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Abstract
Bioimpedance spectroscopy (BIS) measurement errors may be caused by parasitic stray

capacitance, impedance mismatch, cross-talking or their very likely combination. An accu-

rate detection and identification is of extreme importance for further analysis because in

some cases and for some applications, certain measurement artifacts can be corrected,

minimized or even avoided. In this paper we present a robust method to detect the presence

of measurement artifacts and identify what kind of measurement error is present in BIS

measurements. The method is based on supervised machine learning and uses a novel set

of generalist features for measurement characterization in different immittance planes.

Experimental validation has been carried out using a database of complex spectra BIS

measurements obtained from different BIS applications and containing six different types of

errors, as well as error-free measurements. The method obtained a low classification error

(0.33%) and has shown good generalization. Since both the features and the classification

schema are relatively simple, the implementation of this pre-processing task in the current

hardware of bioimpedance spectrometers is possible.

1 Introduction
Electrical Bioimpedance (EBI) is a mature and well spread technological application within
several clinical fields like nutrition [1, 2], renal failure [3], skin cancer screening for melanoma
[4], and many others being under development like brain monitoring [5, 6], limb edema detec-
tion in children [7], regional ventilation and perfusion monitoring [8] or assessment of volume
status in patients before and after general anaesthesia [9]. Bioimpedance Spectroscopy (BIS) is
one of the modalities of EBI that has enabled such spread of uses. Given the intrinsic require-
ment of BIS to analyze bioimpedance information at several frequencies within a given fre-
quency range, it is required that the bioimpedance spectrometer used to obtain the
bioimpedance recordings produces high accurate and robust bioimpedance spectra at all
frequencies.
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When measuring BIS, the measurement scenario can suffer from many different sources of
disturbances [10] producing measurement errors and artifacts. The most common is the influ-
ence of capacitive leakage in the estimation of the measured impedance [11–13], but very often
it is possible to obtain BIS measurements with artifacts produced by other kind of errors [14,
15] or their combination [16]. A successful BIS analysis requires a measurement as clean and
reliable as possible, ready for analysis. With methods and techniques for correcting [13], com-
pensating [11, 12, 17] or avoiding [18] certain measurement errors or their influence in their
analysis [19–21], the steps missing in the measurement pre-processing chain is first to detect
the clean BIS measurements from those containing artifacts and second (if necessary) to iden-
tify the kind or error present in the measurement.

In this paper we present a signal pre-processing method to identify those BIS measurements
clean and ready for further data analysis and those measurements that contain common mea-
surement artifacts. A supervised machine learning approach is used to detect and classify BIS
measurement errors using generalist features for measurement characterization in different
immittance planes. With the objective of generalization, a simple classification scheme based
on linear discriminants and a feature selection algorithm based on evolutionary computation is
designed for dimensionality reduction.

1.1 Cole Equation
In 1940, Cole [22] introduced a mathematical equation that fitted experimentally obtained BIS
measurements Eq (1). This equation is not only commonly used to represent but also to model
[23] and analyze the BIS data [24]. The analysis is based on the four parameters contained in
the Cole equation R0, R1, α, and τ, which is the inverse of the characteristic frequency ωc.

ZðoÞ ¼ R1 þ R0 � R1
1þ ðjotÞa : ð1Þ

The value generated by the Cole equation is a complex value, the impedance, with a non-linear
relationship with the frequency that generates a suppressed semi-circle in the impedance
plane. An example of a Cole function is plotted in Fig 1.

Five frequency bands can be defined as a function of the characteristic frequency ωc: VLF (ω
< ωc/5), LF (ωc/5� ω< ωc/2), MF (ωc/2� ω< 2ωc), HF (2ωc� ω� 5ωc), VHF (ω> 5ωc).
Fig 1 also represents the margins of these frequency bands over the Cole function.

2 Types of BIS measurement errors
In order to identify the different types of BIS measurement errors, we have visually analyzed a
large number of BIS measurements from different applications, identifying 6 different types of

Fig 1. Cole plot and frequency bands definition.

doi:10.1371/journal.pone.0156522.g001
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errors [11–16]. Fig 2 represents BIS measurements (solid red line) plotted in the impedance
plane containing the identified types of measurement errors. Estimations of the clean measure-
ments are represented by dashed blue lines. From the measurement artifact produced in the
impedance plot, we can differentiate two groups of errors. The errors of the first group (Type-
A, Type-B and Type-C) are characterized by an increment of the capacitance at the higher fre-
quencies, usually associated to the presence of parasitic capacitive leakage. However, the capac-
itance of the errors in the second group (Type-D, Type-E and Type-F) always decreases with
frequency beyond the characteristic frequency, as in any error-free BIS measurement, but in an
excessive manner crossing the resistance axis at higher frequencies, thus changing the sign of
the reactance from negative to positive, i.e. changing from capacitance to inductance.

The Type-A error is the most common BIS measurement error and it is commonly named
Hook effect [11–13]. It is characterized by an early decrement of the reactance starting in the
MF or HF bands. Type-B and Type-C errors also contain capacitive effects but the reactance
only decreases in the highest frequencies, which originates an outer tail in the Cole function. In
Type-B error the capacitive effect is only noticeable in the VHF band but in Type-C error it is
already noticeable from the HF band.

Regarding the second group, Type-D error is characterized by a resistance decrement in the
higher frequencies (the normal situation is that resistance always increases with frequency),
which originates an inner tail at the end of the Cole function. This effect is probably accompa-
nied by an excessive decrement in the reactance of the VHF band. In Type-E and Type-F
errors, an abnormal increment in the reactance in the VHF band causes that the reactance gets
positive. In Type-E error the resistance keeps decreasing with frequency. However, in Type-F
error there is a resistance increase in the VHF band that also causes an inner tail similar than in
Type-D error (but with positive reactance values).

3 Proposed Algorithm for Detection and Classification of BIS
measurement errors
In order to detect BIS measurements with errors and classify the error in one of the six afore-
mentioned types, we propose to design a supervised machine learning system trained with
labeled real measurements. The detection and classification problem is solved by classifying
BIS measurements in one of the next seven classes: one class corresponds with measurements
without errors and the other six classes for each of the different types of measurement errors. A
set of linear classifiers are designed using features based on relative errors between the BIS mea-
surement and its estimated value obtained through Cole model fitting. Since we are considering
relative errors within frequency ranges defined accordingly to the characteristic frequency, the
features are valid for any BIS application, regardless of its typical Cole parameter values. With
the aim of reducing both the possibility of overfitting of the learning algorithm and its compu-
tational cost, linear classification is used and a feature selection process is carried out. In addi-
tion, the classification problem is tackled with two approaches: ‘all-at-once’ approach where
the seven classes are classified at the same time, and ‘divide and conquer’ approach where
some classes are merged together and classified in a first step, and then the subclasses that
merged into a class are classified in a second step.

3.1 Spectral Immittance components
Immittance englobes both impedance and admittance domains. Both impedance and admit-
tance, denoted by Z(ω) and Y(ω) respectively, are spectral functions related to each other
according to Z(ω)/Y(ω) = 1. Both are also built up by two differentiated components and
require the use of complex notation to represent them. Resistance (R(ω)) and reactance (X(ω))
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Fig 2. BIS measurements (solid red line) containing the 6 identified types of measurement errors plotted in the impedance plane.
Estimations of the cleanmeasurements are represented by dashed blue lines. Type-A error (A), Type-B error (B), Type-C error (C),
Type-D error (D), Type-E error (E), Type-F error (F).

doi:10.1371/journal.pone.0156522.g002
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are the components for the impedance, and conductance (G(ω)) and susceptance (B(ω)) are
the components for the admittance. Notation and relationships are indicated in Table 1.

Therefore, by measuring complex impedance or complex admittance any of the other
immittance components can be calculated by computing the inverse magnitude and extracting
real and imaginary parts. While the Cole function was defined originally on terms of complex
impedance, it is very straight forward to calculate its admittance version and extract its real,
imaginary, modulus or phase components, as shown in Fig 3.

In this case of study, the experimental measurements produce complex impedance spec-
trums, which are fitted to Cole function with the corresponding parameters. After that, both
admittance versions of the spectral impedance measurements and impedance Cole fittings are
calculated, as shown in Fig 4. Once all the spectral immittance components are available, the
features are calculated over the resistance, reactance, conductance, susceptance, impedance
module |Z(ω)| and the impedance phase ffZ(ω).

Table 1. Relationship between spectral immittance components.

R(ω) X(ω) G(ω) B(ω)

Z(ω) Real {Z(ω)} Imag {Z(ω)} RðoÞ
RðoÞ2þXðoÞ2

�XðoÞ
RðoÞ2þXðoÞ2

Y(ω) GðoÞ
GðoÞ2þBðoÞ2

�BðoÞ
GðoÞ2þBðoÞ2

Real {Y(ω)} Imag {Y(ω)}

doi:10.1371/journal.pone.0156522.t001

Fig 3. Immittance components computation.

doi:10.1371/journal.pone.0156522.g003
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3.2 Proposed Features
Let us denote Z(ω) as a BIS measurement and Zfit(ω) as its estimated value using the Cole
parameters obtained by fitting the measurement Z(ω) to the Cole model. The fitting method
used in this work is the impedance plane fitting method proposed in [25]. The relative error
between the BIS measurement Z(ω) and its estimated value Zfit(ω) is considered for the next
six magnitudes: resistance (R(ω)), reactance (X(ω)), conductance (G(ω)), susceptance (B(ω)),
impedance module (|Z(ω)|) and impedance angle (ffZ(ω)). In addition, those six errors are cal-
culated in the five frequency bands defined in section 1.1. Since the frequency bands were
defined with respect to the characteristic frequency, the relative errors eliminates any potential
dependency between measurement application. Considering this, 30 features are proposed for
classification: the mean relative errors of the six magnitudes split in five frequency bands. The
30 features are labeled according to Table 2, where<�> represents mean value. An extra fea-
ture is included in the set, the sign of the reactance in the maximum frequency:

f31 ¼ signðXðomaxÞÞ: ð2Þ

3.3 Least Squares Linear Discriminant Analysis
The linear discriminant analysis (LDA) is a supervised pattern recognition method that uses a
linear combination of a set of input features in order to tackle a classification problem, estab-
lishing linear decision boundaries between two or more classes. Let us consider the pattern vec-
tor xi (i.e. the observations) containing P input features, xi = [x1, x2, . . ., xP]

T. Each pattern xi

Fig 4. Steps to calculate the true and fitted spectral immittance components.

doi:10.1371/journal.pone.0156522.g004
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can be assigned to one of the C possible classes (i.e. error types in this work). The pattern
matrix P of size PxL is defined as a matrix that contains the patterns xi of a set of L data sam-
ples, P = [x1, . . ., xL ], and the matrix Q is defined as

Q ¼ 1

P

� �
; ð3Þ

where 1 is a row vector of length L. In the case of multi-class LDA, the output is obtained com-
puting C different linear combinations of the input features, according to

Y ¼ VQ; ð4Þ

where V is the weight matrix that contains the bias v0c and the weights vpc applied to each of
the P input features for each class c, and it is defined as:

V ¼
v10 � � � v1P

..

. . .
. ..

.

vC0 � � � vCP:

2
664

3
775 ð5Þ

The LDA output Y is a CxLmatrix that contains C outputs for each data sample:

Y ¼
y11 � � � y1L

..

. . .
. ..

.

yC1 � � � yCL

2
664

3
775: ð6Þ

The decision rule is given by

ĉ l ¼ max
c

yl; ð7Þ

where ĉ l is the estimated class for the l-th data sample and yl the l-th column of Y.
The objective during design is to find the weight matrix V that minimizes the classification

error. In supervised learning, the true values associated to each data sample are accessible, and

Table 2. Proposed features for BIS measurement classification.

f1: < RðVLFÞ�Rfit ðVLFÞ
RðVLFÞ > f11: < GðVLFÞ�Gfit ðVLFÞ

GðVLFÞ > f21: < jZðVLFÞj�jZfit ðVLFÞj
jZðVLFÞj >

f2: < RðLFÞ�Rfit ðLFÞ
RðLFÞ > f12: < GðLFÞ�Gfit ðLFÞ

GðLFÞ > f22: < jZðLFÞj�jZfit ðLFÞj
jZðLFÞj >

f3: < RðMFÞ�Rfit ðMFÞ
RðMFÞ > f13: < GðMFÞ�Gfit ðMFÞ

GðMFÞ > f23: < jZðMFÞj�jZfit ðMFÞj
jZðMFÞj >

f4: < RðHFÞ�Rfit ðHFÞ
RðHFÞ > f14: < GðHFÞ�Gfit ðHFÞ

GðHFÞ > f24: < jZðHFÞj�jZfit ðHFÞj
jZðHFÞj >

f5: < RðVHFÞ�Rfit ðVHFÞ
RðVHFÞ > f15: < GðVHFÞ�Gfit ðVHFÞ

GðVHFÞ > f25: < jZðVHFÞj�jZfit ðVHFÞj
jZðVHFÞj >

f6: < XðVLFÞ�Xfit ðVLFÞ
XðVLFÞ > f16: < BðVLFÞ�Bfit ðVLFÞ

BðVLFÞ > f26: < ffZðVLFÞ�ffZfit ðVLFÞ
ffZðVLFÞ >

f7: < XðLFÞ�Xfit ðLFÞ
XðLFÞ > f17: < BðLFÞ�Bfit ðLFÞ

BðLFÞ > f27: < ffZðLFÞ�ffZfit ðLFÞ
ffZðLFÞ >

f8: < XðMFÞ�Xfit ðMFÞ
XðMFÞ > f18: < BðMFÞ�Bfit ðMFÞ

BðMFÞ > f28: < ffZðMFÞ�ffZfit ðMFÞ
ffZðMFÞ >

f9: < XðHFÞ�Xfit ðHFÞ
XðHFÞ > f19: < BðHFÞ�Bfit ðHFÞ

BðHFÞ > f29: < ffZðHFÞ�ffZfit ðHFÞ
ffZðHFÞ >

f10: < XðVHFÞ�Xfit ðVHFÞ
XðVHFÞ > f20: < BðVHFÞ�Bfit ðVHFÞ

BðVHFÞ > f30: < ffZðVHFÞ�ffZfit ðVHFÞ
ffZðVHFÞ >

doi:10.1371/journal.pone.0156522.t002
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they are used to train the classifier. These values are contained in the target matrix T defined as

T ¼
t11 � � � t1L

..

. . .
. ..

.

tC1 � � � tCL

2
664

3
775; ð8Þ

having each column tl a value of ‘1’ in the position of the true class and ‘0’ in the remaining
positions. The estimation error is defined as the difference between the output values of the
LDA Eq (4) and the true values

E ¼ Y� T ¼ VQ� T; ð9Þ

and the mean squared error (MSE)

MSE ¼ 1

L
k Y� T k2 ¼ 1

L
k VQ� T k2: ð10Þ

The least squares solution (LS-LDA) [26] adjusts the weights to minimize the MSE. This is
obtained by deriving the expression Eq (10) with respect to every weight of the linear combina-
tion, giving raise to the following expression:

V ¼ TQTðQQTÞ�1
: ð11Þ

3.4 Feature selection algorithm
In section 3.2 a total of 31 features were proposed to detect and classify BIS measurement
errors. This number of features can be reduced using a feature selection algorithm. The main
reason to reduce the number of features is to avoid overfitting. A learning algorithm is said to
overfit relative to a simpler one if it is more accurate in fitting known data but less accurate in
predicting new data. Overfitting generally occurs when a model is excessively complex. Hence,
using a lower number of features for classification reduces the possibilities of overfitting. In
addition, the computational cost of the classifier directly depends on the number of features, so
it can be reduced using a lower number of features. The objective of the feature selection algo-
rithm is the selection of a determined number of features (NFEAT) among the whole set opti-
mizing a fitness function. In this case, the objective is to minimize the classification error, i.e.
the percentage of samples misclassified by the classifier. Considering the total number of fea-
tures, to perform an exhaustive search is not affordable. Consequently, a heuristic search of the
space of all possible feature subsets is performed. Among heuristic methods for feature selec-
tion, wrappers are usually applied when the selection process relies on evaluating a particular
fitness function [27]. Some examples of wrapper methods are simulated annealing [28], particle
swarm optimization [29] or evolutionary algorithms [30].

The solution proposed in this work is based on evolutionary algorithms (EA), which are
iterative methods inspired in natural evolution laws [31]. An EA is commonly build by 3 func-
tional blocks [32]: 1)generation of candidate solutions (CSs), 2) evaluation of a fitness function
(FF), and 3) the evolution of the population. The definition of CS is problem specific and they
are built by a set of components that can have binary, discrete or continuous values. The opti-
mization of the FF as cost function is also problem specific. Selection, crossover and mutation
are the operations responsible for the evolution of the population.

The steps of the feature selection algorithm used in this paper are the next:

1. An initial population of CSs is produced. The performance of the EA algorithm depends
heavily on the size of the population. A large population could generate larger genetic

Detection and Classification of BIS Measurement Errors
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diversity, increasing the search space but subsequently suffering from a slower convergence.
A very small population would evaluate a limited search space, increasing the probability of
converging into a local extreme. In this work, the initial population contains 50 CCs. Each
candidate solution contains P = 31 (the total number of features) random binary values (0
or 1), that indicates whether a feature is selected or not.

2. The candidates of the population are validated to fulfill the constraint of total number of
features. If a candidate solution exceeds the maximum number of features (NFEAT) by a
determined number, the same number of random positions are decreased by one (avoiding
negative values). The process iterates until the candidate solution fulfills the requirement.

3. The fitness function is evaluated for each candidate solution of the population. To reduce
the probability of overfitting, k-fold cross-validation [33] is used to evaluate each candidate.
The classification error obtained by the LS-LDA classifier using the subset of features con-
tained in the candidate solution is evaluated for each fold. The k classification errors from
the folds are then averaged and used as fitness function.

4. A selection process is performed, using the results of the evaluation of the fitness function as
ranking. In this work, we use truncation selection, and consists in selecting a subpopulation
of the best 10% candidate solutions that best fit the fitness function. These best candidates
will survive to the next generation, and they are denominated ‘parents’.

5. Recombining the parents with a crossover operator to breed the new generation. The
remaining 90% solutions of the new generation are generated by crossover of the parents. In
this EA, the crossover operator implemented is uniform crossover. The probability that the
crossover operator is applied to each individual (crossover probability) is 0.5. With this
crossover schema, the offspring has approximately half of the elements from the first parent
and the other half from the second parent.

6. The offspring is randomly changed or mutated to maintain diversity within the population
and to inhibit premature convergence to local extreme. In this EA, mutations are only
applied to the candidate solutions of the new population that are duplicated. The best solu-
tion is always excluded in the application o mutations. Mutations consist of changing the
value of a random position of the repeated candidate solutions, until all individuals in the
population are different.

7. The steps 2-6 are repeated until 100 generations are evaluated.

The solution with the features remaining in the last iteration is considered the best solution.

3.5 Classification approach
3.5.1 All-at-once approach. In this first approach, seven different classes are defined,

according to Table 3. A LS-LDA classifier is designed to classify all the seven classes at the
same time, selecting the best subset of features among the proposed set (31 features). When a
measurement is classified as Class 1, it is an error-free measurement. On the other hand, if the
measurement is classified into any of the other 6 classes, a measurement error has been
detected and also classified.

3.5.2 Divide and conquer approach. In this approach, we divide the previous classifica-
tion problem with seven classes into easier subproblems merging some classes that seem diffi-
cult to differentiate. Thus, Type-B and Type-C errors are considered a unique class, as well as
Type-E and Type-F errors. The new classification problem has five classes, which are defined
in Table 4. In a first step, a LS-LDA classifier is designed to differentiate between those five
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classes, selecting the best subset of features among the proposed set (31 features). In a second
step, another two LS-LDA classifiers are designed to separate subclases: Type-B and Type-C
errors from Class 3, and Type-E and Type-F errors from Class 5.

In order to differentiate between subclasses of Class 3 and Class 5, we propose to use a
binary LS-LDA that uses only one feature. Finding the appropriate feature makes possible to
separate the subclasses. This is equivalent to establish a linear separation boundary or threshold
between two classes (Type-B and Type-C or Type-E and Type-F). The criterium to select the
feature is based on the Fisher score [34], which for two classes ci and cj is given by:

FðfkÞ ¼
ðmci

k � mkÞ2 þ ðmcj
k � mkÞ2

s2
k

; ð12Þ

where F(fk) is the Fisher score for the k-th feature, μk and σk denote the mean and standard
deviation of the whole data set corresponding to the k-th feature, and mci

k is the mean of the
class i, corresponding to the k-th feature.

4 Experimental setup
A suitable database design plays a vital role in any kind of problem based on supervised
machine learning. In order to design and validate the classification algorithms proposed in this
work, a database of 1502 real BIS measurements has been created. The database is split into
two different subsets, one for design and another for test. The design set contains the 60% of
the measurements (901 samples), and the test set the remaining 40% (601 samples). Each class
has the same number of samples in both sets, and the samples are randomly selected from the
complete dataset. It is very important to emphasize that the test samples are not used in the
design process.

Table 4. Classes definition: divide and conquer approach.

Class Measurement type

Class 1 Error free

Class 2 Error Type-A

Class 3 Error Type-B+Type-C

Class 4 Error Type-D

Class 5 Error Type-E+Type-F

doi:10.1371/journal.pone.0156522.t004

Table 3. Classes definition: all-at-once approach.

Class Measurement type

Class 1 Error free

Class 2 Error Type-A

Class 3 Error Type-B

Class 4 Error Type-C

Class 5 Error Type-D

Class 6 Error Type-E

Class 7 Error Type-F

doi:10.1371/journal.pone.0156522.t003
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The database contains 1502 complex spectra of BIS measurements obtained from different
BIS applications: body composition with total right side (BC-TRS), segmental arm (BC-SA)
and segmental leg (BC-SL) measurement types; cerebral monitoring with scalp transcephalic
(CM-ST) measurement type; and skin-electrode interphase characterization with leg-to-leg
(SC-LL) measurement type. The distribution of samples per application is shown in Fig 5(A).
The database includes measurements with the six different types of error, explained in section
2, and error-free measurements. The number of samples for each measurement class is shown
in Fig 5(B). The distribution of measurement errors and applications included in the database
it is also very truthful with reality: not all the applications and types of errors happen with the
same frequency in real life.

The study was approved by the Regional Ethical Review Board of Gothenburg (Regionala
etikprovningsnamnden i Goteborg). Informed written consent to participate in the study was
obtained from all the test subjects. The obtained measurements and the consent forms are kept
according to the instructions given by the Regional Ethical Review Board of Gothenburg
regarding the ethical approval for the study (Dnr 274-11).

5 Results

5.1 Results obtained with all-at-once approach
The feature selection algorithm is executed 31 different times, varying the maximum number
of features (NFEAT) from 1 to 31 in steps of 1. Only the samples contained in the design set are
used in this process. 5-fold cross-validation is used to evaluate the fitness function.

Fig 6 shows the mean and standard deviation of the classification error in the 5 folds, as a
function of the number of features. Using all the 31 proposed features, the classification error is
0.16%, which corresponds with an average of 1.4 misclassified samples. The error is practically
unaltered (even decreased) down to NFEAT = 23, whereas the classification error begins to

Fig 5. Distribution of the BIS experimental measurements included in the database. Distribution per application (A), distribution per measurement
type (B).

doi:10.1371/journal.pone.0156522.g005
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increase slightly for lower values. For a value of NFEAT = 7, the classification error is still a 1.1%
(an average of 1.8 misclassified samples), but for lower number of features the error starts to
increase significantly. Additionally, the standard deviation of the classification error for NFEAT

= 7 is lower than in its neighbor points. According to this, we consider that NFEAT = 7 repre-
sents a good tradeoff between classification performance and number of features (reduced
overfitting probability and computational cost). The 7 selected features are shown in Table 5.

Once the classifier has been designed, it is validated classifying the samples from the test set.
The LS-LDA is trained with the samples of the design set using the 7 selected features. The clas-
sification error obtained by the designed classifier with the test samples is 5.7% (34 misclassi-
fied samples). In order to analyze the origin of those 34 misclassified samples, Table 6 shows
the confusion matrix associated to the classifier. We can see that all the samples in Class 1,
Class 3, Class 5 and Class 6 are perfectly classified. However, in the case of Class 2 (error Type-
A), 2 samples are labeled as Class 5 (error Type-D), and in the case of Class 4 (error Type-C),
11 samples are labeled as Class 3 (error Type-B) and 9 samples are labeled as Class 5 (error
Type-D). All the 12 samples in Class 7 are wrongly classified as Class 6 (i.e. error Type-F is mis-
classified as error Type-E).

Fig 6. Mean and standard deviation (5 folds) of the classification error (%) obtained by the feature selection algorithm for different values of
NFEAT in the all-at-once approach (7 classes).

doi:10.1371/journal.pone.0156522.g006

Table 5. Selected features withNFEAT = 7 in the two classification approaches.

Selected Features

All-at-once f5, f6, f7, f9, f18, f29, f31
Divide and conquer f5, f7, f9, f26, f28, f29, f31

doi:10.1371/journal.pone.0156522.t005
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5.2 Results obtained with divide and conquer approach
In the current approach, the classification procedure is carried out in two steps. In the first
step, a LS-LDA is trained to classify the 5 classes defined in Table 4. As in the previous
approach, the feature selection algorithm is executed 31 different times, varying the maximum
number of features (NFEAT) from 1 to 31. Only the samples contained in the design set are used
in this process and 5-fold cross-validation is used to evaluate the fitness function.

The mean and standard deviation of the classification error, in the 5 folds, as a function of
the number of features is represented in Fig 7. Using the maximum number of features (NFEAT

= 31) the classification error is 0%, and this value is kept down to NFEAT = 8. In the case of
NFEAT = 7, the classification error is a 0.02% (an average of 0.2 samples misclassified) and the
standard deviation is still very small. For lower number of features the mean and standard devi-
ation of the classification error start to increase significantly. Similarly to the previous

Table 6. Confusion matrix in all-at-once approach. Classification error of 5.7%.

All-at-once Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Class 1 129 0 0 0 0 0 0

Class 2 0 134 0 0 2 0 0

Class 3 0 0 88 0 0 0 0

Class 4 0 0 11 0 9 0 0

Class 5 0 0 0 0 160 0 0

Class 6 0 0 0 0 0 56 0

Class 7 0 0 0 0 0 12 0

doi:10.1371/journal.pone.0156522.t006

Fig 7. Mean and standard deviation (5 folds) of the classification error (%) obtained by the feature selection algorithm for different values ofNFEAT
in the divide and conquer approach (5 classes).

doi:10.1371/journal.pone.0156522.g007
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approach, we consider NFEAT = 7 a good tradeoff between classification performance and num-
ber of features. The 7 selected features are shown in Table 5.

The designed classifier is validated with the samples from the test set. The LS-LDA is trained
with the samples of the design set using the 7 selected features. The classification error obtained
by the designed classifier with the test samples is 0.17% (1 misclassified sample). Table 7 shows
the associated confusion matrix. Samples in Class 1, Class 3, Class 4 and Class 5 are perfectly
classified, and only 1 sample of Class 2 is wrongly labeled as Class 4 (error Type-A labeled as
error Type-D).

Once the first step has classified the samples between the five classes, the second step sub-
classifies samples labeled as Class 3 between Type-B or Type-C errors, and samples labeled as
Class 5 between Type-E or Type-F errors. As it was previously proposed, subclasses are identi-
fied with a binary LS-LDA that uses only one feature selected by the Fisher Score criterium.
Using the samples from the design set and according to Eq (12), the features selected are f4 in
the case of Class 3 subclassification and f8 in the case of Class 5 subclassification. A binary
LS-LDA is trained with Type-B and Type-C samples of f4 from the design set, using 5-fold
cross-validation. The value of the threshold is obtained as the average of the thresholds
obtained in each fold, th4

BC ¼ 0:005. Fig 8 (left) represents the value of f4 for some samples of
Type-B error (blue circles) and Type-C error (red squares), from different BIS applications.
The threshold thBC is represented by a black dashed line. The designed classifier then is

Table 7. Confusion matrix in divide and conquer approach, step 1. Classification error of 0.17%.

Divide and conquer-1 Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 129 0 0 0 0

Class 2 0 135 0 1 0

Class 3 0 0 108 0 0

Class 4 0 0 0 160 0

Class 5 0 0 0 0 68

doi:10.1371/journal.pone.0156522.t007

Fig 8. Feature f4 for samples of Type-B error and Type-C error in (A) and feature f8 for samples of Type-E error and Type-F error in (B).
Samples are taken from different BIS applications.

doi:10.1371/journal.pone.0156522.g008
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evaluated with the samples of Type-B and Type-C errors from the test set. The result is that
only 1 sample of Type-B error is misclassified as Type-C error, all samples of Type-C being cor-
rectly labeled. That means that a total of 1 sample of Class 3 is misclassified, which is equivalent
to a classification error of 0.93%. The confusion matrix is shown in Table 8.

Another binary LS-LDA is trained with Type-E and Type-F samples of f8 from the design
set, using 5-fold cross-validation. The value of the threshold is obtained as the average of the
thresholds obtained in each fold, th8

EF ¼ �0:0117. Fig 8 (right) represents the value of f8 for
samples belonging to Type-E error (blue circles) and Type-F error (red squares), from different
BIS applications, and the threshold thEF (black dashed line). Finally, this third classifier is eval-
uated with the samples of Type-E and Type-F errors from the test set. The result is that all sam-
ples of both types of errors are correctly classified, the classification error being a 0%. The
confusion matrix is shown in Table 9.

On the whole, the divide and conquer approach with NFEAT = 7 only misclassifies 2 samples
from the test set: 1 sample in the first step and 1 sample in the second step (Class 3 subclasses).
This is equivalent to a classification error of 0.33%. A summary of both classification
approaches is shown in Table 10.

6 Discussion
In this study, a method to detect the presence of measurement artifacts and identify what kind
of measurement error is present in a BIS measurement is proposed. The database used to
design and validate the method contains measurements with the most common measurement
errors reported in BIS. The database is not only heterogeneous from the error perspective but
also from application perspective, including measurements from different applications. The
distribution of errors and applications included in the database is also very truthful with reality,
not all the applications and type of errors are represented in the same proportion. The most
common errors and the most common applications contain more samples than the least com-
mon applications and the least common error types.

Table 8. Confusion matrix in divide and conquer approach, step 2 (BC). Classification error of 0.93%.

Class 3 Type B Type C

Type B 87 1

Type C 0 20

doi:10.1371/journal.pone.0156522.t008

Table 9. Confusion matrix in divide and conquer approach, step 2 (EF). Classification error of 0%.

Class 5 Type E Type F

Type E 56 0

Type F 0 12

doi:10.1371/journal.pone.0156522.t009

Table 10. Classification error of the two proposed approaches withNFEAT = 7.

All-at-once Divide and conquer

Step 1 Step 2 Total

Classification Error 5.7% 0.17% 0.57% 0.33%

Misclassified samples 34/601 1/601 1/176 2/601

doi:10.1371/journal.pone.0156522.t010
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The fact that the number of samples of each class present in the database is different
increases the probability of overfitting: the classifier can be overtrained to classify classes with a
higher number of samples. In order to increase generalization, we have proposed the use of a
simple classification schema as well as performed dimensionality reduction by means of a fea-
ture selection algorithm.

It is well known that different BIS applications have different typical immittance values.
Defining features based on relative errors avoids the need for normalizing or standardizing the
value of the features to eliminate the influence of differences in the magnitude of BIS measure-
ments for different applications. Moreover, the use of the characteristic frequency when defin-
ing the frequency windows for calculating the relative errors eliminates any potential
dependency between measurement application and the values of the calculated feature. More-
over, the fitting method used to estimate the reference impedance, which is used to calculate
the relative error, is carried out in the complex impedance plane with the method proposed in
[25]. This is motivated by the fact that measurement artefacts affect both the real and imagi-
nary part of the impedance.

Obtaining a BIS measurement useful for data analysis is of paramount importance. Hence,
the quality of the measurement and the presence of measurement artifacts is evaluated upon
measurement acquisition. If possible, such detection should be done already by the spectrome-
ter itself indicating if the measurement is free from artifacts or otherwise it contains certain
measurement errors and which kind. In some cases, the measurement error might be corrected
or compensated by software and, in other cases, the best option will be to repeat the measure-
ment after assessing the good placement of electrodes and other sources for potential measure-
ment errors. The use of a classification engine based on linear discriminants decreases the
complexity allowing a simple implementation without requiring extensive computational
resources from the measurement system.

The all-at-once classification approach obtained a relative low classification error of 5.7%.
The most problematic classes were Class 4 and Class 7, all their samples being wrongly classi-
fied. In the case of Class 4, the larger number of misclassifications were as Class 3, and, in the
case of Class 7, all the samples were labeled as Class 6. This is clearly due to the similarities
between the true and the labeled measurement errors, which makes that a linear classifier is
not able to separate perfectly the 7 classes at the same time. For that reason, the divide and con-
quer approach has been proposed. Merging the most problematic classes (i.e. the ones with
more similarities) into one class and performing a two-step classification have decreased the
classification error to 0.33%. This improvement is caused by the use of specific linear classifiers
to differentiate between the most problematic classes, which turns easier the classification
problem.

Regarding the selected features, it is interesting to observe that in both cases all the fre-
quency ranges are represented among the 7 selected characteristics. It is remarkable but in a
kind expected that the most common features between the two approaches belong to the two
upper parts of the frequency spectrum: HF and VHF. Finally, it is also significant the absence
of features obtained from the conductance and from the modulus of impedance. These two
immittance magnitudes have shown certain robustness against capacitive leakage especially at
low frequencies, therefore it is very likely that the conductance nor the modulus of the imped-
ance will contain useful information about measurement errors.

7 Conclusions
Being able to ensure that a BIS measurement is free from measurement errors and it can be
analyzed trusting the results is very important in clinical practice, since for people outside the
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field of BIS it is often extremely difficult to judge about the goodness of a BIS measurement. In
this paper we have demonstrated that despite the different origins of measurement artifacts
produced by parasitic stray capacitance, impedance mismatch, cross-talking or their very likely
combination, it is possible to detect measurement errors present in a BIS measurement and
identify which kind of artifact is present.

The possibility to identify what kind of measurement artifact is present in the BIS measure-
ment is also of extreme importance for further analysis because in some cases and for some
applications, certain measurement artifacts can be corrected, minimized or avoided. An accu-
rate identification is useful even in the cases with measurement errors without available meth-
ods for correction or minimization. A positive identification can be used as indicator for
problems with skin-electrode interface, cabling etc., and then the measurement can be repeated
right away after replacing the electrodes or ensuring adequate cabling. The use of simple fea-
tures and a simple linear discriminant core as classification engine allows the implementation
of this pre-processing task in the current hardware of bioimpedance spectrometers.
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