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Finite temperature quantum annealing solving
exponentially small gap problem with non-
monotonic success probability
Anurag Mishra 1,2, Tameem Albash1,2,3 & Daniel A. Lidar1,2,4,5

Closed-system quantum annealing is expected to sometimes fail spectacularly in solving

simple problems for which the gap becomes exponentially small in the problem size. Much

less is known about whether this gap scaling also impedes open-system quantum annealing.

Here, we study the performance of a quantum annealing processor in solving such a problem:

a ferromagnetic chain with sectors of alternating coupling strength that is classically trivial

but exhibits an exponentially decreasing gap in the sector size. The gap is several orders of

magnitude smaller than the device temperature. Contrary to the closed-system expectation,

the success probability rises for sufficiently large sector sizes. The success probability is

strongly correlated with the number of thermally accessible excited states at the critical

point. We demonstrate that this behavior is consistent with a quantum open-system

description that is unrelated to thermal relaxation, and is instead dominated by the system’s

properties at the critical point.
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Quantum annealing (QA)1–8, also known as the quantum
adiabatic algorithm9,10 or adiabatic quantum optimiza-
tion11,12 is a heuristic quantum algorithm for solving

combinatorial optimization problems. Starting from the ground
state of the initial Hamiltonian, typically a transverse field, the
algorithm relies on continuously deforming the Hamiltonian such
that the system reaches the final ground state—typically of a
longitudinal Ising model—thus solving the optimization problem.
In the closed-system setting, the adiabatic theorem of quantum
mechanics13 provides a guarantee that QA will find the final
ground state if the run-time is sufficiently large relative to the
inverse of the quantum ground state energy gap14,15. However,
this does not guarantee that QA will generally perform better
than classical optimization algorithms. In fact, it is well-known
that QA, implemented as a transverse field Ising model, can result
in dramatic slowdowns relative to classical algorithms even for
very simple optimization problems12,16–19. Generally, this is
attributed to the appearance of exponentially small gaps in such
problems20.

A case in point is the ferromagnetic Ising spin chain with
alternating coupling strength and open boundary conditions
studied by Reichardt12. The “alternating sectors chain” (ASC) of
length N spins is divided into equally sized sectors of size n of
“heavy” couplings W1 and “light” couplings W2, with W1 >W2 >
0. Since all the couplings are ferromagnetic, the problem is trivial
to solve by inspection: the two degenerate ground states are the
fully aligned states, with all spins pointing either up or down.
However, this simple problem poses a challenge for closed-system
QA since the transverse field Ising model exhibits an exponen-
tially small gap in the sector size n12, thus forcing the run-time to
be exponentially long in order to guarantee a constant success
probability. A related result is that QA performs exponentially
worse than its imaginary-time counterpart for disordered trans-
verse field Ising chains with open boundary conditions21, where
QA exhibits an infinite-randomness critical point22.

As a corollary, we may naively expect that for a fixed run-time,
the success probability will decrease exponentially and mono-
tonically with the sector size. While such a conclusion does not
follow logically from the adiabatic theorem, it is supported by the
well-studied Landau–Zener two-level problem23–25. How relevant
are such dire closed-system expectations for real-world devices?

By varying the sector size of the ASC problem on a physical
quantum annealer, we find a drastic departure from the above
expectations. Instead of a monotonically decreasing success
probability (at constant run-time), we observe that the success
probability starts to grow above a critical sector size n*, which
depends mildly on the chain parameters (W1, W2). We explain
this behavior in terms of a simple open-system model whose
salient feature is the number of thermally accessible states from
the instantaneous ground state at the quantum critical point. The
scaling of this “thermal density of states” is nonmonotonic with
the sector size and peaks at n*, thus strongly correlating with the
success probability of the quantum annealer. Our model then
explains the success probability behavior as arising pre-
dominantly from the number of thermally accessible excitations
from the ground state, and we support this model by adiabatic
master equation simulations. Our result does not imply that
open-system effects can lend an advantage to QA, and hence it is
different from proposed mechanisms for how open-system effects
can assist QA. For example, thermal relaxation is known to
provide one form of assistance to QA26–29, but our model does
not use thermal relaxation to increase the success probability
above n*. We note that Ref.28 introduced the idea that significant
mixing due to open-system effects (beyond relaxation) at an
anticrossing between the first excited and ground states could
provide an advantage, and its theoretical predictions were

supported by the experiments in Ref.30. In Ref.28, an analysis of
adiabatic Grover search was performed (a model which cannot be
experimentally implemented in a transverse field Ising model),
along with numerical simulations of random field Ising models.
In contrast, here we treat an analytically solvable model that is
also experimentally implementable using current quantum
annealing hardware. We also compare our empirical results to the
predictions of the classical spin-vector Monte Carlo (SVMC)
model31, and find that it does not adequately explain them. Our
study lends credence to the notion that the performance of real-
world QA devices can differ substantially from the scaling of the
quantum gap.

Result
The alternating sectors chain model. We consider the transverse
Ising model with a time-dependent Hamiltonian of the form:

H sð Þ ¼ �A sð Þ
XN
i¼1

σxi þ B sð ÞHASC; ð1Þ

where tf is the total annealing time, s= t/tf∈ [0, 1], and A(s) and
B(s) are the annealing schedules, monotonically decreasing and
increasing, respectively, satisfying B(0)= 0 and A(1)= 0. The
alternating sectors chain Hamiltonian is

HASC ¼ �
XN�1

i¼1

Jiσ
z
i σ

z
iþ1; ð2Þ

where for a given sector size n the couplings are given by

Ji ¼
W1 if i=nd eis odd
W2 otherwise

�
ð3Þ

Thus the b+ 1 odd-numbered sectors are “heavy” (Ji=W1),
and the b even-numbered sectors are “light” (Ji=W2) for a total
of 2bþ 1 ¼ N�1

n sectors. This is illustrated in Fig. 1.
We briefly summarize the intuitive argument of Ref.12 for the

failure of QA to efficiently solve the ASC problem. Consider the
N � 1 and n � 1 limit, where any given light or heavy sector
resembles a uniform transverse field Ising chain. Each such
transverse field Ising chain encounters a quantum phase
transition separating the disordered phase and the ordered phase
when the strength of the transverse field and the chain coupling
are equal, i.e., when A(s)= B(s)Ji32. Therefore, the heavy sectors
order independently before the light sectors during the anneal.
Since the transverse field generates only local spin flips, QA is
likely to get stuck in a local minimum with domain walls
(antiparallel spins resulting in unsatisfied couplings) in the
disordered (light) sectors, if tf is less than exponential in n. We
note that this mechanism, in which large local regions order
before the whole is well-known in disordered, geometrically local
optimization problems, giving rise to a Griffiths phase22.

This argument explains the behavior of a closed-system
quantum annealer operating in the adiabatic limit. To check its
experimental relevance, we next present the results of tests
performed with a physical quantum annealer operating at
nonzero temperature.

W1 W1 W1 W1 W1 W1W2 W2 W2

Fig. 1 Illustration of an alternating sector chain (ASC). This example has
sector size n= 3, length N= 10, and number of sectors 2b+ 1= 3. Red lines
denote the heavy sector with couplingW1, blue lines denote the light sector
with coupling W2 <W1
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Empirical results. As an instantiation of a physical quantum
annealer we used a D-Wave 2X (DW2X) processor. We consider
ASCs with sector size n∈ [2,20]. Since the number of sectors b=
(N− 1)/n must be an integer, the chain length varies slightly
with n. The minimum gap for these chains is below the
processor temperature. Additional details about the processor and
of our implementation of these chains are given in Section
Methods.

Figure 2a–c shows the empirical success probability results for
a fixed annealing time tf= 5 μs. Longer annealing times do not
change the qualitative behavior of the results, but do lead to
changes in the success probability (we provide these results in
Supplementary Note 7). A longer annealing time can result in
more thermal excitations near the minimum gap, but it may also
allow more time for ground state repopulation after the minimum
gap. The latter can be characterized in terms of a recombination
of fermionic excitations by a quantum-diffusion mediated
process33. Unfortunately, we cannot distinguish between these
two effects, as we only have access to their combined effect in the
final-time success probability.

In stark contrast to the theoretical closed-system expectation,
the success probability does not decrease monotonically with
sector size, but exhibits a minimum, after which it grows back to
close to its initial value. The decline as well as the initial rise are
exponential in n. Longer chains result in a lower PG and a more
pronounced minimum, but the position of the minimum depends
only weakly on the chain parameter values (W1,W2) (the value of
n* shifts to the right as (W1, W2) are increased) but not on N.

What might explain this behavior? Clearly, a purely gap-based
approach cannot suffice, since the gap shrinks exponentially in n
for the ASC problem12 [see also the inset of Fig. 2a]. However, for
all chain parameters we have studied, the temperature is greater
than the quantum minimum gap. In this setting not only the gap
matters, but also the number of accessible energy levels that fall
within the energy scale set by the temperature. In an open-system
description of quantum annealing26,34–38, both the Boltzmann
factor exp(−βΔ) (β denotes the inverse temperature and Δ is the
minimum gap) and the density of states determine the excitation
and relaxation rates out of and back to the ground state. As we
demonstrate next, the features of the DW2X success probability
results, specifically the exponential fall and rise with n, and the
position of the minimum, can be explained in terms of the
number of single-fermion states that lie within the temperature
energy scale at the critical point.

Fermionization. We can determine the spectrum of the quantum
Hamiltonian [Eq. (1)] by transforming the system into a system
of free fermions with fermionic raising and lowering operators ηyk
and ηk32,39. The result is12:

H sð Þ ¼ Eg sð Þ þ
XN
k¼1

λkðsÞηykηk; ð4Þ

where Eg(s) is the instantaneous ground state energy and {λk(s)}
are the single-fermion state energies, i.e., the eigenvalues of the
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Fig. 2 Empirical success probability vs. k* for the ASC problem on the DW2X processor. k* denotes the number of single-fermion energies that fall below
the thermal energy gap at the point of the minimum gap s*. The legend entries indicate the chain parameters: (W1, W2, N). The error bars everywhere
indicate 95% confidence intervals calculated using a bootstrap over different gauges and embeddings. a–c Contrary to closed-system theory expectations,
the success probability PG is nonmonotonic in the sector size n, first decreasing and then increasing, exponentially. Inset (a): the minimum gap (in GHz) of
the chains as a function of the sector size n∈{1,…,20}. The solid black line denotes the operating temperature energy scale of the DW2X. d–f For all chains
we studied the ground state success probability has a minimum at the sector size n*, where the peak in the number of single-fermion states k* occurs
[compare with (a–c)]. The rise and fall pattern, as well as the location of n*, are in agreement with the behavior of PG within the error bars. Inset (d): the
total number of energy eigenstates that fall below the thermal energy gap as a function of the sector size n. In this case the peak position does not agree
with the ground state success probability minimum
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linear system

Φk sð Þ A� Bð Þ Aþ Bð Þ ¼ λ2k sð ÞΦk sð Þ; ð5Þ

where the matrices A and B are tridiagonal and are given in
Supplementary Note 1 along with full details of the derivation.
The vacuum of the fermionic system j0i is defined by ηkj0i ¼ 08k
and is the ground state of the system. Higher energy states cor-
respond to single and many-particle fermionic excitations of the
vacuum. At the end of the anneal, fermionic excitations corre-
sponds to domain walls in the classical Ising chain (see Supple-
mentary Note 2).

The Ising problem is Z2-symmetric, so the ground state and
the first excited state of the quantum Hamiltonian merge toward
the end of evolution to form a doubly degenerate ground state.
Since any population in the instantaneous first excited state will
merge back with the ground state at the end of the evolution, the
relevant minimum gap of the problem is the gap between the
ground state and the second excited state: Δ(s)= λ2(s), which
occurs at the point s*= argmins∈[0,1]Δ(s). In the thermodynamic
limit, this point coincides with the quantum critical point, where
the geometric mean of the Ising fields balances the transverse
field, A s�ð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

W1W2
p

B s�ð Þ40,41. Henceforth, we write Δ≡ Δ(s*)
for the minimum gap.

Spectral analysis. Let k* be the number of single-fermion states
with energy smaller than the thermal gap at the critical point, i.e.,

k� ¼ argmaxk λk s�ð Þ<Tf g: ð6Þ

As can be seen by comparing Fig. 2d–f to Fig. 2a–c, we find
that the behavior of k* correlates strongly with the ground state
success probability for all ASC cases we tested, when we set T=
12 mK= 1.57 GHz, the operating temperature of the DW2X
processor (we use kB= ℏ= 1 units throughout). Specifically, k*

peaks exactly where the success probability is minimized, which
strongly suggests that k* is the relevant quantity explaining the
empirically observed quantum annealing success probability.
Longer chains result in a larger value of k* and a more
pronounced maximum. Of all the ASC sets we tried, we only
found a partial exception to this rule for the case (1, 0.5, and 200),
where k* peaks at n*= 5 [Fig. 2e], but the empirical success
probability for n= 5 and n= 6 is roughly the same [Fig. 2b]. We
show later that this exception can be resolved when the details of
the energy spectrum are taken into account via numerical
simulations.

In contrast, the total number of energy eigenstates (including
multifermion states) that lie within the thermal gap [Eg(s*),
Eg(s*)+ T], while rising and falling exponentially in n like the
empirical success probability in Fig. 2a, does not peak in
agreement with the peak position of the latter [see the inset of
Fig. 2d].

Why and how does the behavior of k* explain the value of n*?
Heuristically, we expect the success probability to behave as

PG � 1� e�βΔ

d
; ð7Þ

where d is the “thermal density of states” at the critical point s*.
Note that the role of the gap here is different from the closed-
system case, since we are assuming that thermal transitions
dominate over diabatic ones, so that the gap is compared to the
temperature rather than the annealing time. Contrast this with
the closed-system case, where the Landau–Zener formula for
closed two-level systems and Hamiltonians analytic in the time
parameter (subject to a variety of additional technical conditions)

states that: PG � 1� e�ηΔ2tf , where η is a constant with units of
time that depends on the parameters that quantify the behavior at
the avoided crossing (appearing in, e.g., the proof of Theorem 2.1
in Ref.25). Since then PG=O(ηΔ2tf), we expect the success
probability to decrease exponentially at constant run-time tf if the
gap shrinks exponentially in the system size.

Our key assumption is that the thermal transitions between
states differing by more than one fermion are negligible. That is,
thermal excitation (relaxation) only happens via creation
(annihilation) of one fermion at a time (see Supplementary
Note 3 for a detailed argument). Additionally, the Boltzmann
factor suppresses excitations that require energy exchange greater
than λk� . Starting from the ground state, all single-fermion states
with energy � Eg þ λk� are populated first, followed by all two-
fermion states with total energy � Eg þ λk� þ λk��1, etc. In all,
Pk�

k¼1
k�

k

� �
¼ 2k

� � 1 excited states are thermally populated in

this manner. Thus d � 2k
�
states are thermally accessible from

the ground state.
For a sufficiently small gap we have 1� e�βΔ � βΔ, so that

PG � βΔ=d. As can be seen from Fig. 2d–f, k* rises and falls
steeply for n < n* and n > n*, respectively. For the ASCs under
consideration, d varies much faster with n than the gap Δ (see
Fig. 3). Thus PG � 2�k� . This argument explains both the
observed minimum of PG at n* and the exponential drop and
rise of PG with n, in terms of the thermal density of states. In
Supplementary Note 4 we give a more detailed argument based
on transition rates obtained from the adiabatic master equation,
which we discuss next.

Master equation model. We now consider a simplified model of
the open-system dynamics in order to make numerical predic-
tions. We take the evolution of the populations p= {pa} in the
instantaneous energy eigenbasis of the system to be described by a
Pauli master equation42. The form of the Pauli master equation is
identical to that of the adiabatic Markovian quantum master
equation35, derived for a system of qubits weakly coupled to
independent identical bosonic baths. The master equation with an
Ohmic bosonic bath has been successfully applied to qualitatively
(and sometimes quantitatively) reproduce empirical D-Wave
data43–46. However, it does not account for 1/f noise47, which

0 5 10 15 20
10−8

10−7

10−6

10−5

10−4

10−3

10−2

n

Δ 
/ 2

k
∗

(1.0, 0.50, 175)

(0.5, 0.25, 175)

Fig. 3 Ratio of the gap to the thermal density of states, as a function of
sector size. Two alternating sector chain cases are shown. The position of
the minimum is determined by d rather than Δ, as can be seen by
comparing to Fig. 2d, where the plot of d ¼ 2k

�
alone correlates well with

the position of minima in the empirical success probability curves

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05239-9

4 NATURE COMMUNICATIONS |  (2018) 9:2917 | DOI: 10.1038/s41467-018-05239-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


may invalidate the weak coupling approximation when the energy
gap is smaller than the temperature48.

After taking diagonal matrix elements and restricting just to
the dissipative (non-Hermitian) part one obtains the Pauli master
equation42 describing the evolution of the population p= {pa} in
the instantaneous energy eigenbasis of the system:38

∂pa
∂t

¼
X
b≠a

γ ωbað ÞMabpb �
X
b≠a

γ ωabð ÞMbapa: ð8Þ

Here all quantities are time-dependent and the matrix elements
are

Mab sð Þ ¼
XN
α¼1

jha sð Þjσzαjb sð Þij2; ð9Þ

where we have assumed an independent thermal bath for each
qubit α and where the indices a and b run over the instantaneous
energy eigenstates of the system Hamiltonian [Eq. 4] in
the fermionic representation [i.e., HðsÞjaðsÞi ¼ EaðsÞjaðsÞi] and
ωab= Ea− Eb is the corresponding instantaneous Bohr fre-
quency. Since the basis we have written this equation in is
time-dependent, there are additional terms associated with the
changing basis35, but we ignore these terms here since we are
assuming that the system is dominated by the dissipative
dynamics associated with its interaction with its thermal
environment.

The rates γ(ω) satisfy the quantum detailed balance condi-
tion49,50, γ(−ω)= e−βωγ(ω), where ω ≥ 0. In our model each
qubit is coupled to an independent pure-dephasing bath with an
Ohmic power spectrum:

γ ωð Þ ¼ 2πηg2
ωe� ωj j=ωc

1� e�βω
; ð10Þ

with UV cutoff ωc= 8π GHz and the dimensionless coupling
constant ηg2= 1.2 × 10−4. The choice for the UV cutoff satisfies
the assumptions made in the derivation of the master equation in
the Lindblad form35. Note that we do not adjust any of the master
equation parameter values, which are taken from Ref.43. Details

about the numerical solution procedure are given in Section
Methods, and in Supplementary Note 5 we also confirm that the
validity conditions for the derivation of the master equation are
satisfied for a relevant range of n values given the parameters of
our empirical tests.

Numerically solving the master equation while accounting for
all thermally populated 2k

�
states is computationally prohibitive,

but we can partly verify our interpretation by restricting the
evolution of the system described in Eq. (8) to the vacuum and
single-fermion states. This is justified in Supplementary Note 3,
where we show that transitions between states differing by more
than a single fermion are negligible. In other words, the dominant
thermal transitions occur from the vacuum to the single-fermion
states, from the single-fermion states to the two-fermion states,
etc. The restriction to the vacuum and single-fermion states
further simplifies the master Eq. (8) to:

_p0 ¼
X
b

γ λbð ÞMbpb � p0
X
b

γ �λbð ÞMb ð11Þ

_pi ¼ γ �λið ÞMip0 � γ λið ÞMipi; ð12Þ

where pbf gNb¼1 are the single-particle fermion energy populations
and {λb} their energies found by solving Eq. (5), and Mab [Eq. (9)]
Mb ¼

PN
α¼1 h0jσzαjbi

�� ��2. For a better approximation that accounts
for more states, we can also perform a two-fermion calculation
where we keep the vacuum, the first k* one-fermion states and the
next k*(k*− 1)/2 two-fermion states. For two-fermion simula-
tions the master equation becomes Eqs. (11) and (12) along with

_pi ¼ γ �λið ÞMip0 � γ λið ÞMipi

þ
X
j≠i

γ λj

� �
Mjpij � pi

X
j≠i

γ �λið ÞMj
ð13Þ

_pij ¼ γ �λið ÞMipj þ γ �λj

� �
Mjpi � γ λið ÞMipij � γ λj

� �
Mjpij;

ð14Þ
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Fig. 4Master equation results for the state populations when restricting the excited states to single-fermion states. a The population in each single-fermion
state at t= tf in a one-fermion simulation. The chain parameters are N= 176, W1= 1, W2= 0.5, tf= 5 μs, and n= 5. With the annealing schedule given in
Methods, the quantum minimum gap is at s*= t*/tf≈ 0.424. At this point we find k*= 18 single-fermion states below the thermal energy T= 12 mK
(D-Wave processor operating temperature). As expected, in one-fermion simulations, most of the population is found in the first k* states. A long tail of
more energetic single-particle states beyond the first k* retain some population. b Evolution of the instantaneous ground state populations for ASCs with
the same parameters as in (a), but for different sector sizes n and with two-fermion states. The ground state loses the majority of its population as it
approaches the minimum gap point at t/tf= s*. The largest drop is found for n= n*= 5. Inset: magnification of the region around the minimum gap.
Relaxation plays essentially no role. Instead, the population freezes almost immediately
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where all summations run from 1 to k*, and pij denotes the
population in the two-particle fermion energy state ηyi η

y
j j0i.

We can now numerically solve this system of equations. As
seen in Fig. 4a, where we plot the final populations in the different
single-particle fermion states at t= tf for one-fermion simula-
tions, only the first k* single-fermion levels are appreciably
populated. This agrees with our aforementioned assumption that
states with energy greater than λk� are not thermally populated. In
Fig. 4b we plot the population in the instantaneous ground state
as a function of time for two-fermion simulations. The system
starts in the gapped phase where the ground state population is at
its chosen initial value of 1. The ground state rapidly loses
population via thermal excitation as the system approaches the
critical point, after which the population essentially freezes, with
repopulation via relaxation from the excited states essentially
absent (see inset). Thus, it is not relaxation that explains the
increase in ground state population seen in Fig. 2a–c for n > n*.
Instead, we find that the ground state population drops most
deeply for n= n*. This, in turn, is explained by the behavior of k*

seen in Fig. 2d–f, as discussed earlier.
We show in Fig. 5 the predicted final ground state population

under the one and two-fermion restriction. This minimal model
already reproduces the correct location of the minimum in PG. It
also reproduces the nonmonotonic behavior of the success
probability. It does not correctly reproduce the exponential fall
and rise. However, including the two-fermion states gives the
right trend: it leads to a faster decrease and increase in the
population without changing the position of the minimum,
suggesting that a simulation with the full 2k

�
states would recover

the empirically observed exponential dependence of the ground
state population seen in Fig. 2a–c.

Discussion
A commonly cited failure mode of closed-system quantum
annealing is the exponential closing of the quantum gap with
increasing problem size. It is expected, on the basis of the
Landau–Zener formula and the quantum adiabatic theorem, that
to keep the success probability of the algorithm constant the run-
time should increase exponentially. As a consequence, one
expects the success probability to degrade at constant run-time if
the gap decreases with increasing problem size. Our goal in this
work was to test this failure mode in an open-system setting

where the temperature energy scale is always larger than the
minimum gap. We did so by studying the example of a ferro-
magnetic Ising chain with alternating coupling-strength sectors,
whose gap is exponentially small in the sector size, on a quantum
annealing device. Our tests showed that while the success prob-
ability initially drops exponentially with the sector size, it recovers
for larger sector sizes. We found that this deviation from the
expected closed-system behavior is qualitatively and semi-
quantitatively explained by the system’s spectrum around the
quantum critical point. Specifically, the scaling of the quantum
gap alone does not account for the behavior of the system, and
the scaling of the number of energy eigenstates accessible via
thermal excitations at the critical point (the thermal density of
states) explains the empirically observed ground state
population.

Does there exist a classical explanation for our empirical
results? We checked and found that the SVMC model31 is capable
of matching the empirical DW2X results provided we fine-tune
its parameters for each specific chain parameter set {W1, W2, N}.
However, it does not provide as satisfactory a physical explana-
tion of the empirical results as the fermionic or master equation
models, which require no such fine-tuning; see Supplementary
Note 6 for details.

Our work demonstrates that care must be exercised when
inferring the behavior of open-system quantum annealing from a
closed-system analysis of the scaling of the gap. It has already
been pointed out that quantum relaxation can play a beneficial
role26–30. However, we have shown that relaxation plays no role
in the recovery of the ground state population in our case.
Instead, our work highlights the importance of a different
mechanism: the scaling of the number of thermally accessible
excited states. Thus, to fully assess the prospects of open-system
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Fig. 5 Master equation results for the ground state population when restricting the excited states to single and two-fermion states. a The result of
simulating the ASC problem with parameters (1,0.5,175) via the adiabatic Pauli master equation (8), restricted to the vacuum+ single-fermion states, and
vacuum+ single-fermion+ two-fermion states. Also shown is the dependence on the system-bath coupling parameter g in the two-fermion case; doubling
it has little impact, whereas halving it increases the success probability somewhat for n < 14. The position of the minimum at n*= 5 matches the empirical
result seen in Fig. 2a, except when g= 1/2, i.e., the position is robust to doubling g but not to halving it. Panels (b) and (c) show additional 2-fermion
master equation results with g= 1. Note that for the (1,0.5,200) chain, these simulations exhibit better agreement with the DW2X data than the simple k*

analysis plotted in Fig. 2d–f. This is because the simulations also keep track of the Boltzmann factor

Table 1 Chain length (N) and sector size (n) for N ~ 175

N 174 175 172 173 176 175 176 169
n 1 2 3 4 5 6 7 8
N 172 171 181 170 183 177 172 181
n 9 10 12 13 14 16 19 20
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quantum annealing, this mechanism must be understood along
with the scaling of the gap and the rate of thermal relaxation.
Of course, ultimately we only expect open-system quantum
annealing to be scalable via the introduction of error correction
methods51,57–59.

Methods
Alternating sector chains. We generated a set of ASCs with chains lengths cen-
tered at N � 55; 135; 175; 200f g and with sector sizes n ranging from 2 to 20. Since
the chain length and sector size must obey the relation (N− 1)/n= 2b+ 1 with
integer b, there is some variability in N. Table 1 gives the (N, n) pair combinations
we used for chain set with mean length 175.

Quantum annealing processor used in this work. The D-Wave 2X processor
(DW2X) is an 1152-qubit quantum annealing device made by D-Wave Systems,
Inc., using superconducting flux qubits52. The particular processor used in this
study is located at the University of Southern California’s Information Sciences
Institute, with 1098 functional qubits and an operating temperature of 12 mK. The
total annealing time tf can be set in the range [5, 2000] μs. The time-dependent
Hamiltonian the processor is designed to implement is given by

H sð Þ ¼ A sð Þ
X
i

σzi þ B sð Þ
X
i

hiσ
z
i þ

X
i;jð Þ

Jijσ
z
i σ

z
j

0
@

1
A; ð15Þ

with dimensionless time s= t/tf. Figure 6 describes the annealing schedules A(s)
and B(s). The coupling strengths Jij between qubits i and j can be set in the range
[−1, 1] and the local fields hi can be set in the range [−2, 2].

We used tf= 5 μs. For each ASC instance we implemented 10 different
embeddings, with 10 gauge transforms each53. In total, 105 runs and readouts were
taken per instance. The reported success probability is defined as the fraction of
readouts corresponding to a correct ground state. For additional details on the
DW2X processor we used see, e.g., Ref.54.

Numerical procedure for solving the master equation. We solve the coupled
differential Eqs. (11)–(14) using a fourth order Runge–Kutta method given by
Dormand and Prince55 with nonnegativity constraints56. We compute the transi-
tion matrix elements via Supplementary Eq. (35) and the bath correlation term via
Eq. (10).

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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