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ABSTRACT This work describes the complete genome sequence of the virulent
myophage LL12. The 136-kb LL12 genome is related to coliphage V5 and is a com-
ponent in the prebiotic PreforPro. LL12 was isolated against enterotoxigenic Esche-
richia coli, which causes traveler’s diarrhea.

nterotoxigenic Escherichia coli (ETEC) strains can be distinguished from other E. coli

pathotypes by the presence of enterotoxins which induce traveler’s diarrhea (TD),
which is characterized by mild to severe watery diarrhea (1). Typically, TD self-resolves
or may be treated with antibiotics, but due to the increase in the emergence of
antibiotic resistance, alternative treatment approaches, such as phage therapy, have
been suggested (2).

Phage LL12 was isolated from a municipal water treatment plant in College Station,
TX, by growing a deidentified clinical ETEC isolate in the wastewater sample supple-
mented with LB broth (Difco) at 37°C with aeration. Upon isolation, LL12 was propa-
gated using a nonpathogenic E. coli K-12 strain, DH5-alpha, by the soft-agar overlay
method (3). Phage DNA was purified using a modified Wizard DNA purification kit
(Promega) as described previously (4). Phage LL12 DNA was prepared for sequencing
as part of a pooled indexed DNA library using the lllumina TruSeq nano low-throughput
(LT) kit and sequenced by an lllumina HiSeq 2500 instrument as unpaired 100-base pair
reads by sequencing by synthesis (SBS) V2 chemistry; 17,009,166 raw reads generated
were quality controlled by FastQC (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) and assembled with Velvet 1.1 (5) into a single contig at 28.3-fold coverage. The
contig was closed based on its circular assembly which produced an identical sequence
at each end of the contig. Structural annotation was conducted using GLIMMER 3.0 (6)
and MetaGeneAnnotator 1.0 (7), with tRNAs predicted by ARAGORN 2.36 (8); gene
functions were predicted by InterProScan 5.15-54.0 (9), the NCBI Conserved Domains
Database (10), TMHMM 2.0 (http://www.cbs.dtu.dk/services/TMHMM), BLASTp 2.2.8
(11), and HHpred 2.1 (12). Genome annotation was conducted using the Phage Galaxy
(13) and WebApollo (14) instances hosted by the Center for Phage Technology (https://
cpt.tamu.edu/), and all analyses were conducted using default parameters. Phages were
imaged by transmission electron microscopy at the Texas A&M Microscopy and Imag-
ing Center as previously described (15, 16).

The myophage LL12 has a genome of 136,026 bp, with a G+C content of 43.6%. It
contains 213 predicted protein-coding genes and 7 tRNAs. Based on BLASTp (E value,
=107%), LL12 is most closely related to V5-like myophages, including rV5 (GenBank
accession no. NC_011041; 206 shared proteins) and ¢APCEc02 (KR698074; 204 shared
proteins). LL12 is also related to the phage phi92 (NC_023693), with 48 common
proteins. An analysis of the Illumina reads by PhageTerm (17) suggests the presence of
a nonpermuted terminal redundancy of 459 bp spanning bases 104,966 to 105,424 in
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the genome sequence as deposited. This predicted terminal repeat is located in a
noncoding region between two convergent transcripts. Fifty LL12-encoded proteins
could be assigned putative functions, including the capsid protein (gp59), portal
protein (gp63), and large terminase subunit (gp64). The components for tail morpho-
genesis, including baseplate (gp35) and multiple predicted tail fiber proteins (gp27,
gp29, gp32, gp33, gp36, gp4l, and gp42), were identified. The genes encoding the
large terminase subunit (gp64) and DNA polymerase (gp212) are disrupted by pre-
dicted intron sequences. The genes responsible for phage lysis, including the phage
endolysin (gp90), i-spanin (gp66), and o-spanin (gp65), were identifiable, but the phage
holin could not be positively identified.

Data availability. The annotated phage genome sequence is deposited in NCBI

GenBank under accession no. MH491969. Associated BioProject, SRA, and BioSample
accession numbers are PRINA222858, SRR9113738, and SAMN11840293, respectively.
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