlikely to
result in major systematic biases.

Effect of Previous Knowledge on Sampling Probability
We calculated the probability of visiting any grid cell

according to its ratio of completeness using a Logistic
model of the sampling events by completeness plus year.
Although few cells in nondesert parts of Africa have
communities of amphibians, mammals, and birds with
fewer than 10 species, the same did not hold true for the
threshold of at least five sampling events, resulting in
the exclusion of a large portion of grid cells from our
analysis

Cells with fewer sampling events are more likely to
have more extreme effect sizes, resulting from the size
of the difference between few data points. We therefore
restricted our analyses to test only whether the effect was
positive or negative. To distinguish between primarily
colonial sampling and recent sampling, we conducted
separate analyses for two time periods: 1801–1940, 1980–
2019, and then for the total period: 1801–2019. Although
most countries attained independence between 1950
and 1980, separating colonial times from independence
dates can be misleading. We assumed the end of World
War II as an igniter of the emancipation of African
countries following Cooper (2019) and considered the
period of 1940–1980 uncertain and impossible to assign
across diverse African countries. The lower boundary
of 1800 was arbitrarily chosen to encapsulate all
subsequent colonial periods and to avoid any dubious
earlier records. In summary, we considered pre-1940
colonial, post-1980 noncolonial, and 1940–1980 unknown
and therefore excludable from our analyses. The term
colonial is used here as a shorthand for the time period
prior to the emergence of the independent African
nations we see now, and that, depending on the part of
Africa, this definition includes a period before the formal
establishment of the colonial structure.

Spatial patterns might affect the degree at which
sampling completeness increases the probability of
researchers visiting a cell. To investigate this possibility,
we carried out a multiple correlation analysis with
variables that cover both environmental and social
aspects. These included annual precipitation (Worldclim
v 2: Fick and Hijmans 2017), human influence (WCS
and CIESIN 2005), net primary production (Imhoff et al.
2004), protected areas coverage (UNEP-WCMC 2019),
elevation (Jarvis et al. 2008), Human Development Index

(HDI), and Gross Domestic Product (GDP) per capita
(Kummu et al. 2018).

To account for spatial autocorrelation, regressions
were conducted through simultaneous autoregressive
models with spatial error (i.e. SARErr models; Haining
and Haining 2003). We tested 40 different neighborhoods
(10 with a fixed number of neighbors between 1 and
10, and 30 containing all combinations of cells up
to 250, 500, 750, 1000, 1250, or 1500 km away with
either of the five default weighting schemes). The best
neighborhood was chosen as the one minimizing the
corrected Akaike Information Criterion (AICc) by using
the R package wiqid version 0.2.2 (Meredith 2017). To
obtain an estimate of how close our data are to the fitted
regression line, we calculated the Nagelkerke pseudo R-
squared using the function summary.sarlm from the R
package spdep version 1.1-2 (Bivand et al. 2005).

To predict the required time to sample 90% of cells in
Africa, we used survival analyses (Demetrius 1978). We
treated unsampled cells as “alive” and sampled cells as
“dead,” and treated all cells still not visited in 2019 as
“censored.” This treatment is usually done in survival
analysis to describe unknown survival time. We then
fitted our data with a Weibull distribution, which is able
to accommodate the three basic survival curves with
constant, monotonically increasing or monotonically
decreasing mortality (Pinder et al. 1978). Mathematically,
this assumes that the sampling rate r at time t can be
modeled as:

r
(
t
)= �

�

(
t
�

)�−1
,

which for �=1 means a constant sampling rate, whereas
�>1 means that sampling rates are increasing over time
in a consistent manner.

Our assumption that the sampling rate of collection in
Africa can be modeled by a single Weibull distribution
constitutes a technical oversimplification, given the
idiosyncrasies of each country and region. This rate
is likely to have been affected by socio-political
events (Rydén et al. 2019), and the implementation of
regulations such as CITES, the Nagoya Protocol, and
national and regional legislations, potentially leading
to reduced fieldwork. The implementation of this
assumption is, however, required by our modeling
approach, which is limited by the requirement of a single
rate for the temporal predictions.

To predict the number of sampling events necessary
to find at least half of all the predicted species in a
particular cell, we did a spatial regression analysis using
the formula:

SaEv50=SaEv∼C,

where SaEv50 corresponds to the number of sampling
events to record at least 50% of completeness, SaEv is the
number of sampling events, and C is the completeness
value. To remove the effect of a particular year on our
model, we randomized the year of visit in our data set
100 times and used the median value.
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Both the SARerr regressions and the linear regression
were conducted in R 3.5.1 (Team 2018) using glm (Team
2018), errorsarlm from the package spdep (Bivand et al.
2005), and the R package survival ver 2.44-1.1 (Therneau
and Lumley 2015).

Additional R packages used for data manipulation
and visualization were: BBmisc version 1.11
(Bischl et al. 2017), Rphylopic version 0.2.0 (Chamberlain
2018), Tidyverse version 1.2.1 (Hadley Wickham and
Wickham 2017), gridExtra version 2.3 (Auguie et al.
2017), raster version 2.9-5 (Hijmans et al. 2015), pbapply
version 1.4-0 (Solymos 2016), ggplot2 version 3.1.0
(Wickham 2016), sf version 0.7-1 (Pebesma 2018), and
package rnaturalearth version 0.1.0 (South 2017).

RESULTS

By overlapping the map of Africa obtained from the
R package rnaturalearth version 0.1.0 (South 2017) with
our grid, we obtained a total of 3212 cells that include
any portion of continental Africa. Among the groups
surveyed, birds were the most well sampled in our study
area, for which we retrieved 775,131 records distributed
across 1798 cells. Mammals had 63,521 records across
1578 cells and amphibians only had 15,991 records
distributed across 936 cells (Fig. 1). The lower number
of cells for amphibians is due to the substantial areas of
dryland habitats in Africa.

Effect of Previous Knowledge on the Probability of
Visiting a Cell

We assessed the effect of biodiversity knowledge
available for a particular cell on the probability of
sampling the cell, by using a logistic model between
sampling completeness, sampling events, and year.
Negative values correspond to cells in which the
amount of existing knowledge decreases the probability
of resampling a cell. In contrast, a positive value
corresponds to a positive effect of existing knowledge
on the probability of sampling.

By analyzing data that are readily available to
the scientific community, we found that amphibians
were seldom recorded between 1801 and 1940, when
compared with mammals and birds (Fig. 2, left panel).
In our analyses, we explicitly accounted for overall
temporal changes in sampling. Our results therefore
investigate any patterns in sampling probability
happening in addition to overall temporal changes.
Across most of Africa, previous sampling in amphibians
has strongly influenced the resampling of areas: between
1801 and 1940, 83% of the previously sampled cells had
a positive effect. This is similar to the period between
1982 and 2019, where 78% of the previously sampled
cells were positive (Fig. 2). Mammologists also show
the strongest preference for revisiting areas previously
sampled, with similar values of 79% before 1940 and 81%
after 1982 (Fig. 2). The bird sampling shows that before

1940, there was an increased preference of discovery
inferred by a higher sampling frequency in unsampled
areas among researchers, when compared with after
1982. In both time periods, previous sampling decreased
the likelihood of visits in the majority of cells, and
the pattern became more pronounced in the later time
period. This is demonstrated by an increase from 66% to
75% in the proportion of positive cells (Fig. 2).

Sampling Events Required to Record 50% of Species
Our analysis revealed small effects between the tested

predictors and their effect on the attractiveness of an area
based on pre-existing knowledge. The general pattern
is that the existence of increased knowledge increases
the likelihood of increased sampling (Table 1). We only
found three instances of small significant effects. In
amphibians, increased knowledge was slightly less likely
to lead to increased sampling in areas with higher net
primary productivity (NPP) (Table 1). In birds, increased
knowledge was slightly less likely to lead to increased
sampling in areas with more roads and slightly more
likely to lead to increased sampling in areas with higher
precipitation (Table 1).

Time to Sample at Least Once in 90% of Africa
The model predicted the time it would take, assuming

a Weibull distributed biodiversity sampling rate, to
sample at least once in 90% of Africa. For amphibians, we
predicted the sampling coverage of Africa to be achieved
between 2192 and 2233, for mammals between 2222 and
2257, and for birds between 2253 and 2294 (Fig. 3).

Sampling Events Required to Achieve 50% Inventory
Our spatial regression analysis showed that the

number of sampling events required to record 50% of the
species was mainly positively associated with HDI and
elevation of the grid cells for amphibians. For mammals,
HDI was positively associated with the number of
sampling events. For birds, richness was positively
associated with the number of sampling events, unlike
NPP, which displayed a negative association. We
found that it would take on average 11.5 visits for
amphibians, 12.7 visits for mammals, and 27.0 visits
for birds to recover 50% of all species within a
cell (Supplementary Table S4 available on dryad at
https://doi.org/10.5061/dryad.ngf1vhhsg).

DISCUSSION

In this study, we unveil, quantify, and map a new bias
in biodiversity data: that knowledge in itself is leading
to an increase in sampling bias. For all three examined
vertebrate groups, researchers tend to return to areas
based on the existence of previous knowledge rather
than visiting and sampling new areas.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa090#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa090#supplementary-data
https://doi.org/10.5061/dryad.ngf1vhhsg
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FIGURE 1. Top: Number of sampling events per grid cell for each taxon group, as estimated from the Global Biodiversity Information Facility.
White areas represent areas without any records. Sampling events can be interpreted as the number of different years in which a particular cell
has been visited. Bottom: Number of sampling events by country. We divided the number of sampling events by country area and transformed
the data by dividing each value by the maximum value of each taxon for visualization purposes. Much of Africa has rarely been visited. South
Africa and Tanzania are in the top three with the greatest number of cells—more than five sampling events for all three taxa. Regarding the
least-sampled countries—those lacking any cells with more than 5 sampling events—we identified 25 countries for amphibians, 16 for mammals,
and 5 for birds. Comoros, Libya, and Djibouti have no cells with more than 5 sampling events for any of these groups. The full list of sampling
events by country per taxa is provided in the Supplementary Tables S1–S3 available on dryad.

The lack of biological specimens and tissues for
most of the African continent is likely to impact
the comprehensiveness of phylogenetic reconstructions,
our understanding of taxonomic relationships, and
the estimation of divergence times and biogeographic
history (Hortal et al. 2015). These are just some
of the expected effects caused by the exclusion of

critical species, populations, and genetic diversity in
phylogenetic analyses. Since there are few biological
barriers across the African continent (Fjeldså 1994),
and political borders in Africa seldom follow natural
features, it is essential that the systematics community
acknowledges the need for wide spatial sampling in their
research. In addition, conservation practitioners must

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa090#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa090#supplementary-data
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FIGURE 2. Effect of previous knowledge on sampling of amphibians, mammals, and birds. The spatial patterns were calculated through
logistic regressions between completeness and sampling events in amphibians, mammals, and birds, and the sign of the effect mapped per cell.
White grid cells were not used in this analysis because they either did not contain any records, had less than five visits, or had an expected
richness lower than 10. The left panel corresponds to the filtered data available between 1801 and 1940; the middle panel corresponds to the
period of 1982 to 2019; and the right panel includes data from 1801 to 2019. Only cells with five or more sampling events were included to reduce
the effects of overfitting. Bar values represent the number of cells corresponding to negative/positive values. For all three taxa analyzed, there is
strong and pervasive evidence that previous knowledge leads to increased sampling. All taxa also show a temporal increase in this trend. Maps
with only cells with P value < 0.05 can be found in the Supplementary Figs. S1–S3 available on dryad.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa090#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa090#supplementary-data
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TABLE 1. Predictors for the effect of previous sampling on the probability of sampling for amphibians, mammals, and birds in Africa.

Amphibians Mammals Birds
Estimate (SE) Estimate (SE) Estimate (SE)

(Intercept) 0.777(0.023)∗∗∗ 0.806(0.011)∗∗∗ 0.758(0.031)∗∗∗
IUCN richness −0.089(0.038)∗ −0.081(0.018) −0.025(0.032)
Protected areas −0.017(0.03) 0.009(0.019) 0.011(0.017)
Human influence 0.101(0.032)∗∗ −0.036(0.021) −0.069(0.023)∗∗
HDI −0.048(0.034) −0.019(0.02) −0.004(0.027)
GDP −0.012(0.03) 0.02 (0.021) −0.03 (0.018)
NPP −0.036(0.04) 0.006(0.026) −0.059(0.031)
Precipitation −0.052(0.042) −0.043(0.022) 0.053(0.03)
Elevation −0.003(0.028) 0.02 (0.017) −0.019(0.019)
Road density −0.002(0.028) 0.005(0.017) −0.031(0.016)
AICc 214 390.4 774.8

Nagelkerke pseudo R-squared 0.141 0.073 0.104

Notes: Significance of the following predictors for the effect of previous sampling on the probability of sampling: IUCN predicted richness,
protected area coverage, human influence, HDI, GDP per capita, NPP, precipitation, elevation, and road density. Human influence is a significant
positive predictor for amphibians and negative for birds. Predicted richness is a significant negative predictor for amphibians.
*0.05>P>0.01; **0.01>P>0.001; ***P<0.001.
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FIGURE 3. Proportion of grids (10,000 km2) in Africa sampled at least once and containing at least 10 species. We used only the cells where
the groups are expected to occur, meaning that amphibians, birds, and mammals had a different number of cells where they could be recorded.
Ribbons indicate 95% confidence intervals. These analyses predict that, for birds, species occurrence data for 90% of Africa will only be achieved
somewhere between years 2253 and 2294; for mammals between 2222 and 2257; and for amphibians between 2192 and 2233.

also be aware of this bias. The need to reliably assess
global biodiversity in an era where conservation relies
increasingly on “big data” (Arts et al. 2015) demands
the use of estimation and extrapolation (Colwell 2009).

However, such procedures can be heavily compromised
by uneven sampling across large land extensions (Reddy
and Dávalos 2003). The effect of sampling bias on
diversity estimates may also obstruct solid inference on
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underlying drivers of biodiversity build-up as well as
loss (Loiselle et al. 2008; Engemann et al. 2015). The
reluctance to visit new areas may also affect the diversity
pattern for microendemics, because such species may
only be known from studied areas. For instance, species
endemic to individual mountains or inselbergs in eastern
Africa (Branch et al. 2014; Bittencourt-Silva et al. 2016)
would only be known from sites visited by a specialist.

Since more than a third of Africa lacks digitally
accessible information (Meyer et al. 2015), we expected
that researchers conducting inventories would be
attracted to data-deficient areas (Scenario 1 above).
However, our results show the contrary: sampling events
tend to occur where knowledge already exists (Scenario
2). We find a temporal increase in this trend, when
comparing the sampling events from before 1940 with
the sampling events after 1982. This pattern might be
explained as a result of the spread of the reputation
of a particular area for harboring high diversity, as
mentioned by Reddy and Dávalos (2003) when they
recorded a disproportionate amount of sampling effort
toward areas rich in biodiversity. It may also be that
previous sampling indicates the area is accessible and
so can be surveyed with fewer resources than a site that
has not been sampled. There is also a higher risk of a
nonsurveyed site not containing the targeted species.

In order to exclude the influences of other predictors
on the effect of previous knowledge in attracting more
sampling events, we used a spatial regression analysis
of completeness in relation to visits. We demonstrated
that these effects cannot be attributed to any of the
traditionally tested predictors (the predictors were not
significant or had minimal effects). For amphibians,
we observed a negative significant effect for predicted
richness and a significant positive effect of human
influence; however, in both cases, those effects were
quantitatively minimal and much smaller than the effect
of previous knowledge (Table 1).

Completing the Biodiversity Inventory of Africa
Our analyses indicated that it could take between

172 and 274 years for the research community to carry
out at least one sampling effort in 90% of all cells
across Africa. These estimates are based on current and
historic rates of biological exploration, and encompass
only some of the most well-studied organism groups
of all: birds, mammals, and amphibians. In addition, a
single sampling effort is far from enough to correctly
characterize the diversity of any site: in our estimates,
between 12 and 27 events are required to record at least
50% of the existing species.

Our models showed significant positive effects of
elevation and HDI on the number of sampling events
for amphibians; significant positive effects of HDI
on the number of sampling events for mammals;
significant positive effects of IUCN predicted richness;
and significant negative effects of protected areas and
net primary production on the sampling of birds. Even

though not all protected areas used in this analysis
were officially established since the 19th century, many
of them that eventually became protected were likely
to have been under some form of protection earlier
on, under classifications such as reserves or hunting
concessions. The significant positive effect of elevation
on the number of sampling events on amphibians might
be a consequence of the high endemism within the group
in mountains such as in the Eastern Arc (Burgess et al.
2007).

Analyzing data collected through long periods of time
at a continental scale poses numerous challenges, one of
them being the continuous process of human expansion
and consequent habitat transformation. Some areas may
experience the emergence of mining or even become
urban centers. We expect this to be a problem at fine
scales, but due to our grid-cell area of ∼10 000 km2, we
expect the complete transformation of entire cells to be
relatively rare. We further note that we only focus on
species that, according to IUCN, currently occur in the
cell. This means that species that are locally extirpated
from much of Africa, such as lions, are not included even
if there are records from the species prior to its local
extirpation from any given area.

CONCLUSIONS AND RECOMMENDATIONS

This study conveys an urgent and crucial message:
unless a radical and widespread change in research
practice takes place, Africa’s rich biodiversity will
remain largely unknown. We cannot protect or
understand what we do not know about, yet the data
available for most of Africa to adequately identify
and delimit species boundaries, understand spatial
biodiversity patterns, or to effectively promote species
conservation are insufficient.

Waiting more than a century to complete the
biodiversity inventory of Africa is not a viable option.
Africa is experiencing the highest population growth
of any continent (Gerland et al. 2014), with an expected
209% increase between 2000 and 2050 (United Nations
2017). Between 2015 and 2050, an additional 2.4 billion
people are expected, which in combination with a
rapidly changing climate will exert a tremendous
pressure on natural ecosystems and their biodiversity.
The recent Living Planet Report 2020 (WWF 2020)
shows that wild populations of African vertebrates have
declined an alarming 65% over the last 50 years alone.

It is also important to note that our estimates are
based only on birds, mammals, and amphibians—three
well-studied groups. The knowledge bias and spatial
patterns we report are likely to be considerably worse
for other groups such as plants, fungi, and insects
(Stropp et al. 2016; Willis 2017, 2018). Such diversity
may hold important solutions to help achieve the
Sustainable Development Goals (Antonelli et al. 2019),
but will be largely lost if not effectively mapped and
conserved.



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[16:09 7/4/2021 Sysbio-OP-SYSB200092.tex] Page: 631 623–633

2021 FAROOQ ET AL.—MAPPING AFRICA’S BIODIVERSITY 631

To tackle the challenges outlined in this study, we
make the following four recommendations:

1. Funding providers (agencies, companies, and
philanthropists) should actively promote projects
aiming to sample areas that lack baseline biodiversity
data. We recognize the difficulties in weighing up
the costs and benefits of allocating limited time and
resources toward additional data collection (Grand
et al. 2007). Although additional sampling is also
needed in well-sampled areas (such as already
recognized biodiversity or endemism hotspots),
for instance, to increase our full understanding
of biodiversity and biotic interactions in those
areas, it is essential to increase the focus on poorly
sampled areas (Reddy and Dávalos 2003).

2. Researchers should, whenever possible, increase the
taxonomic and methodological scope of their collection
efforts. Biodiversity inventories usually involve
producing point-locality biological data and
conducting basic taxonomy (da Fonseca et al. 2020).
Given the logistic and legislative challenges of
carrying out fieldwork across most of Africa, we
urge scientists to collaborate with specialists in
different institutions and with varied taxonomic
expertise to responsibly sample the maximum
possible number of taxa (in full or as tissue
samples, especially for endangered or large
species). Expeditions with multitaxa foci may
be especially valuable for creating baseline
biodiversity data in numerous data-deficient areas,
and should be encouraged by funding agencies
and biodiversity institutions. It is also imperative
to concentrate on physical specimens (whole
specimens, tissue samples for DNA analyses, seeds
for cultivation in the case of plants, among others),
rather than only photographic evidence (Troudet
et al. 2018), while preventing negative effects
on the survival of threatened populations and
species. Whenever possible, duplicates of samples
should be deposited in multiple organizations, to
increase their long-term safety and accessibility.
The collection of rich metadata will increase the
value of collections for many and as yet unforeseen
uses (Bakker et al. 2019; Fernández et al. 2019).

3. Engage globally and locally. Biological sampling in
Africa has to a large extent been carried out by
European and North American institutions, with
limited benefits returning to the countries of origin.
Under the Access and Benefit-Sharing agreements
of the Convention of Biological Diversity, it is
crucial that future sampling activities are always
done in close partnership with African institutions
and researchers, for mutual benefits (Pearce et al.
2020).

4. Clarity on processing research permits. There is certain
evidence that excessive in-country legislation that
regulates research and collection permits can
sometimes hinder research (Rydén et al. 2019;

Williams et al. 2020). If possible, clarification on
the process for sampling permits should be made
transparent and available online for every country
in the continent, to encourage and streamline
biodiversity research.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad.ngf1vhhsg
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