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WILEY

An integrative pan-cancer analysis of the molecular and
biological features of glycosyltransferases

Dear Editor,

Glycosyltransferases (GTs) played important roles in
cancer development and progression."” Here, we con-
ducted a pan-cancer analysis of GTs (Supporting infor-
mation Table S1)? based on the TCGA data, CCLE data,
single-cell RNA sequencing datasets and our proteoge-
nomic resource, aiming to characterize the molecular fea-
tures, biological functions and clinical implications of GTs
across cancer types.

The overall mutation frequency of GTs was relatively
low (0.0-11.6%). Cancer types with higher global muta-
tion burdens exhibited higher mutation frequencies of
GTs. The highest mutation frequencies were observed in
UCEC (ALG13, 11.6%), SKCM (FUT9, 10.6%) and SKCM
(GALNT13, 10.6%) (Figure 1A, Supporting information
Figure S1A and Table S2). Survival analysis revealed that
the UGGT2 mutation in COAD was linked to worse clinical
outcomes, while the ALG13 mutation in UCEC was associ-
ated with better survival (Figure 1B). Furthermore, COAD
patients with UGGT2 mutation showed enrichment of
chronic inflammatory response, while UCEC patients with
ALGI13 mutation showed downregulation of response to
cAMP (Figure 1C). Analysis of CCLE drug sensitivity
showed colon cancer cell lines with UGGT2 mutation were
resistant to EGFR inhibitors (Erlotinib and Lapatinib), and
endometrial cancer cell lines with ALG13 mutation were
sensitive to Panobinostat and Sorafenib (Figure 1D and
Supporting information Figure S1B). It was worth noting
that ALG1/2/11/14 were essential in cell survival across
various cancer cell lines (Figure 1E). Widespread copy-
number variations (CNVs) of GTs were found across can-
cer types (Figure 1F, Supporting information Figure S2 and
Table S3). In addition, mutation status and CNVs of GTs
in cancer cell lines of CCLE displayed a similar pattern

to the TCGA pan-cancer cohort (Supporting information
Figure S3).

Widespread gene expression changes of GTs in tumors
were observed (Figure 2A, Supporting information
Figures S4, SSA and Table S4), among them, three GTs
displayed consistent expression alterations in 16 cancer
types, including upregulation of ALG3, and downreg-
ulation of B3GALT2 and ST6GALNAC3 (Figure 2B).
Functional analyses of these three GTs showed a strong
similarity in biological functions across cancer types
(Figure 2C). In addition, the expression of GTs was tightly
associated with patients’ prognosis (Figure 2A, Supporting
information Figure S5B and Table S5). For example,
decreased expression of GYS2 conveyed poor prognosis
in LIHC (Figure 2D), which was consistent with previous
findings that GYS2 could inhibit tumor growth via a
negative feedback loop with p53.* In LUAD, B3GNT3 and
GALNTI14 were aberrantly expressed and associated with
overall survival in different LUAD cohorts (Supporting
information Figure S6). The prognostic significance of
GTs was also evaluated in two external cohorts of patients
receiving immune checkpoint inhibitors,”® and higher
expression of B3GNT4 indicated worse clinical outcomes
in both cohorts (Supporting information Figure S7).

The pan-cancer GT-pathway interaction (Figure 2E to
G and Supporting information Table S6) and GT-protein
interaction networks (Supporting information Figures S8
to S10 and Table S7) were constructed, respectively. Sim-
ilar functions were enriched, such as immune response
and signal transduction, suggesting the cross-talk between
GTs and interacting proteins synergistically contributed to
the biological alterations in cancer. In the interaction net-
work, FBXO6 was the most common interacted protein,
especially associated with KDELC2 and higher expression
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Genetic features of GTs across the pan-cancer cohort. (A) Mutations of GTs across 33 cancer types. GTs with mutation
frequency >5% are highlighted as asterisks, and a total of 41 GTs had more than 5.0% of mutation frequencies across the pan-cancer cohort.
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of KDELC2 and FBXO6 collectively contributed to the poor
prognosis in LGG (Supporting information Figure S9). Fur-
ther correlation analysis between GTs and tumor microen-
vironment (TME) was performed (Figure 3A). MFNG
was significantly positively related to activated CD8* T
cells compared with other GTs, especially in LUAD and
SKCM (Figure 3B and C), and higher expression of MFNG
indeed conveyed better prognosis in LUAD and SKCM
(Figure 3D). For melanoma patients treated with PD-1
blockade,® elevated MFNG also indicated a satisfactory
prognosis (Figure 3E). Furthermore, MFNG was found to
be mainly expressed in CX3CR1" cytotoxic T cells based
on two single-cell RNA sequencing datasets”® (Figure 3F
and G). Considering previous studies,” our findings of the
expression of MFNG in CX3CRI1* cytotoxic T cells sug-
gested that MFNG may be critically important in main-
taining the function of this subset of CD8* T cells. In addi-
tion to LUAD and SKCM, GTs correlating with the prog-
nosis of patients in CD8% T cell-enriched tumors were
observed in other 26 types of cancers (Supporting informa-
tion Table S8).

A scoring tool (GTscore) was established using the
expression of GTs and this score could reflect the tumor
proliferation-related activities, and predict the prognosis
and treatment benefits of patients receiving immunother-
apy (Supporting information Figure S11A and Table S9). In
16 cancer types, GTscore was associated with the progno-
sis of patients (Supporting information Figure S11B), and
for immunotherapy cohort, patients with high GTscore
displayed poorer prognosis and therapeutic disadvan-
tages (Supporting information Figure S11C and D). High
GTscore group showed higher levels of proliferation-
related activities, such as angiogenesis, EMT and hypoxia
(Supporting information Figure S12).

The proliferation subgroup was an attractive clustering
part of LTHC in our previous study.'” Here, GTs were found
to be significantly correlated with proliferation-related
activities in LIHC (Figure 4A). Unsupervised consensus
clustering based on the expression profiling of GTs could
identify two clusters of LIHC patients, which showed dif-
ferent clinical outcomes and TME features (Figure 4B
to D and Supporting information Figures S13 and S14).
According to our proteogenomic resource of LIHC (CHCC-
HBV),'” GTs that contributed to different prognosis of
patients were further analyzed. Among them, three GTs
(GALNT4, MGATS5 and UGGT?2) displayed prognosis rel-
evance at protein level (Figure 4E and F). In addition,
we found that the three GTs were highly expressed in
the proliferation subtype (Figure 4G), therefore, accord-
ing to this observation, these three GTs were chosen for
further Tissue microarray (TMA) validation and cell-based
assays. The TMA comprising 154 cases showed patients
with high MGAT5 or UGGT2 expression, indeed had
shorter overall survival than patients with low expression
(Figure 4H and I). Further analysis on the interacting pro-
teins revealed that the expression of MGAT5 was corre-
lated with ISLR, and the expression of UGGT2 was corre-
lated with APP (Supporting information Figure S15). Tran-
swell and CCK-8 assays confirmed that downregulation of
GALNT4, MGATS5 or UGGT2 could inhibit the migration
and proliferation of LIHC cell lines (Figure 4J and K and
Supporting information Figure S16).

Further validation of the biological implications of aber-
rantly expressed GTs, discovery of the common substrate of
GTs and deciphering the site-specific function of this sub-
strate are necessary, and would provide vital clues for the
diagnosis or treatment of cancers via targeting specific gly-
cosylation.

The horizontal bar on the top indicates the total number of mutations of each GT across cancer types. The vertical bar on the left indicates the
total number of mutations of all GTs in each cancer. The top three mutated GTs are highlighted in red. Cancer types with higher global
mutation burdens, such as UCEC, COAD and STAD, exhibited higher mutation frequencies of GTs. (B) Survival analysis of patients with or
without UGGT2/ALG13 mutations in COAD/UCEC. (C) GSEA (GO biological process) analysis of patients with UGGT2/ALG13 mutation in
COAD/UCEC (adjusted p < 0.05). COAD patients with UGGT2 mutation showed enrichment of chronic inflammatory response, DNA
replication, and neutrophil migration, while UCEC patients with ALG13 mutation showed downregulation of response to cAMP, glutamate
signaling, and microtubule bundle formation. (D) Drug sensitivity comparison between mutation and wild type groups of UGGT2/ALG13 in
COAD/UCEC cell lines. Drug sensitivity is measured using an activity area, with a higher number indicating higher sensitivity. (E)
Essentiality of GTs in cell survival. (F) The CNVs landscape of GTs across cancer types. The differences between the CNV gain frequency and
the CNV loss frequency of each GT in each cancer were calculated, and a GT CNV-gain-dominant as the difference value should be

greater than 0.5 or CNV-loss-dominant as the difference value less than —0.5. DPY19L4, ST3GALL1, EXT1, HAS2, and POFUT!1 exhibited
widespread CNV gains in nearly half of the cancer types. In contrast, ST8SIA3, STT3B, EOGT, GXYLT2, and GLT8D1 displayed prevalent
CNV losses
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FIGURE 2 Expression features of GTs and GT-pathway interaction landscape. (A) The proportion of GTs that were aberrantly expressed

(left panel, adjusted p < 0.05), as well as the proportion of GTs that were significantly associated with patients’ prognosis in different cancer

types (right panel, risky GTs were defined as the hazard ratios greater than 1, while protective GTs were defined as the hazard ratios lesser
than 1). In total, 39% of GTs were identified as risk factors in LGG, followed by KIRC, with 30% of GTs being associated with worse overall
survival (OS). KIRC and UCEC ranked the top in terms of the proportions of GTs that were identified as protective factors. (B) Three GTs
(ALG3, B3GALT?2, and ST6GALNAC3) showed consistent expression alterations across 16 cancers (adjusted p < 0.05). (C) GSEA analysis of
ALG3, B3GALT2, and ST6GALNACS3 (adjusted p < 0.05) in 16 cancer types. The red color represents that the GT is significantly associated
with this pathway in a given cancer type, and deeper red (higher enrichment score) indicates stronger associations. The white color indicates

that this GT is not associated with the pathway in this cancer type. Specifically, the expression change of ALG13 was associated with ribosome
in 15 cancer types. BSGALT2 was related to cell interaction and immune-related pathways. ST6GALNAC3 was linked with calcium pathway
and cell adhesion. (D) GTs with both changed expression (ILog, fold-changel > 2) and OS relevance. (E) Distribution of GT-relevant pathways
across different pathway categories. (F) The number of GTs versus the number of pathways in different cancer types. Stronger impacts of GTs
on cancer-relevant pathways occurred in LGG, GBM, UCEC, KIRC, PRAD, and LIHC. (G) Top 30 GTs-related biological pathways across
cancer types. The right column annotates the pathways categories. The left bar represents the total number of GTs involved in each pathway

across different cancer types. Immune-related pathways, such as chemokine signaling pathway, cytokine-cytokine receptor interaction,
leukocyte transendothelial migration, antigen processing and presentation, as well as PD-L1 expression and PD-1 checkpoint pathway, were

associated with GTs in various cancer types
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FIGURE 3

Identification of the association between MFNG and CD8" T cell. (A) Proportions of GTs that were positively (left) or

negatively (right) correlated with TME components across cancer types (p < 0.05). (B) Word cloud plot showing MFNG was significantly
associated with activated CD8* T cell. MFNG ranked the top in terms of the number of cancer types in which it was significantly positively
related to activated CD8" T cells. (C) Correlation analysis between MFNG and activated CD8" T cell in LUAD (left) and SKCM (right). (D)
Survival analysis of MFNG in LUAD (left) and SKCM (right). (E) Survival analysis of MFNG in melanoma patients with the intervention of
PD-1 blockade. (F) UMAP clustering of CD8" T cells in LUAD (upper) and SKCM (lower), 3175 CD8" T cells from LUAD and 1759 CD8* T
cells from SKCM. (G) Characteristic genes for each cluster (adjusted p < 0.05). In LUAD, MFNG is mainly expressed in cluster 7, while in
SKCM, MFNG is mainly expressed in cluster 6. Both of the two clusters expressed CX3CR1 and the markers of cytotoxic T cells, including
GZMA, GZMB, and GNLY, but they did not express the markers of exhausted T cells, such as PDCD1 and CTLA4, indicating the activation

status of these T cells
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FIGURE 4 Identification and validation of GALNT4, MGATS5, and UGGT2 in LIHC. (A) Correlation between TME components and
GTs that were significantly positively correlated with angiogenesis, EMT, hypoxia, and stromal cells in LIHC. (B) Two clusters were identified
based on the expression of GTs (*p < 0.05; **p < 0.01; ***p < 0.001). (C) Comparison of tumor microenvironment features between GTsCluster
1 and GTsCluster 2 (*p < 0.05; **p < 0.01; ***p < 0.001). GTsCluster 1 was enriched in angiogenesis, EMT, hypoxia and fibroblasts, while
GTsCluster 2 showed enrichment of CD8* T cells, eosinophils and y8T cells. (D) Survival difference between GTsCluster 1 and GTsCluster 2.
A prominent survival advantage was observed in GTsCluster 2. (E) Validation of GTs based on CHCC-HBV cohort. GTs at protein level that
were significantly associated with angiogenesis, EMT, hypoxia, and stromal cells in CHCC-HBV cohort were shown. (F) Protein expressions
of GALNT4, MAGTS5, and UGGT2 were associated with patients’ survival in CHCC-HBV cohort. (G) Protein abundance of GALNT4, MAGTS5,
and UGGT?2 in different subtypes. These three GTs were highly expressed in the proliferation subtype. (H) Survival analysis of GALNT4,
MGATS5, and UGGT2 and (I) typical IHC images based on TMAs. Scale bar: 200 um. (J) Cell migration abilities in different GALNT4, MGATS5,
and UGGT?2 expression groups using transwell assay. Scale bar: 100 um (**p < 0.01; ***p < 0.001). (K) Knockdown of GALNT4, MGATS5, and
UGGT?2 inhibited cell proliferation using CCK-8 assay (statistical values obtained at the 5th day, *p < 0.05; **p < 0.01; ***p < 0.001)
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