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Abstract: In this work, the structural dynamics of the chloromethanes CCl4, CHCl3 and CH2Cl2
were evaluated through a computational spectroscopy approach by comparing experimental inelastic
neutron scattering (INS) spectra with the corresponding simulated spectra obtained from periodic DFT
calculations. The overall excellent agreement between experimental and calculated spectra allows
a confident assignment of the vibrational features, including not only the molecular fundamental
modes but also lattice and combination modes. In particular, an impressive overtone sequence
for CHCl3 is fully described by the simulated INS spectrum. In the CCl4 spectrum, the splitting
of the ν3 mode at ca. 765–790 cm−1 is discussed on the basis of the Fermi resonance vs. crystal
splitting controversy.

Keywords: chloroform; carbon tetrachloride; periodic-DFT; lattice modes; Fermi resonance

1. Introduction

Computational spectroscopy has become an invaluable tool to interpret spectroscopic
results (see, e.g., previous work by the authors [1–8] and a recent overview on “computa-
tional molecular spectroscopy” [9]). Historically, the description of vibrational spectra often
received some support from calculations, but in the last two decades or so has evolved from
the mostly empirical approach, based on the comparison of similar molecules, to the current
full “computational spectroscopy” era. Regarding vibrational spectra of molecular crystals,
periodic-DFT calculations set the ground for detailed analysis, reliable assignments and
deep interpretation.

Infrared and Raman spectra of chloromethane derivatives have long been subjects of
detailed assignments, in particular, the molecular vibrations for samples in the gas and liq-
uid phase [10]. Reports on the vibrational spectra of the crystals are also abundant [11–27]
and add details on effects such as lattice vibrations [11–13], Fermi resonance [14–19] and
Davydov splitting [20] in addition to the evidence of different crystalline forms [21–23].
However, to the best of our knowledge, there are no reports of the inelastic neutron scatter-
ing (INS) spectra of CH2Cl2 or CCl4 systems. In the case of CHCl3, its INS spectrum was
reported in a study of hydrogen bonding in chloroform-acetone mixtures [28].

INS spectroscopy provides a unique assessment of the structural dynamics that is not
amenable from its optical counterparts, infrared and Raman spectroscopies. Due to the
absence of selection rules, all vibrational modes are potentially observable through INS
spectroscopy. Large amplitude/low wavenumber modes, including lattice modes, usually
problematic for optical spectroscopy, tend to yield intense bands in INS spectra. In addition,
INS spectroscopy is particularly suitable for the computational spectroscopy approach.
The INS intensity of a band associated with a given vibrational mode is proportional to
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the neutron scattering cross-section of the moving nuclei and to the amplitude of nuclei
displacement. While the former is an invariant experimental value, the latter is accessible
from standard vibrational frequency calculations. In particular, DFT calculations—either
periodic or discrete—were found to be highly efficient in predicting the eigenvectors (atomic
displacements) for the vibrational normal modes and, thus, to simulate the corresponding
INS spectrum (see, e.g., the above-mentioned work from some of the authors [1–8]).

In this work, the INS spectra of the compounds CCl4, CHCl3 and CH2Cl2 in the
solid state were collected at TOSCA—a time-of-flight INS spectrometer at the ISIS Pulsed
Neutron and Muon Facility—and compared with the corresponding simulated spectra,
obtained from periodic DFT calculations. TOSCA does not provide relevant information
for the high wavenumber region—for which the infrared and Raman counterparts deliver
better results—but has good resolution in the low wavenumber region, with good quality
up to ca. 2000 cm−1. The excellent agreement between experimental and calculated spectra
allows a confident assignment of the vibrational features, including, not only, the molecular
fundamental modes but also lattice modes and combination modes.

2. Results and Discussion
2.1. Tetrachloromethane—CCl4

Carbon tetrachloride is known to form three solid phases on cooling from the liq-
uid at ambient pressure: a face-centered cubic phase Iα, a rhombohedral phase Iβ, and
a monoclinic phase II. According to Rudman and Post [29], the monoclinic is the stable
form below 225 K and, thus, should be considered to be present at the INS experiment
conditions (ca. 10 K). As can be seen from Figure 1 the computational results provide
an excellent description of the molecular modes. The same good qualitative agreement
has already been reported by Tamarit et al. [30] with periodic-DFT calculations using
a functional supplemented with a dispersion correction (PBE-G06). The low wavenumber
region, shown in the inset, discloses the differences between both calculations: in the
absence of dispersion correction (this work, shown in the inset), translational and libration
modes span over the 11–46 cm−1 range, while Tamarit et al. [30] report “a large number
of branches lying between ≈2 and ≈9 meV” (16–72 cm−1). This comparison allows the
assignment of the most prominent features in the band profile, particularly the lattice mode
at ca. 70 cm−1, which can be described as a translational mode (the molecular center of
mass is displaced from its equilibrium position).

For the four intramolecular modes, both the positions and intensities (particularly the
relative intensities) are correctly predicted, with a near-perfect match between calculated
and observed values. The calculated combinations involving lattice modes (blue intensities
in Figure 1) find correspondence with the low-intensity broad profiles observed in the
experimental spectrum.

The doublet observed in the region of ν3 (INS band maxima at ca. 765 and 790 cm−1)
deserves further discussion. A similar doublet is present in the infrared and Raman spectra
and has been the subject of some attention [17–19]. It is generally ascribed to a Fermi reso-
nance interaction between the fundamental ν3 and the combination ν1 + ν4 in the gas and
in condensed phases, although this assignment for the crystalline state is not consensual.
Tse and Lin [12] and Clark and Hunter [16] ascribe the presence of the doublet in the vibra-
tional spectra of crystalline CCl4 to factor group splitting. Nevertheless, the comprehensive
work of Chakraborty and Rai [19] supports the assignment of the doublet to ν3/(ν1 + ν4)
Fermi resonance interaction, with the low wavenumber band being the “fundamental” and
the high wavenumber the “ν1 + ν4” component. Tamarit et al. [30] note that periodic DFT
calculations predict a broad band centered at about 89 meV (ca. 718 cm−1), which they
ascribe to “the resolved multiplet in the experimental spectrum centered at some 96 meV“
(ca. 775 cm−1), without considering Fermi resonance effects. The periodic DFT calculations
herein reported are more specific in predicting the splitting of the ν3 mode, giving rise to
the doublet profile observed in Figure 1 due to the crystal splitting effect (of course, as the
frequency calculations are performed within the harmonic approximation, anharmonic



Molecules 2022, 27, 7661 3 of 9

effects such as Fermi resonance are not predicted by the calculations). The analysis of
INS intensities within the doublet is not compatible with the Fermi resonance effect, since
the high wavenumber band—assumed to be the “intensity stealing” ν1 + ν4 combination
component—has higher intensity than the band with more fundamental character, at lower
wavenumber. The possible coincidence of effects, i.e., crystal splitting and Fermi resonance,
although possible, is expected to give rise to a more complex multiplet. In this way, the
herein reported results support the assignment of the 765–790 cm−1 doublet to crystal
splitting (calculated atomic displacements for lower and higher wavenumber components
of ν3 are shown in Figure S1c,d, respectively, Supplementary Materials).
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Figure 1. The INS spectra of tetrachloromethane (carbon tetrachloride) up to 900 cm−1: Experimental
(top, TOSCA) and simulated from periodic calculations (bottom, CASTEP). Colors indicate the
intensity contributions from fundamental modes (green) and two-quanta events (blue). “Lat” stands
for librational and translational lattice modes. Inset: detail of the low wavenumber region.

2.2. Trichloromethane—CHCl3
Figure 2 compares the experimental and calculated INS spectra of CHCl3. There is

a remarkable agreement between calculated and experimental spectra in both frequencies
and intensities. For the fundamental modes, calculations correctly predicted the split-
ting of the ν6 mode (observed at ca. 257–268 cm−1) and the low intensity of ν1 (barely
observed at ca. 3060 cm−1). More impressive was the remarkable prediction of the multi-
quanta sequence based on ν4, extending to 3680 cm−1. In addition to the 1 × ν4, 2 × ν4
and 3 × ν4 sequence, there were also two-quanta combinations of ν4 with ν2, ν5 and ν6
(Figure 2).

In addition, the profile on the higher wavenumber side of the bands associated with
ν4, 2 × ν4 and 3 × ν4 transitions was correctly described by the presence of multi-quanta
combinations with lattice vibrations, i.e., with both translational and librational modes.

In fact, while for CH2Cl2, only librational motions appear with a significant contribu-
tion to the multi-quanta modes (as it will be discussed later), in the case of CHCl3, both libra-
tions and translations were found to contribute to the combination bands. This effect may be
related to the stronger C-H···Cl contacts in CHCl3. The highest wavenumber lattice mode,
at ca. 93 cm−1 and identified in Figure 3 below and Figure S2c, Supplementary Materials,
due to its uniqueness in both experimental and calculated spectra, is illustrative. Although
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it is mostly librational in nature, it involves a significant stretching of the C-H···Cl distances
between neighboring molecules in the crystal.

Molecules 2022, 27, 7661 4 of 9 
 

 

2.2. Trichloromethane—CHCl3 
Figure 2 compares the experimental and calculated INS spectra of CHCl3. There is a 

remarkable agreement between calculated and experimental spectra in both frequencies 
and intensities. For the fundamental modes, calculations correctly predicted the splitting 
of the ν6 mode (observed at ca. 257–268 cm−1) and the low intensity of ν1 (barely observed 
at ca. 3060 cm−1). More impressive was the remarkable prediction of the multi-quanta 
sequence based on ν4, extending to 3680 cm−1. In addition to the 1 × ν4, 2 × ν4 and 3 × ν4 
sequence, there were also two-quanta combinations of ν4 with ν2, ν5 and ν6 (Figure 2). 

 
Figure 2. The INS spectra of trichloromethane (chloroform) up to 4000 cm−1: Experimental (top, 
TOSCA) and simulated from periodic calculations (bottom, CASTEP). Colors indicate the intensity 
contributions from fundamental modes (green), two-quanta events (blue), three-quanta events 
(red), and higher-order quantum events (grey). 

In addition, the profile on the higher wavenumber side of the bands associated with 
ν4, 2 × ν4 and 3 × ν4 transitions was correctly described by the presence of multi-quanta 
combinations with lattice vibrations, i.e., with both translational and librational modes.  

In fact, while for CH2Cl2, only librational motions appear with a significant 
contribution to the multi-quanta modes (as it will be discussed later), in the case of CHCl3, 
both librations and translations were found to contribute to the combination bands. This 
effect may be related to the stronger C-H···Cl contacts in CHCl3. The highest wavenumber 
lattice mode, at ca. 93 cm−1 and identified in Figure 3 below and Figure S2c, Supplementary 
Materials, due to its uniqueness in both experimental and calculated spectra, is 
illustrative. Although it is mostly librational in nature, it involves a significant stretching 
of the C-H···Cl distances between neighboring molecules in the crystal. 

Figure 2. The INS spectra of trichloromethane (chloroform) up to 4000 cm−1: Experimental (top,
TOSCA) and simulated from periodic calculations (bottom, CASTEP). Colors indicate the intensity
contributions from fundamental modes (green), two-quanta events (blue), three-quanta events (red),
and higher-order quantum events (grey).
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Figure 3. The INS spectra of trichloromethane (chloroform) in the low wavenumber region, up to
400 cm−1: Experimental (top, TOSCA) and simulated from periodic calculations (bottom, CASTEP).
Colors indicate the intensity contributions from fundamental modes (green) and two-quanta
events (blue).
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2.3. Dichloromethane—CH2Cl2
Figure 4 compares the experimental and calculated INS spectra of CH2Cl2. In the

calculated spectrum, the fundamental bands are shown in green, while the two-quanta and
three-quanta contributions are shown in blue and red, respectively.

Molecules 2022, 27, 7661 5 of 9 
 

 

 
Figure 3. The INS spectra of trichloromethane (chloroform) in the low wavenumber region, up to 
400 cm−1: Experimental (top, TOSCA) and simulated from periodic calculations (bottom, CASTEP). 
Colors indicate the intensity contributions from fundamental modes (green) and two-quanta events 
(blue). 

2.3. Dichloromethane—CH2Cl2 
Figure 4 compares the experimental and calculated INS spectra of CH2Cl2. In the 

calculated spectrum, the fundamental bands are shown in green, while the two-quanta 
and three-quanta contributions are shown in blue and red, respectively. 

 
Figure 4. The INS spectra of dichloromethane up to 4000 cm−1: Experimental (top, TOSCA) and 
simulated from periodic calculations (bottom, CASTEP). Colors indicate the intensity contributions 
from fundamental modes (green), two-quanta events (blue) and three-quanta events (red). 

As mentioned above, TOSCA has limited capabilities for the high wavenumber 
region (above 2000 cm−1), and ν1 and ν6 modes (CH stretching) were not observed clearly. 
However, TOSCA’s resolution at the lower wavenumber end is excellent and disclosed 

Figure 4. The INS spectra of dichloromethane up to 4000 cm−1: Experimental (top, TOSCA) and
simulated from periodic calculations (bottom, CASTEP). Colors indicate the intensity contributions
from fundamental modes (green), two-quanta events (blue) and three-quanta events (red).

As mentioned above, TOSCA has limited capabilities for the high wavenumber region
(above 2000 cm−1), and ν1 and ν6 modes (CH stretching) were not observed clearly.
However, TOSCA’s resolution at the lower wavenumber end is excellent and disclosed
several bands arising from large amplitude/low wavenumber vibrational modes. Figure 5
presents a closer look at the region below 400 cm−1, which includes the intermolecular
(librational and translational) modes.

The immediate evidence from Figures 4 and 5 is the remarkable agreement between
the experimental spectrum and the one simulated from periodic DFT calculations. The
fundamental modes were easily identified at the expected wavenumbers. The presence of
bands arising from multi-quanta transitions involving the librational modes is manifested
in Figure 4. The twelve librational modes of the CH2Cl2 crystal (Z = 4) give rise to three
sharp and intense bands at 92, 103 and 121 cm−1 (see Figure 5) and to their first and second
overtones (2 × Lib and 3 × Lib) observed at ca. 250 cm−1 and ca. 380 cm−1, respectively.
Multi-quanta transitions combining fundamental and librational modes were observed
across the spectrum, but with particular relevance at ca. 1015 and 1515 cm−1, associated
with ν7 (CH2 wag) and ν2 (CH2 scissor), respectively.
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3. Experimental

Compounds: Dichloromethane (99%), trichloromethane (chloroform, 99%) and tetra-
chloromethane (carbon tetrachloride, 99%) were purchased from Sigma-Aldrich (Gilling-
ham, Dorset, UK) and used as received.

INS spectroscopy: Inelastic neutron scattering experiments were performed with the
TOSCA spectrometer, an indirect geometry time-of-flight spectrometer at the ISIS Neutron
and Muon Source at theSTFC Rutherford Appleton Laboratory (Chilton, UK) [31–34]. The
samples, with a total amount of ca. 2 g, were packed inside flat thin-walled aluminum
cans of 5 cm height by 4 cm width, with a path length of 2 mm, which were mounted
perpendicular to the beam using a regular TOSCA center stick. Spectra were collected
below 15 K, measured for the 16 to 8000 cm−1 energy-transfer range. The resolution is
∆E/E ≈ 1.25%. Data were converted to the conventional scattering law, S(Q,ω) vs. energy
transfer (in cm−1), using the MANTID program (version 4.0.0) [35].

Quantum chemical calculations: Periodic density functional theory (DFT) calculations
were carried out using the plane wave pseudopotential method, as implemented in the
CASTEP code (version 17.21) [36,37]. Exchange and correlation were approximated using
the PBE [38] functional within the generalized gradient approximation (GGA). This method
was found to provide a good compromise between accuracy and computational time for
both frequency and intensity calculations in molecular crystals (see, e.g., discussion in [5,8]).
The plane-wave cut-off energy was 830 eV. Brillouin zone sampling of electronic states was
performed on 7 × 4 × 3 (16 k-points), 4 × 3 × 5 (12 k-points) and 4 × 4 × 2 (10 k-points)
Monkhorst-Pack grids for CH2Cl2, CHCl3 and CCl4, respectively. The equilibrium structure,
an essential prerequisite for lattice dynamics calculations, was obtained by BFGS geometry
optimization, after which the residual forces converged to ±0.00087 eV Å−1.

The initial structures were taken from the reported CCDC crystal structures: DCL-
MET11 (CH2Cl2 [39]), CLFORM01 (CHCl3 [40]) and CARBTC07 (CCl4 [41]), and cell
parameters were kept constant during geometry optimization. In the case of CCl4, calcu-
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lations were performed for a crystal lattice structure adjusted by symmetry defaulting to
a primitive unit cell with one-half of the 32 molecules in the original unit cell.

Phonon frequencies were obtained by diagonalization of the dynamical matrix, com-
puted using density-functional perturbation theory [27], to compute the dielectric response
and the Born effective charges, and, from these, the mode oscillator strength tensor and
infrared absorptivity were calculated. The atomic displacements in each mode, which are
part of the CASTEP output, enable visualization of the modes to aid assignments and are
also all that is required to generate the INS spectrum using the program aCLIMAX (version
6.0.0 LE) [42]. It is emphasized that, for the calculated spectra shown, the transition energies
have not been scaled. aCLIMAX allows the “deactivation” of selected vibrational modes,
a procedure used to unambiguously assign the observed multi-quanta features (overtone
and combination bands).

4. Conclusions

INS spectroscopy has a synergic combination with periodic DFT calculations, which,
in the present case, have resulted in outstanding agreement between calculated and experi-
mental INS spectra. This has allowed not only the confirmation of the fundamental molec-
ular modes, but also the detailed description of overtone and combination bands. Taking
advantage of the excellent resolution of the TOSCA instrument at the lower wavenumber
region, several lattice modes were assessed. A controversial assignment of a doublet found
in the INS spectrum of CCl4 was discussed in view of its description within the harmonic
oscillator approximation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27217661/s1, Table S1. Calculated and experimental INS
wavenumbers of tetrachloromethane, CCl4; Table S2. Calculated and experimental INS wavenum-
bers of trichloromethane, CHCl3; Table S3. Calculated and experimental INS wavenumbers of
dichloromethane, CH2Cl2. Figure S1. Atomic displacements of some vibrational modes of carbon
tetrachloride, CCl4; Figure S2. Atomic displacements of some vibrational modes of trichloromethane,
CHCl3; Figure S3. Atomic displacements of some vibrational modes of dichloromethane, CH2Cl2.
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scattering study of reline: Shedding light on the hydrogen bonding network of deep eutectic solvents. Phys. Chem. Chem. Phys.
2017, 19, 17998–18009. [CrossRef] [PubMed]
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