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KEY POINTS

� Early in the coronavirus disease 2019 (COVID-19) pandemic, the release of poorly charac-
terized antibody tests caused concern about the quality of serologic results and a national
discussion about test performance.

� The positive predictive value of COVID-19 serologic tests varies with seroprevalence and
is a major concern.

� The kinetics of the antibody response to severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) are characterized by the appearance of immunoglobulin (Ig) G in most in-
dividuals by at least 2 weeks after symptom onset, slightly after IgM and IgA.

� There is continued uncertainty about the significance of antibody tests in terms of the de-
gree and durability of immunity.

� The differential and quantitative detection of viral antigens may prove to be important and
will require the development of test platforms to answer these nuanced questions.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic began in December 2019 with
several cases of a pneumonia of unknown cause in Wuhan, China.1 The causative
agent was quickly identified using molecular techniques as the Betacoronavirus se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2).2 This discovery was
followed by a global effort to develop accurate molecular diagnostics at tremendous
scale and pace in order to diagnose acute infection and contain spread of the virus.
Questions about serologic testing followed soon after.
Early in the pandemic, lack of regulatory restrictions on serologic testing led to a wave

of more than 40 antibody tests to detect immunoglobulin (Ig) G and/or IgM binding to
SARS-CoV-2 spike (S) and nucleocapsid (NP) proteins.3–9 Many of these tests were
poorly characterized, which caused concern about the quality of serologic data. Several
discussions about so-called immunity passports caused further concern about the use
of serologic data.10 In response, the US Food and Drug Administration (FDA) moved to
tighten regulation of new commercial serologic tests; more than 30 were subsequently
withdrawn fromdistribution.11 These events have highlighted the importance of rigorous
testing evaluation and scope of use. At the same time, tremendous effort has been
focused on understanding the immune response to SARS-CoV-2, both from data com-
ing out of the hardest-hit regions and from previous knowledge gleaned from the study
of SARS-CoV-1, Middle East respiratory syndrome (MERS), and circulating human
coronaviruses (HCoVs). This knowledge has helped to refine the questions of who to
test for antibodies to SARS-CoV-2 and for what purpose they should be tested.12

This article reviews the basis of antibody-mediated immunity to SARS-CoV-2 and
other coronaviruses (CoVs), with a focus on kinetics and correlates of protection. It
then discusses currently available testing options for SARS-CoV-2 antibodies in the
context of the rapidly evolving knowledge of disease immunopathogenesis, and
how testing may be used to inform a diverse and complicated set of questions.

VIRAL ANTIGENS

SARS-CoV-2 is a member of the family Coronaviridae, which consists of 2 genera that
infect mammals: Alphacoronavirus and Betacoronavirus.13 Strains that are relevant to
human infections include the 4 circulating seasonal coronaviruses: 229E and NL63
(both Alphacoronavirus), and OC43, HKU1, MERS-CoV, and SARS-CoV-1 (all Beta-
coronavirus).13 All of the CoVs are enveloped RNA viruses with genomes in the range
of 30 kilobases (Fig. 1). The first portion of the genome consists of open reading
frames (ORFs) 1a and 1b, encoding the replicase-transcriptase polyprotein (pp1ab),
followed by 4 structural proteins: S, NP, envelope (E), and membrane (M). Studies
on SARS-CoV-1 indicated that the structural NP and S proteins are the dominant an-
tigens for host immune responses to SARS-CoV-2.14,15

The mature S protein is a w180 kDa glycosylated homotrimer that protrudes from
the viral surface, giving the characteristic halo appearance for which CoVs are
named.16 The extracellular region is organized into the S1 and S2 domains. S1
Fig. 1. The SARS-CoV-2 genome: SARS-CoV-2 isolate Wuhan-Hu-1, complete genome
(NC_045512). Genes encoding nonstructural proteins are shown in gray. Genes encoding
structural proteins S, E, M, and NP are shown in blue. ORF, open reading frame.
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comprises the outermost region, contains the receptor-binding domain (RBD) for the
target human ACE2 receptor, and initiates host cell entry.17–20 Studies of SARS-CoV-1
show that receptor binding and proteolytic cleavage at the S1/S2 junction triggers a
conformational change in S2 that mediates entry via the membrane fusion peptide
sequence.21 The S protein is moderately conserved among members of the Betacor-
onaviridae, particularly the S2 region proximal to the viral surface (Fig. 2).22 The S1 re-
gion, including the RBD, is less conserved and of great interest as a target for
immunoassays because of its prime role in interaction with the human host.22 Several
studies have shown that anti-S antibodies can neutralize virus in cell culture, and ef-
forts toward vaccine development are heavily focused on this protein.16,17,23–25

Functional and biochemical studies on thew50-kDa SARS-CoV-1 and SARS-CoV-
2 NP proteins show roles in replication, transcription, and packaging of the
genome26,27 (Fig. 3). The high abundance and antigenicity of NP have made it a focus
of both diagnostic and vaccine work for SARS-CoV-1 as well as SARS-CoV-2.28–30 NP
sequences show 99% identity with related bat CoVs (RaTG13) and w90% identity
with SARS-CoV-1.31

These sequence homologies have implications for antibody testing. By sequence
analysis, the normal circulating CoV strain OC43 has moderate homology with
SARS-CoV-2 in both the NP and S proteins (Fig. 4). Sequence similarities can translate
into cross-strain antibody binding, decreasing test specificity when used to determine
infection prevalence. In contrast, increased specificity may occur from strain differ-
ences on surface sequences that are likely targets of antibody-mediated responses.

ANTIBODY KINETICS

Using a variety of technologies and antigens, the kinetics of the antibody response to
SARS-CoV-2 are being explored. The earliest information came from several groups in
Fig. 2. Alignment of the S protein among closely related betacoronaviruses: peptide se-
quences from SARS-CoV-2 (NCBI [National Center for Biotechnology Information]
YP_009724390), RaTG13-CoV (NCBI QHR63300), and SARS-CoV-1 (NCBI BAE93401) were
aligned using ClustalW. Conserved residues (3/3) are shown in dark blue, (2/3) in teal, (1/
3) in gray. The S1/S2 cleavage site is indicated by a red star. The receptor-binding motif is
designated by the red line.



Fig. 3. Alignment of the NP protein among closely related betacoronaviruses: peptide se-
quences from SARS-CoV-2 (NCBI YP_009724390), RaTG13-CoV (NCBI QHR63300), and SARS-
CoV-1 (NCBI BAE93401) were aligned using ClustalW. Conserved residues (3/3) are shown
in dark blue, (2/3) in teal, (1/3) in gray.

Fig. 4. Conservation of surface amino acids between SARS-CoV-2, SARS-CoV-1, and CoV-
OC43: (A) space-filling model of the NP protein RNA-binding region (PDB [Protein Data
Bank] 6M3M) and dimerization region (PDB 2GIB) from SARS-CoV-1 with sequence conser-
vation mapped on the surface projection from ClustalW alignments between SARS-CoV-1
(NCBI BAE93401), SARS-CoV-2 (NCBI YP_009724390), and CoV-OC43 (NCBI YP_009555245).
(B) Space-filling model of the full-length SARS-CoV-2 S protein monomer (PDB CVYB)
with sequence conservation mapped on the surface projection from ClustalW alignments
from SARS-CoV-2 (NCBI YP_009724390), SARS-CoV-1 (NCBI BAE93401), and CoV-OC43
(NCBI YP_009555241).
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China who characterized the serologic responses of patients at the beginning of the
pandemic using enzyme-linked immunosorbent assays (ELISAs) based either exclu-
sively on the detection of NP alone or on NP in conjunction with the RBD domain of
the S protein. These 2 antigens performed equivalently as assay targets, with anti-
bodies becoming detectable in some individuals within the first week of symptom
onset.32–36

There are conflicting reports regarding the disease course kinetics of anti-NP and
anti-S antibody detection, and thus the relative sensitivity of serologic tests. Some re-
ports have shown detection of anti-NP slightly earlier than anti-S antibodies, whereas
others have shown the contrary, possibly because of differences in assay format.36,37

Similarly, human SARS-CoV-1 anti-NP antibodies were detectable by serologic as-
says slightly earlier than anti-S Ig.38,39 Additional studies have suggested that assays
using more restricted epitopes, namely S1 or RBD, may be more specific than those
using the full S protein.32–34,36,40 Importantly, although antibody responses may be
detectable in the first week after symptom onset, a full 2 to 3 weeks is required for
a robust response.9,36,41 Over the course of infection, IgM and IgA appeared earliest,
often within 5 days of symptom onset, although IgG appeared in close
succession.32–34,36,40

With respect to the kinetics of viral RNA (the viral shedding window), antibodies
seem to become detectable as the viral load diminishes.33–35 However, patients
with both mild and severe clinical presentations may generate a detectable antibody
response before viral clearance.34,35,42 In contrast, there have been reports that
asymptomatic (reverse transcriptase polymerase chain reaction confirmed) individ-
uals may show late onset or even no seroconversion.35
TEST VALIDATION

Much of the controversy surrounding SARS-CoV-2 serologic testing has centered on
fundamental aspects of test validation, and this was also true for SARS-CoV-1.43,44

SARS-CoV-2 antibody detection tests have used several platforms, including ELISAs,
chemiluminescent, lateral flow, and multiplex methods. All have previously been used
to detect antibodies to other viral pathogens.45 In general, these methods involve solid
phase coupling of recombinant S or NP as fully trimerized (S protein), monomeric (NP),
or peptide fragments (S1-RBD, linear peptide fragments). The solid phase coupled
proteins are incubated with serum to allow immunoglobulin binding, which is detected
by a secondary anti-IgG/IgA/IgM reagent. Assay readouts include serum dilution ti-
ters, colorimetric absorbance, changes in surface reflectivity, or fluorescence
intensity.
Assay validation requires a set of known positive and negative serum samples.

Archived samples from the pre-COVID-19 era (eg, pre-2020) can be used for a nega-
tive gold standard. There is particular interest in determining the false-positive rate
because the presence of antibodies will be interpreted as proof of prior infection.
Across multiple studies, specificity of ELISA-format assays has been reported to be
between 95% and 100%.9,32–34,36,41 For studies that include samples from individuals
with known HCoV infections (HKU1, NL63, OC43, or 229E), SARS-CoV-1, or MERS-
CoV, cross-reactivity was generally found to be low, with the exception of sera taken
from individuals infected with SARS-CoV-1. Similarly, several clinical conditions are
associated with broadly cross-reactive antibodies, including acute respiratory infec-
tions, autoimmune diseases (eg, lupus, rheumatoid arthritis), and other infections
(eg, syphilis, Lyme disease). Including such serologic samples from the pre-COVID-
19 era is critical for test specificity validation. Defining a known positive gold standard
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poses some challenges. Given the postinfection kinetics of anti-S and anti-NP anti-
body, it seems prudent to choose positive validation sera from patients taken at least
2 weeks after SARS-CoV-2 infection confirmed by a nucleic acid test.
For any clinical assay, the trade-off between specificity and sensitivity is a key factor

in how it will be ultimately used. For example, if a positive value is to be used as a sur-
rogate marker for infection, with potential translation for immunity, minimizing the
false-positive rate is critical. In contrast, other considerations are a focus for a test
that is used to monitor antibody kinetics after infection, in vaccine clinical trials, or
to monitor convalescent plasma or monoclonal antibody therapy. Here, binary (posi-
tive or negative) or titer (ranked categorical) test results are less useful than a contin-
uous readout (ie, absolute antibody concentration; eg, nanograms per milliliter),
especially when performing statistical comparisons of vaccine efficacy in clinical tri-
als46 or determining who should donate convalescent plasma. Identifying antibody
subsets poses another challenge for test validation. The acceptable threshold for
anti-S1/RBD antibodies may need to be different for convalescent plasma donor
screening than for identifying postinfectious immunity.

CURRENT CLINICAL TESTING OPTIONS

Serologic testing for SARS-CoV-2 infection has become available in the United States
over the first few months of the pandemic in 2 main formats: point of care and clinical
laboratory. Several companies produced rapid, lateral flow–type devices with read-
outs of total antibody or separate IgM and IgG. Whitman and colleagues47 performed
an assessment of many of these and found widely varying performance: between
81.8% and 100% sensitivity at more than 20 days after symptom onset and 84.3%
to 100% specificity. Gradually, established manufacturers have begun releasing prod-
uct for testing in high-complexity clinical laboratories. At the time of writing, 13 assays
by 11 different manufacturers have been granted Emergency Use Authorization (EUA)
by the FDA, and these represent a variety of targets and technologies (Table 1).48

NP-based assays include chemiluminescent immunoassay (CLIA) and electroche-
miluminescence immunoassay technologies offered by Abbott and Roche, respec-
tively. Both of these assays measure IgG and seem to be highly specific and
sensitive. The Abbott platform has been evaluated independently in a large cohort
in Idaho with confirmation of its performance: 99.90% specificity and 100% sensitivity
17 days after symptom onset.3 Additional technologies with EUA based on detection
of NP include a microsphere immunoassay developed by the New York State Depart-
ment of Health at the Wadsworth. S and S derivative (S1 and RBD)–based assays
include a CLIA assay developed by Ortho-Clinical Diagnostics and ELISAs from Euro-
immun and Mount Sinai Hospital.9 False-positive results have been noted for sera
from patients infected with HCoV-OC43 in the Euroimmun assay.41

IMPLICATIONS FOR IMMUNITY

Some questions where antibody testing can provide clarity include seroprevalence
and, on an individual level, whether a person has previously been infected with
SARS-CoV-2.49 This assessment can be straightforward, such as when an individual
had clinically suggestive symptoms weeks prior but could not, or did not, get a molec-
ular test. Beyond simply assessing previous infection, there is considerable interest in
interpreting serologic test results as correlates of protection against future infection
(Box 1). When using serologic testing to answer such questions, it is important to
consider (1) the durability of the immune response, (2) the neutralization potential of
antibodies, and (3) the translation of these findings into an assessment of functional



Table 1
Performance of severe acute respiratory syndrome coronavirus 2 immunoassays with Food
and Drug Administration Emergency Use Authorizationa

Manufacturer Antigen Ab Class Format Sensitivity (%) Specificity (%) Platform

Abbott NP IgG CLIA 100.0 99–99.6 Architect/
Alinity

Roche NP IgG ECLIA 100.0 99.8 Elecsys

Ortho S IgG, Tot Ab CLIA 90–100 100.0 Vitros

Diasorin S1/S2 IgG CMIA 97.6 99.3 Liaison XL

Euroimmun S1 IgG ELISA 90.0 97.8–100 None

Wadsworth NP Tot Ab MIA 88.0 98.8 FlexMap

Mt Sinai RBD
and S

IgG 2-step
ELISA

92.5 100.0 None

Cellex NP
and S

IgG and IgM LFA 93.8b 96.0b None

Bio-Rad NP Tot Ab ELISA 92.2 99.6 None

Autobio S IgG and IgM LFA 99b 99.0b None

Abbreviations: Ab, antibody; CLIA, chemiluminescent immunoassay; CMIA, chemiluminescent
microparticle immunoassay; ECLIA, electrochemiluminescence immunoassay; LFA, lateral flow
assay; MIA, microsphere immunofluorescence assay; Tot, total.

a Performance was assessed using EUA data and FDA assessment as described (https://www.fda.
gov/medical-devices/emergency-situations-medical-devices/eua-authorized-serology-test-
performance).

b Combined IgM/IgG performance.
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in vivo immunity. Critically, there currently are no data regarding the association be-
tween the presence and titers of anti–SARS-CoV-2-S or anti-–SARS-CoV-2-NP anti-
bodies and protection from reinfection.
The COVID-19 pandemic is still in its early stages, so there has not been the oppor-

tunity to assess the longevity of the antibody response, although small cohort studies
show that IgG antibodies are detectable for at least 6 weeks after symptom onset,35,40

whereas IgM is diminished within the first month postinfection.36,40 A recent study of IgG
levels in asymptomatic versus symptomatic individuals found that neutralizing titers
were more likely to diminish in the early convalescent phase in those without a history
of symptoms.50 Furthermore, the same study showed that 40.0% of asymptomatic
Box 1

Questions for severe acute respiratory syndrome coronavirus 2 antibody testing

Has the individual been infected (if the molecular result is negative and the patient is likely
outside of the window of viral shedding)?

Does the pediatric patient have multisystem inflammatory syndrome?

Are the infection prevention policies and personal protective equipment guidelines adequate
for protecting health care workers in the institution?

Can a recovered COVID-19 patient donate plasma for therapeutic use? What is the half-life of
anti–SARS-CoV-2 antibodies in a recipient of convalescent plasma?

Does a given serologic response indicate a successful trial vaccine?

Has the individual mounted an adequate response to a vaccine (once one becomes available)?

https://www.fda.gov/medical-devices/emergency-situations-medical-devices/eua-authorized-serology-test-performance
https://www.fda.gov/medical-devices/emergency-situations-medical-devices/eua-authorized-serology-test-performance
https://www.fda.gov/medical-devices/emergency-situations-medical-devices/eua-authorized-serology-test-performance
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individuals became seronegative in the convalescent phase versus only 12.9% of those
who were symptomatic.50 Previous reports indicate that individuals infectedwith SARS-
CoV-1 have detectable IgG antibodies for at least 8 to 24 months after symptom onset,
whereas IgM and IgA were markedly decreased.51–53 In contrast, patients infected with
HCoV 229E have markedly diminished antibody levels 1 year postinfection.54 Such re-
sults may complicate future interpretation of serologic test results, especially if SARS-
CoV-2 infection becomes endemic and seasonal.
Plaque reduction neutralization tests can assess whether infected patients mount a

neutralizing antibody response to the virus. Serum or plasma from individuals infected
with SARS-CoV-1 or SARS-CoV-2 has been shown in several studies to neutralize viral
infectivity in vitro.24,41,55–57 Several purified neutralizing antibodies have been charac-
terized against epitopes of both SARS-CoV-1 and SARS-CoV-2, most of which are
directed against the RBD of the S protein.14,16,23–25,58 It remains to be seen how these
findings can be translated in vivo to natural immunity or therapeutics.
Neutralizing antibodies are the basis for convalescent plasma therapy, which

showed promise in treating patients with SARS-CoV-1 and is currently being tested
for those with SARS-CoV-2. Monoclonal antibodies directed at the S1-RBD and other
antigenic sites are also in development. Both classes of therapies pose opportunities
and challenges for clinical serologic testing. Convalescent plasma donors will need to
be screened for high anti–SARS-CoV-2 protective titers, although it is not known
which antibodies confer protection. Similarly, such tests may be used to monitor post-
infusion antibody levels during convalescent plasma treatment, monoclonal antibody
therapies, or after vaccination. Further complicating this issue is evidence from SARS-
CoV-1 that antibody-dependent enhancement (ADE) of infection may occur, where
antibodies facilitate, rather than block, viral infection.59 Current serologic tests do
not distinguish between protective and ADE-inducing antibodies. Such uses of a clin-
ical test will need to be carefully monitored to assure that anti–SARS-CoV-2 antibody
tests are suited to these goals.

SUMMARY

Serologic testing is an evolving and complex area of testing for COVID-19. Challenges
include test validation and performance, usage, and interpretation across multiple
contexts. As knowledge accumulates about the significance of differential and quan-
titative detection of viral antigens, it will be beneficial to have test platforms that can
address questions going beyond a qualitative assessment of previous infection. Care-
ful test validation and appropriate matching to the questions to be answered will help
ensure clinical and scientific research rigor and reproducibility. It is likely that the
testing landscape for measuring the serologic response to SARS-CoV-2 will evolve
rapidly over the next several years. Furthermore, if it is determined that neutralizing an-
tibodies do not confer protection (which may be known within 6–12 months), serologic
testing for SARS-CoV-2 may be of purely epidemiologic value and thus less likely to
occur in clinical laboratories.
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