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Abstract

Peptide ligands of G protein-coupled receptors constitute valuable natural lead structures for the development of highly
selective drugs and high-affinity tools to probe ligand-receptor interaction. Currently, pharmacological and metabolic
modification of natural peptides involves either an iterative trial-and-error process based on structure-activity relationships
or screening of peptide libraries that contain many structural variants of the native molecule. Here, we present a novel
neural network architecture for the improvement of metabolic stability without loss of bioactivity. In this approach the
peptide sequence determines the topology of the neural network and each cell corresponds one-to-one to a single amino
acid of the peptide chain. Using a training set, the learning algorithm calculated weights for each cell. The resulting network
calculated the fitness function in a genetic algorithm to explore the virtual space of all possible peptides. The network
training was based on gradient descent techniques which rely on the efficient calculation of the gradient by back-
propagation. After three consecutive cycles of sequence design by the neural network, peptide synthesis and bioassay this
new approach yielded a ligand with 70fold higher metabolic stability compared to the wild type peptide without loss of the
subnanomolar activity in the biological assay. Combining specialized neural networks with an exploration of the
combinatorial amino acid sequence space by genetic algorithms represents a novel rational strategy for peptide design and
optimization.
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Introduction

G protein-coupled receptors (GPCRs) regulate vital cellular

functions such as energy and ion homeostasis, cellular adhesion,

motility and also proliferation [1,2]. For their involvement in

many physiological processes relevant in diseases ranging from

diabetes to cancer, GPCRs are considered one of the most

valuable classes of protein targets on the cell membrane [2,3]. At

least one third of all currently marketed drugs are directed against

GPCRs, while due to the lack of highly potent and stable ligands

many other receptors of this protein superfamily still await their

pharmaceutical use [4]. In this target class, structure-based drug

discovery using rational design is still hampered by the small

number of available 3D data for GPCRs. When this study was

initiated only five x-ray structures of GPCRS were known: those of

of two rhodopsins (PDB 1F88, 2Z73) [5,6], of the b2- and b1-
adrenergic receptors (PDB 2RH1, 2VT4) [7,8] and the structure

of the A2A adenosine receptor (PDB 2RH1) [9]. Within the last

two years the structures of the CXC chemokine receptor type 4

(PDB 3OE0, 3ODU) [10], dopamine D3 receptor (PBD 3PBL)

[11] and the histamine H1 receptor (PDB 3RZE) [12] were

determined. Thus, CXCR4 is the only peptide/protein ligand

GPCR with a known three-dimensional structure so far. Conse-

quently, alternative approaches for molecular design of potential

drugs are being explored. Evolutionary strategies allow the

optimization of a molecule’s properties by a cyclic process

consisting of consecutive variation and selection steps [13]. For

this stepwise improvement of molecular parameters, no a priori

knowledge of quantitative structure-activity relationships (QSAR)

is required and the whole process may take place in vitro, in vivo or

even in silico by computer-based algorithms.

The common QSAR approach consists of two main elements

that could be considered as coding and learning [14]. The learning

part can be solved with standard machine learning tools. Artificial

neural networks are commonly used in this context as nonlinear

regression models that correlate biological activities with physio-

chemical or structural properties. The coding part is based on

identification of molecular descriptors that encode essential

properties of the compounds under investigation [14]. Alternative

approaches of classical machine-learning-based QSAR described

above circumvent the problem of computing and selecting

a representative set of molecular descriptors. Therefore molecules

are considered as structured data – represented as graphs –

wherein each atom is a node and each bond is an edge. These

graphs define the topology of a learning machine. This is the main

concept of the molecular graph network [15], the graph machines

[16] and the graph neural network model [17] in chemistry which

translate a chemical structure into a graph that works as a topology

template for the connections of a neural network.

Artificial neural networks are computer programs inspired by

nature that were intended to process complex information in
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a manner similar to the human brain [18,19]. Although they did

not fulfill the high expectations of the early days, they evolved into

useful non-linear statistical modeling tools. In this role they have

been successfully used in the QSAR field, generating hypotheses in

the drug design cycle for GPCRs and other target classes and in

automated feature extraction, yielding convincing results in

numerous projects for small molecule drug development [19–

25,25]. Artificial neural networks have also generated very

substantial progress in the optimization of peptides for various

purposes in molecular biology and pharmaceutical design, for

instance in MHC I binding and stabilizing peptides [26–28], for

the identification and biological activity of signal peptidase and

viral proteinase cleavage sites [29–31], with cell-interacting

peptides [32], and in modifying peptide transport across the

blood-brain barrier [33]. Schneider et al. [34] have used artificial

neural networks and a computer-based evolutionary search to

design autoantibody-binding peptides by a cyclic variation-

selection process. Using multiple iterations of synthesis, assay

and computer-based molecular design, Riester et al. [35] were

able to identify enhanced peptidic thrombin inhibitors. Their

approach was based on an efficient type of genetic algorithm [36].

Currently, the optimization process for GPCR peptide ligands

involves traditional and modern approaches in medicinal chem-

istry, as reviewed in [37]. So far, the optimization of GPCR

peptide ligands by artificial neural networks has not been

described.

In this work, we follow the idea of translating chemical structure

directly into the topology of a learning machine. Our strategy is

focused on peptides, wherein the sequence of amino acids

determines the topology of the neural network. Each cell in the

network corresponds one-to-one to an amino acid in the peptide.

Learning the QSAR means adopting the weights of the cells in the

network with respect to the quantity of interest (in general the

activity or the metabolic stability). The architecture of this neural

network fits into the concept of the Graph Neural Network [17].

In contrast to the Self Organizing Maps (also known as Kohonen

maps [38]) they are trained using supervised learning and the

topology is defined by the peptide sequence. The adapted cells are

used to build models for the QSAR of new virtual peptides in

order to optimize the desired property in silico. We explore the

multidimensional space of all possible peptides with a genetic

algorithm (GA) wherein the output of the GNN model defines the

fitness function of the GA. Only the top ranking virtual peptides

are selected for synthesis and in vitro testing in order to produce

new measurements for the next optimization cycle.

Chemerin is a 163 amino acid polypeptide identified as a natural

ligand for the heptahelical transmembrane receptor CMKLR1

[39]. Initially, the chemerin gene (also known as retinoic acid

receptor responder 2 [RARRES2] or tazarotene-induced gene

[TIG2]) had been identified as a novel retinoid-activated gene in

skin [40]. It has been reported to be involved in the regulation of

immune responses and adipogenesis, being engaged in a variety of

physiological functions [41–47]. Its precursor molecule prochem-

erin is proteolytically activated and finally inactivated in sequential

steps, modulating its physiological role in tissues [48–50].

Chemerin-9 (chemerin 148–156) was previously identified as

a peptide mimic of full-length chemerin showing low nanomolar

potency [51,52]. Chemerin is also measurable in a number of

human inflammatory exudates, including ascitic fluids from

human ovarian cancer and liver cancer, as well as synovial fluids

from arthritic patients. In the wake of chemerin’s role as an

adipokine and inflammatory modulator, a stabilized CMKLR1

ligand of high affinity may be beneficial in the treatment of

metabolic syndrome and chronic inflammatory diseases.

By applying several cycles of peptide synthesis, testing in

bioassays and GNN-based sequence optimization we have

gradually improved the metabolic stability of a CMKLR1

nonamer peptide ligand with agonistic properties. For the first

time, we describe the application of a novel GNN technology for

the optimization of a small peptide for potential pharmaceutical

application. By using this approach, we were able to achieve

a 70fold improvement of the metabolic half life (tK =1693 min) in

a ligand with subnanomolar activity in the biological assay (EC50

= 0.49 nM).

Results

Graph Neural Networks and Genetic Algorithms
The GNN was designed to reflect the topology of a peptide by

mimicking the sequence and the type of the constituting amino

acids. Each amino acid had a representation as a particular

elementary cell in the network with individual weights that were

adjusted during the network training. Figure 1 shows a schematic

plot of an elementary cell together with the weight vector that

defines the connections to the neighboring cells of the network.

GNN training was initiated by feeding in the peptides’ current

sequences and biochemical properties such as agonistic activity

and metabolic stability (Fig. 2). The training procedure was based

on stochastic gradient descent with several improvements that

make the training of the shared weights feasible [53]. The

application of GNN-based molecular optimization was organized

in a circular fashion (Fig. 2). From a start population of molecule

sequences derived from established knowledge, peptides were

synthesized and their properties were determined using the

appropriate biochemical or cellular assay.

A GNN was then trained as described above and the adapted

cells worked as building blocks of new virtual peptides that were

generated by rearranging the order of the cells. The resulting

GNN-model defined the fitness function in a GA that was

generating an ensemble of improved peptide sequences entering

the next cycle of development.

Generation of an initial set of peptide variants (cycle 0)
In order to generate a diversity of structural variants in round

0 of the optimization process, 30 different sequences were derived

from modifications of the native nonamer of chemerin-9. These

variants were synthesized as peptide amides and subjected to EC50

determination for agonistic activity on HEK293 cells transfected

with CMKLR1, the receptor for chemerin (start population or

input, data not shown). In this initial round of screening, we

explored the capacity for the exchange against other (natural) L-

amino acids and stabilizing D-amino acids in the activation assay –

no stability data were obtained at that stage. To allow better

comparison with data from later cycles, the five peptides with the

best EC50 values were resynthesized with a free acid function at

the C terminus and were analyzed for their EC50 and metabolic

stability (Table 1, cycle 0). As can be seen from the comparison

with data from the native nonamer chemerin-9 (Table 1, bottom

line), this initial round did not improve the mean stability of the

peptide variants. Instead, half life of all these peptides in human

serum was similar to the wild-type molecule (24 mins).

GNN improvement (cycle 1–3)
Round 1 to 3 of the optimization process included at least 34

different sequences each from a GNN model as described above

(Table S1). These variants were synthesized as peptides with a free

acid function at their carboxy terminus and were subjected to

EC50 determination for agonistic activity on HEK293 cells

Molecular Evolution of a Peptide GPCR Ligand
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Figure 1. (A) Graph Neural Networks consist of interconnected elementary cells. The internal weight of the cell is given by winternal and the feedback
during the iteration of the GNN is controlled by v0. The inputs from the neighboring cells are connected with the weights v-N,…,N preserving the
order of the peptide sequence as shown in (B). The sum of the weighted inputs passes the activation function and forms the output of the cell for the
next iteration step of the network. (B) The translation process of a peptide into a fully connected GNN. Note the one-to-one correspondence between
the amino acids of the peptide and the elementary cells of the GNN. The network is iterated through time and the output of the network is the sum
over all internal states after the final iteration.
doi:10.1371/journal.pone.0036948.g001
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expressing CMKLR1. In these subsequent rounds of screening, we

explored the capacity for the exchange against other (natural) L-

amino acids and also stabilizing D-amino acids in the activation

assay, as well as the metabolic stability of the various compounds.

As can be seen from the comparison with data from the native

nonamer chemerin-9 (Table 1, bottom line), and with results from

round 0, the following rounds of optimization yielded a marked

improvement in metabolic stability while retaining high agonistic

activity. Quite obvious is the gradual enhancement over the three

rounds: both bioactivity (EC50) and half-life of the peptides

improve from first to third cycle (Fig. 3 A and B).

Analysis of the five best peptides from each cycle
To analyze the structure-activity relationships in the process of

GNN optimization, multiple sequence alignments of the five best

peptides from each cycle were compared (Fig. 3C). The sequences

from cycle 0 (input or start population) showed moderate

conservation across the peptide, with higher variability towards

the carboxyterminal portion. Here, at the beginning of the

evolutionary process, the consensus sequence of these five peptides

still corresponded to the chemerin-9 wild type sequence (Fig. 3C,

upper left graph). The aromatic amino acids at positions 1, 2 and 8

as well as the sterically peculiar Pro3 and Gly4 were well

conserved. The only exception was found in a single exchange

of Phe2 by Leucin. The same peptide also showed the only

inclusion of a D amino acid (D-Phe7) which, however, did not lead

to any improvement in stability over the wild type (Table 1, 2nd

and last line). Position 9 is Serin in the wild type, but it obviously

easily accommodates exchanges with either aromatic or small

hydrophobic amino acids (Phe or Gly).

Within the five best sequences of cycle 1 (Fig. 3A, upper right

graph), the Leu2 introduction from cycle 1 was further inherited,

dominating this position with only one exception (Val2). Again,

Pro3 and Gly4 were unchanged in addition to the aromatic

position 1, Glu5 and Phe8. Both these trends lead to a consensus

sequence close to wild type, with only position 2 substituted by

Leu, while position 9 was variable. In this set of peptides, the first

significant improvement in stability is associated with the de novo

Figure 2. GNNs are trained and then optimized. This example illustrates the GNN’s mode of action in computer-assisted peptide design: In the
training set, the model is taught the properties of the current peptides (biological activity, stability) and the adopted cells build virtual peptides that
are evaluated in the genetic algorithm-based optimization. The peptide optimization process is organized in multiple consecutive cycles. The start
population of peptides is based on experts’ knowledge concerning the target, e.g. natural ligands, known analogs or compounds that bind to similar
targets. The trained GNN is used as a fitness function in a genetic algorithm. Newly generated sequences then have to be synthesized and analyzed in
biological assays, before the next GNN training is initiated.
doi:10.1371/journal.pone.0036948.g002
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introduction of a D amino acid at the amino terminal position 1

(Table 1, 10th and last line), increasing the half life by a factor of 5.

Two peptides with a D amino acid at the carboxy terminus did not

show prolonged stability.

In cycle 2 of the GNN optimization, however, the algorithm

continued to introduce carboxyterminal D amino acids and to

a lesser extend also at the amino terminus, while no internal

positions of the five best peptides in this round contain the D

isoform. Here, the combination of D amino acids at both termini

yields the first peptide with considerably higher stability, increasing

the half life by a factor of 48 to 1157 minutes (Table 1). Positions 3

to 8 were completely conserved in this set of peptides, including

Tyr6, first introduced in cycle 1. The consensus sequence

consequently differs in positions 2 and 6 from the wild type

(Fig. 3A, lower left graph).

Cycle 3, as the previous cycle, yielded a novel exchange at

a previously conserved position, leading to two peptides with

additional improvement of stability as well as enhanced activity:

Gly4 is substituted by D amino acids. Of these substitutions, D-Ser

proved to be most effective, leading to stabilities of 1408 and

1693 minutes (59fold and 70fold improvement, respectively). At

the same time, D-Ser lead to a peptide with subnanomolar activity

at the chemerin receptor (0.49 nM, data highlighted in bold in

Table 1). In this cycle, the five best peptides showed high

conservation at all other positions, with some variability towards

the carboxy terminus. The consensus sequence in this last round

differed in four positions (2, 4, 6, 9) from the original chemerin-9,

the exchange of Gly by D-Ser at position 4 being the most

prominent one (Table 1 and Figure 3A, lower right graph).

The effectiveness of the GNN-based modulation of the peptide

composition are visualized in plots for both parameters analyzed

within this process (Fig. 4). While in the first round, the majority of

data points were found in the lower right quadrant with poor

stability and activity, in cycles 2 and 3 the data cloud was shifted

towards the upper left, representing improved activity and

stability.

Discussion

We presented a Graph Neural Network (GNN) that utilizes

individual processing elements as building blocks with a one-to-

one correspondence to the amino acids of the peptide. The GNN

mimics the linear design of a peptide molecule and converts this

chemical architecture directly into the topology of a learning

machine. This strategy eliminates the obstacle of designing and

computing molecular descriptors for QSAR. In addition, the

GNN requires no preexisting structural knowledge about the drug

target. The scarcity of available 3D structural information on

GPCRs and other membrane-bound proteins thus does not limit

the GNN concept. The novelty of our approach lies in the

topology preserving network structure that mimics the peptide

chain and in that the learning takes place in the weights of the cells

Table 1. Sequences and bioassay data of the five best peptides from each cycle.

optimization cycle peptide sequence activity: EC50 6SD [nM] stability: t1/2 6SD [min]

0 YFPGNFAFS 9.9664.42 1662

0 YLPGQFfFS 0.7760.37 2463

0 YFPGQYAFF 1.8960.90 2668

0 YFPGQFAFG 0.7960.54 1361

0 YFPGHFAFS 6.6362.91 1764

1 FLPGQYAFS 2.7560.14 2861

1 YLPGQYAFL 5.7562.56 2764

1 YLPGQFAFs 1.7260.32 3160

1 YVPGQFAFf 4.1762.31 42619

1 yLPGQYAFF 9.2363.68 135639

2 fLPGQYAFf 8.2063.96 1157641

2 YLPGQYAFf 0.2160.22 3664

2 YLPGQYAFs 0.4060.23 2262

2 yLPGQYAFS 3.6262.91 7765

2 YRPGQYAFs 8.6265.01 2164

3 YLPaQYAFs 4.4263.41 110626

3 YLPGQYwFf 3.2461.02 159656

3 YLPqQYAFf 4.2461.87 87619

3 yLPsQYAFf 0.4960.13 16936291

3 yLPsQYAFs 2.9061.34 1408685

chemerin-9 YFPGQFAFS 1.2961.54 2466

Peptides from the initial population are designated as from cycle 0. In the peptide sequences, wild type amino acids are given in standard font. Exchange by a different
L amino acid is represented by a character in bold, D isomers are in addition indicated by lower-case letters. Activities are intracellular calcium mobilization data given as
mean of three independent experiments 6 standard deviation. Stabilities are peptide half life data from an HPLC assay, given as mean of three independent
experiments 6 standard deviation. Data in bold indicate the best peptide in this study, showing approximately 70fold higher stability and 2.5fold higher potency than
the wild-type peptide chemerin-9.
doi:10.1371/journal.pone.0036948.t001
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that correspond to the amino acids of the peptide. With the

adapted cells, we are able to assemble new virtual peptides and the

resulting GNNs define the fitness function in a genetic algorithm

that is used to search for new peptides.

The feasibility of this approach was demonstrated in the

construction and optimization of CMKLR1 ligands in an iterative

process of three design cycles of computer-assisted optimization

with respect to the biological activity and metabolic stability of the

peptides. Every round of optimization included synthesis of

candidate molecules, characterization of these peptides in bio-

activity and stability assay, and algorithmic processing of the data

to generate or improve the GNN that links compound structure

and molecular properties. This in turn generates a new set of

peptide sequences. Starting from an initial set of randomly chosen

chemerin-9 variants, a multiparameter optimization was carried

out in three molecular design cycles. We investigated 9-mer

peptides from an alphabet consisting of the 20 natural proteino-

genic amino acids and 15 D-amino acids. Synthesis and

experimental fitness determination of less than 160 different

compounds from the resulting virtual combinatorial library of

more than 7.861013 peptide nonamers were necessary to achieve

this goal. Our GNN strategy together with the GA-based

exploration of the combinatorial peptide space is the core concept

of a novel peptide optimization process in drug discovery. It allows

one to efficiently screen the huge chemical space generated by the

combinatorial explosion of possible virtual peptide sequences. For

the first time, artificial neural networks were used to substantially

improve the properties of a peptide receptor ligand.

Various types of artificial neural networks have been utilized to

enhance structure-function optimization with many different

Figure 3. As peptide sequences evolve, metabolic stability of the peptides improves while their biological activity is retained.
Upper panel (A+B): depiction of EC50 values of the receptor activating potency (A) and of the metabolic stability (B, = t1/2) for the three GNN-based
optimization rounds. Both graphs show all the peptides from a given round, sorted according to their activity in the parameter on the y axis. With
receptor activity, low EC50 values are favorable, while in the stability parameter t1/2, high values are to be achieved. Lower panel (C): Peptide sequence
comparisons by multiple alignments illustrate the evolution over the different steps of the process. Four sets of alignments represent the start
population ( = input) and three optimization rounds.
doi:10.1371/journal.pone.0036948.g003

Figure 4. Stability and activity of chemerin peptides improve over three cycles. Upper panel: The complete data set from three
optimization rounds is shown, each dot representing one peptide and its properties. The trend points to the upper left part of the diagram, i.e.
peptides that combine high receptor activity ( = low EC50) with high metabolic stability. Lower panel: separate representations of the data from all
three rounds. While in the first round, the majority of data points is found in the lower right quadrant with poor stability and activity, in cycles 2 and 3
the data cloud is shifted towards the upper left, representing improved activity and stability. Quality is a measure of the likelihood of observing the
substitutions in a particular column of the alignment [62].
doi:10.1371/journal.pone.0036948.g004
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molecular entities [25,54]. Schneider et al. [34] have pioneered

the artificial neural network design of peptides, identifying novel

sequences that block anti-b1-adrenoreceptor autoantibodies.

Starting from a single seed peptide, these authors trained their

neural networks on sequence-activity relationships to generate de

novo peptide sequences with considerable biological activity. In

contrast, the peptides with the most favorable properties from our

study still retain a common sequence pattern with wild-type

chemerin-9; P3, Q5, A7, F8 are present in the two best peptides. In

addition, Y1 is changed to a D-amino acid and F2 and F6 are

conservatively exchanged for L or Y. Even among peptides with

lower stability but retained high activity, few variations from the

native YFPGQFAFS sequence of chemerin-9 occur.

Riester et al. (21) organize their optimization process in design

cycles starting with a randomly chosen set of molecules. They run

a GA on the sequence level that has been tailored to meet the

demands of de novo drug design (small training sets, fast

convergence, and few design cycles). In contrast to this approach,

we run a GA on the building blocks of a GNN model that was

designed to cover possible interactions between distant amino

acids. In this way, the GNN approach is much more adaptive than

a static sequence based GA because it translates chemical structure

directly into the topology of a learning machine. The past years

have seen a steady increase of reports on the role of chemerin in

a variety of physiological processes as well as in disease conditions,

ranging from inflammation to diabetes, obesity and hypertension

(for a review, see [55]). Still, the exact role of chemerin in these

disorders remains to be elucidated and further research is required

to determine the significance of high serum levels in corresponding

patients. However, new data on disease pathology will potentially

unravel novel therapeutic approaches that may involve stable

analogs derived from the short active peptide chemerin-9.

Shimamura et al. [56] have recently reported a different

approach to generate stabilized chemerin-9 variants. They

substituted amino acid positions at predicted protease cleavage

sites and analyzed the effect of these modifications by HPLC and

mass spectrometry. Using the same readouts as in this study (Ca2+

mobilization and serum stability assay), the authors were able to

create a chemerin-9 variant with a reported half-life of .240 min.

The peptide contains one non-natural building block and three

more D-amino acids and has an EC50 in the Ca2+ mobilization

assay of 22 nM. While the peptide from our own study showed

a half-life of nearly 1700 minutes, the utility of this molecule for in

vivo use still needs to be demonstrated by an in vivo pharmaco-

kinetic study. However, the prolongation of the peptides’

metabolic stability in serum by a factor of 70 appears to be a very

promising starting point for the translation of this molecule into

a therapeutic entity.

Materials and Methods

Neural Network Designs
The building blocks of a GNN are the elementary cells that are

in silico representations of the amino acids in the peptide. An

elementary cell has a weight vector containing an internal weight

and weights that control the interactions with neighboring cells.

The elementary cells are connected to form a chain with one-to-

one correspondence between the amino acids that build the

peptide and the cells in the network. The internal weight of the cell

is w, the inputs from the neighboring cells are connected with the

weights v{N,:::,N and the feedback is controlled by v0. The

weights are combined in the weight vector ~vv. The translation of

a peptide sequence into a GNN is based on the one-to-one

correspondence between the amino acids of the peptide and the

elementary cells of the GNN. The GNN is iterated several times

which governs the system dynamics. The number of iterations T is

set to be the average length of the sequences under investigation.

The state of the i-th GNN cell yti evolves for iterations t = 0,…,T-1
according to:

xtz1
i ~winternalz~yyt~vv

ytz1
i ~ tanh xtz1

i

� �

The output of the GNN is the average of the internal states after T

iterations.

Training GNN Models
Training a GNN is put to effect by minimizing the training

error with respect to the network weights based on stochastic

gradient descent. The true gradient is approximated by the

gradient of the loss function which is evaluated on single training

samples. The network weights are adjusted by an amount

proportional to this approximate gradient. A training sample

consists of two parts: The first part is the peptide sequence~SSi that is

a composition of the M possible amino acids taken from the

alphabet. The second part is the measured activity ai that could be

a continuous value or a class label. We assume to have a collection

of K training samples (~SSi,ai)i~1,...,K and the weight vectors ~vvj of

the individual cells in the network that correspond to the M
different amino acids in the alphabet are organized in the weight

vector V~ ~vv1,...,~vvMð Þ: Let f ~SS1,V
� �

denote the output of the

GNN for a given sequence ~SSi with respect to the network weights

V This output value has to be compared to the training label ai by

means of a loss function l :ð Þ:The loss function measures the

deviation of the network output from the desired value ai. The

training error E Vð Þis simply the loss averaged over the entire

training set

E Vð Þ~
PK

i~1 l f ~SS1,V
� �

{a1

� �
:

Training the network means minimizing the training error with

respect to the network weights Vbased on stochastic gradient

descend. The stochastic gradient descent performs a series of very

small consecutive steps, determining the direction of each step

from the gradient of an individual error term of the form

d

dV
l f ~SS1,V

� �
{a1

� �h i
:

After each step, the new weights V are re–inserted into the loss

function before the next gradient is computed. This defines an

update rule for the weights of the form:

Vi~Vi{1{DVi

with i = 1,…,K wherein K is the number of training samples. The

update DVi depends on the i-th training sample only and is given

by
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DV1~m
d

dV
l f ~SS1,V

� �
{a1
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We calculate the update DVi with the standard error back-

propagation technique as it is used for the common feed-forward

multilayer neural network. Details of the training procedure are

described in Wichard et al. [39]. The parameter m controls the

step size of the gradient descend. The initial step size is already

small (around m=0.01) and it is decreased after each training

epoch with a constant factor. This is necessary to achieve a slow

convergence of the weights. Note that in each training step only

a few selected values of the entire weight vector V are adjusted,

namely the ones that correspond to amino acids that appear in the

sequence of the training sample.

In order to build models with good generalization abilities we

applied two common techniques: Normalization and ensemble

building. For normalization we added a small weight decay term

to the loss function that penalizes large weights in the network and

causes the insignificant weights to converge to zero [57].

Ensemble building is a well established method that can

improve model generalization. In general, neural network

ensembles perform better in terms of generalization than single

models would do [58,58,59]. For ensemble building, we followed

a cross-validation strategy: An ensemble of GNNs consists of

several single models that are trained on randomly chosen subsets

of the data with random weight initializations. This ensures the

diversity of the resulting models which is the key issue in ensemble

building. The validation data consists of data points that were hold

out from the training. Only GNN models that perform well on the

validation data are used for the final ensemble. To compute the

ensemble-output for one input sequence, the output variables of all

GNN belonging to the ensemble are averaged. More details of the

GNN training procedure were described in [53].

GNN Models as Fitness Function in a Genetic Algorithm
The main objective in building a GNN model is to recover the

fundamental characteristics of the structure activity relation. The

adapted cells of a fully trained GNN model work as building blocks

of new peptides which are generated by rearranging the order of

the cells and calculating the output of the network. This defines the

fitness function in a genetic algorithm (GA) that is generating new

suggestions for peptide synthesis based on the learned structure

activity relation. The GA performs adaptation by identifying and

recombining schemata, i.e. substrings with above average fitness,

following the building block theory introduced by Holland [60].

We perform mutation and 2-point crossover on the sequence level.

The start population consists of 2000 randomly generated peptide

sequences and evolves over 5000 generations with ‘elitist selection’,

i.e. keeping the best performing individuals of the population

unchanged.

Peptide synthesis and analytics
All peptides were synthesized by peptides&elephants GmbH

(Potsdam, Germany) in 2 mmol scale on a LIPSH 96 peptide

synthesizer. Synthesis was carried out in resin-preloaded MultiPep

96H microtiter plates (peptides&elephants GmbH, Potsdam,

Germany) using Fmoc chemistry on Rink amide AM resin or N-

biotinyl-NFmoc-ethylenediamine-MPB AM resin (Merck Bios-

ciences AG, Darmstadt, Germany). All solvents were of reagent or

HPLC grade and were bought from Carl Roth GmbH (Karlsruhe,

Germany). Temporary Fmoc protection groups were removed by

treatment with 20% piperidine v/v in dimethyl formamide. Amino

acid coupling was done with 4 equiv activated amino acid solution

(0.2 M in N-methyl pyrrolidone). Permanent protection groups

were removed and peptides were released from the resin by

treatment with 90% TFA, 5% triisopropyl silane, 2.5% DTT, and

2.5% HPLC-water v/v. Peptides were lyophilized, redissolved in

TFA, and precipitated by the addition of ice-cold hexane-

diethylether solution (50/50). All peptides were analyzed by MS

(Finnigan Surveyor MSQ Plus, Thermo Finnigan, Bremen,

Germany) to confirm the presence of the correct molecular mass.

For each library synthesized, at least 10 % of the peptides were

analyzed for purity using HPLC. Mean purities of the nonamer

synthesis raw products used in the assays ranged from 78 to 93 %.

Cell Culture and Transfection
HEK293A-cells (Invitrogen) were grown in RPMI 1640

medium buffered with 2.0 g/l NaHCO3 (Biochrom AG) supple-

mented with 10% FCS, 2 mM L-glutamine, penicillin-streptomy-

cin (100 IU/mL; 100 mg/mL) at 37uC in a humidified 5% CO2

incubator. Cells were split into poly-D-lysine coated black-wall 96-

well black well/clear bottom plate (BD Falcon) at a density of

5*104 cells/well and cultured for an additional period of 18- to 24-

h. Afterwards, cells stable expressing human Ga15 were transfected

with human CMKLR1 pcDNA3.1 (Missouri S&T cDNA Re-

source Center) construct using the jetPEI (peqlab) transfection

reagent according to the supplier’s protocol. Two days after

transfection, cells were selected in RPMI 1640 medium buffered

with 2.0 g/L NaHCO3 (Biochrom AG), supplemented with 10%

fetal calf serum, 2 mM L-glutamine, penicillin-streptomycin

(100 IU/mL–100 mg/mL), 150 mg/mL zeocin and 300 mg/mL

G418 for a period of 4 weeks (37uC, 5% CO2, 95% relative

humidity). Functional expression of human Ga15 and CMKLR1 in

cells was verified in a CellLux assay recording CMKLR1 / Ga15

mediated intracellular Ca2+ release upon receptor activation with

chemerin-9, as described below.

Ca++ Imaging
HEK293A cells (Invitrogen) expressing CMKLR1 and Ga15

were seeded at 5*104 cells/well in a poly-D-lysine coated 96-well

black well/clear bottom plate (BD Falcon) and cultured overnight.

From eighteen to twenty-four hours later, cells were loaded with

FLUO4-AM (Invitrogen). Then the cells were washed two times

with C1 solution (130 mM NaCl, 5 mM KCl, 10 mM HEPES pH

7.4, 2 mM CaCl2, and 10 mM Glucose). After the final wash,

a 100 mL of residual volume remained on the cells. Peptides were

dissolved in 10% DMSO to a concentration of 1 mM and were

diluted in C1 solution with 0.1% BSA. They were aliquoted as 2x

solutions in 96-well plates and were simultaneously transferred by

the robotic system within the imager from the ligand plate to the

cell plate. Fluorescence was recorded simultaneously in all wells

using an imaging plate reader CellLux (PerkinElmer) at an

excitation wavelength of 488 nm and emission wavelength of

510 nm at 1.5 s intervals over a period of 4 min. Fluorescence

data was generated in duplicate and experiments were repeated

for at least three times. We tested all compounds at eleven different

concentrations over a range of 5 orders of magnitude. For the

calculation of concentration-response curves, signals of two wells

receiving the same concentration of test substances were averaged

and the fluorescence changes of corresponding buffer C1 wells

were subtracted. Signals were normalized to background fluores-

cence. For the calculation of EC50 values, plots of amplitude versus

concentrations were prepared in SigmaPlot 11. By nonlinear

regression of the plots we were able to calculate the EC50 of

agonist-receptor interaction.
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In Vitro Peptide Stability in Serum/Reaction Kinetics
In vitro peptide stability assays were carried out as previously

described from [61]. Briefly, 500 mL of RPMI supplemented with

25% (v/v) of human serum are allocated into a 1.5 mL Eppendorf

tube and temperature-equilibrated at 3761uC for 15 min before

adding peptide stock solution to make a final peptide concentra-

tion of 50 mg/mL. Dilution of the serum will result in the

proteolytic enzymes being the limiting factor and enable a linear

degradation of the peptides over time. The initial time is recorded,

and at known time intervals 50 mL of the reaction solution is

removed and added to 100 mL of 6% aqueous trichloroacetic acid

(TCA) for precipitation of serum proteins. The cloudy reaction

sample is cooled on ice for 15 min and then spun at 18,000 g
(Eppendorf centrifuge) for 2 min to pellet the precipitated serum

proteins. The reaction supernatant is then analyzed using RP-

HPLC (Agilent 1200 LC System) on a ZORBAX Eclipse XDB-

C18, 4.66150 mm, 5 mm column (Agilent). A linear gradient from

25% to 80% acetonitrile, is used over 15 min with a flow rate of

1 mL/min at 30uC. Absorbance is detected at 214 nm and

280 nm. Fluorescence is detected at an excitation wavelength of

280 nm and emission wavelength of 340 nm. Kinetic analysis was

carried out by least-squares analysis of the logarithm of the

integration peak area versus time.

Sequence analysis
Multiple alignments of peptide sequences and their graphic

representation were generated using the Jalview software package

V2.6.1 [62].

Supporting Information

Table S1 This table provides a complete list of all peptides used

in this study along with their sequence and bioassay data. All

peptides in the start population were amidated variants (indicated

by -NH2 at the end of the sequence). The table also states the

biological activity or potency in the Ca++ mobilizations assay

(EC50), the maximum response in this assay, and the biological half

life in human serum (tK). These data all result from at least three

independent experiments done in duplicate, variation is given as

standard deviation (SD).
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