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Abstract: Over the years, cases of autochthonous leishmaniasis have been dramatically increasing
in Thailand. Recently, several publications have claimed certain species of the phlebotomine sand
flies and biting midges potentially serve as natural vectors of Leishmania and Trypanosoma species
in this country. However, more information regarding the vector–parasite relationships, as well
as their natural reservoirs in the country, still needs to be explored. Herein, we hypothesized
that synanthropic reptiles in the leishmaniasis-affected area might be a natural reservoir for these
parasites. In this present study, a total of nineteen flat-tailed house geckos were collected from the
house of a leishmaniasis patient in Songkhla province, southern Thailand, and then dissected for
their visceral organs for parasite detection. Small subunit ribosomal RNA (SSU rRNA) gene and
internal transcribed spacer 1 (ITS-1)-specific amplifications were conducted to verify the presence of
Trypanosoma and Leishmania parasites, respectively. Only Trypanosoma DNA was screened positive in
eight gecko individuals by SSU rRNA-PCR in at least one visceral organ (4, 4, and 6 of the heart, liver,
and spleen, respectively) and phylogenetically related to the anuran Trypanosoma spp. (An04/Frog1
clade) previously detected in three Asian sand fly species (Phlebotomus kazeruni, Sergentomyia indica,
and Se. khawi). Hence, our data indicate the first detection of anuran Trypanosoma sp. in the flat-
tailed house geckos from southern Thailand. Essentially, it can be inferred that there is no evidence
for the flat-tailed house gecko (Hemidactylus platyurus) as a natural reservoir of human pathogenic
trypanosomatids in the leishmaniasis-affected area of southern Thailand.

Keywords: Trypanosoma; Leishmania; flat-tailed house gecko; sand flies; SSU rRNA gene; Cytb gene

1. Introduction

Trypanosoma and Leishmania are kinetoplastid flagellate parasites belonging to the fam-
ily Trypanosomatidae. These parasites can infect a wide range of hosts, including humans,
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and domestic and wild animals, and have a substantial impact on public health world-
wide [1,2]. In endemic areas, Trypanosoma causes two important human infectious diseases,
including American trypanosomiasis (Chagas disease), caused by T. cruzi, and African try-
panosomiasis (sleeping sickness), caused by T. brucei (T. b. rhodesiense and T.b. gambiense) [3].
Human leishmaniasis, caused by Leishmania, can present three multi-spectral forms of
clinical manifestations, i.e., visceral, cutaneous, and mucocutaneous leishmaniases [4].
Trypanosoma is transmitted by a range of hematophagous insects, including triatomine bugs,
tsetse flies, mosquitoes, sand flies, and blood-sucking leeches [5]. Phlebotomine sand flies
are principally natural vectors responsible for leishmaniasis [4]. Recently, certain species
of biting midges, Culicoides Latreille, have also, for the first time, been reported to be the
potential vectors of L. martiniquensis and Trypanosoma sp. in Thailand [6].

In Thailand, the number of autochthonous leishmaniasis cases is continuously in-
creasing, mostly in the northern and southern provinces. To date, over 20 indigenous
leishmaniasis cases have been reported in the country since 1996. Accordingly, most of
these autochthonous cases have been diagnosed for L. martiniquensis and L. orientalis [7–9].
Traditionally, trypanosomiasis in non-endemic areas is commonly prevalent in a broad
range of domestic and wild animals, i.e., rodents, cattle, buffalos, elephants, tigers, and
pigs, as well as amphibians and reptiles [1,10]. However, a number of atypical human try-
panosomiasis cases have so far been documented worldwide and ascribed to some animal
trypanosomes, such as T. b. brucei, T. evansi, T. vivax, T. congolense, T. lewisi, and T. lewisi-
like trypanosomes [11–13]. Of interest, atypical trypanosomiasis caused by T. lewisi-like
infection has been reported in an infant in northern Thailand [13]. Therefore, the increasing
cases of autochthonous leishmaniasis, as well as emerging atypical trypanosomiasis, have
raised the interesting question of whether there are natural reservoirs for trypanosomatid
parasites, especially in affected areas of Thailand.

Reptiles have been proven to be reservoirs of several pathogens, including protozoa,
and helminths, as well as arthropod ectoparasites [14]. Relevant to human trypanoso-
matids, T. brucei was isolated from monitor lizards (Varanus niloticus) in the sleeping
sickness-endemic area [15,16]. In addition, the DNA of reptilian Leishmania (Sauroleishma-
nia) and mammalian Leishmania species (i.e., L. donovani, L. tropica, and L. turanica) has been
recently detected in some desert lizards and snakes from the endemic areas in northwest
China [17,18]. It has also been found that L. tropica from lizards share common ancestry
with those detected from clinical cases, suggesting their potential role as a natural reser-
voir [17]. Therefore, we hypothesized that other synanthropic reptiles, especially house
geckos, in the affected area in Thailand may potentially act as a natural source of infection
of trypanosomatids pathogenic to humans.

In this study, we aimed to survey the presence of Trypanosoma and Leishmania parasites
in flat-tailed house geckos collected from the house of a leishmaniasis patient in Songkhla
province, southern Thailand. The findings from this study might help us better understand
the transmission of Trypanosoma and Leishmania parasites. Furthermore, our study would
be useful for future studies for the effective prevention and control of emerging diseases
caused by trypanosomatid parasites in Thailand.

2. Results
2.1. Molecular Detection of Trypanosoma and Leishmania DNA from Dissected Organ Specimens

From 19 flat-tailed house geckos, 57 dissected organs consisting of the heart, liver, and
spleen of each individual were extracted for genomic DNA. Then, SSU rRNA and ITS1-
specific amplification were conducted to detect Trypanosoma and Leishmania, respectively.
The results showed that eight flat-tailed house geckos tested positive for Trypanosoma DNA
in at least one organ, as detailed in Table 1. However, Leishmania DNA was not detected in
any specimen. Of these, only one flat-tailed house gecko (J4) tested positive for Trypanosoma
DNA in all dissected organs.
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Table 1. SSU rRNA-based detection of Trypanosoma DNA in visceral organs dissected from nineteen
flat-tailed house geckos and species identification based on mitochondrial Cytb sequences.

Isolate Code
SSU rRNA-PCR

Gecko Species Identification
Heart (H) Liver (L) Spleen (S)

J1 − − − Hemidactylus platyurus
J2 − − + Hemidactylus platyurus
J3 − + + Hemidactylus platyurus
J4 + + + Hemidactylus platyurus
J5 + − + Hemidactylus platyurus
J6 − − + Hemidactylus platyurus
J7 − − − Hemidactylus platyurus
J8 + + − Hemidactylus platyurus
J9 + − − Hemidactylus platyurus
J10 − − − Hemidactylus platyurus
J11 − − − Hemidactylus platyurus
J12 − + + Hemidactylus platyurus
J13 − − − Hemidactylus platyurus
J14 − − − Hemidactylus platyurus
J15 − − − Hemidactylus platyurus
J16 − − − Hemidactylus platyurus
J17 − − − Hemidactylus platyurus
J18 − − − Hemidactylus platyurus
J19 − − − Hemidactylus platyurus

Total
4 4 6

14
‘−’, not detected; ‘+’, detected.

2.2. Nucleotide BLAST Analysis and Phylogenetic Tree Construction

The nucleotide sequences of partial SSU rRNA genes obtained from fourteen positive
organs in the PCR step harbored a size ranging from approximately 948 to 956 bp. The
BLASTn results revealed that all fourteen partial SSU rRNA sequences in this study showed
the highest similarity to Trypanosoma SSU rRNA reference derived from Sergentomyia in-
dica (accession no. MK603820) with a percentage of identity (98.25–100%) and significant
E-Value. Then, all these sequences were annotated and submitted to the GenBank for
assigning accession numbers as MN629898–MN629905 and MN629907–MN629912. Addi-
tionally, a multiple sequence alignment was performed by using ClustalW implemented
in the BioEdit Sequence Alignment Editor Version 7.2.6, showing pairwise intraspecific
genetic variability ranging 0–4.2% as demonstrated in Table S1.

Fifty-five partial Trypanosoma SSU rRNA sequences consisting of fourteen sequences in
this study and other forty-one sequences available in the GenBank database were enrolled
for the phylogenetic construction as illustrated in Figure 1. Consistent with the BLASTn
results, it was demonstrated that all newly obtained Trypanosoma sequences were almost
identical and closely related with Trypanosoma sequences formerly detected in three Asian
sand fly species: Se. indica (MK603820) and Se. khawi (MK603822) from Thailand, and
Phlebotomus kazeruni (AB520638) from Pakistan. Moreover, our Trypanosoma sp. sequences
were distinctively clustered in the main clade of an An04/Frog1 group, as depicted in
Figure 1, clearly inferring that the Trypanosoma sp. sequences detected in this study were
classified as the amphibian Trypanosoma species.
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constructed by the K2P+G+I model with 1000 bootstrap tests. The Trypanosoma sp. sequences obtained
from this study are indicated with blue squares.

For gecko species identification, mitochondrial Cytb gene-specific PCR yielded a band
of approximately 376 bp and the BLASTn result revealed that all collected samples were
Hemidactylus platyurus with significant E-Value. Concordantly, a maximum likelihood tree,
including the total of 83 Cytb sequences from the Hemidactylus geckos in this study and
those from the GenBank database, was constructed, showing that all our sequences were
clustered closely with H. platyurus (EU268384) in the tropical Asian clade, as demonstrated
in Figure 2. The partial Cytb sequences were submitted to the GenBank and assigned the
accession numbers as MN635549–MN635567.
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3. Discussion

Trypanosomatids, including Trypanosoma and Leishmania, are parasites causing vector-
borne neglected infectious diseases in both humans and animals worldwide. Basically,
trypanosomiasis can be transmitted to humans and other mammals by infective meta-
cyclic trypomastigotes mainly via the bite or contact with feces or urine of arthropod
vectors [19,20]. For leishmaniasis, the transmission occurs via the bite of infected female
phlebotomine sand flies [7]. In addition, several publications demonstrated that a variety of
animals can serve as potential reservoirs of both Trypanosoma [21–23] and Leishmania [24–26].
Therefore, the investigation of animal reservoirs would contribute to a better understanding
of the biology of pathogens and the effective control of disease transmission. However,
there are still limitations in the data concerning animal reservoirs of the human pathogenic
trypanosomatid parasites in Thailand.
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Since 2014, we have visited the house of an HIV-infected male patient to collect sand
flies. He was diagnosed and completely treated for his indigenous leishmaniasis seven
years ago [27,28]. Although this patient has been entirely cured and is not an active case
now, our recent investigation reveals that sand flies collected from his house area still
screened positive for DNA of L. martiniquensis and Trypanosoma sp. [29,30]. Additionally,
we observed that several flat-tailed house geckos could be easily found on his house wall;
therefore, it is reasonable for us to hypothesize that the flat-tailed house gecko might play
a role as a reservoir for Trypanosoma and/or Leishmania parasites. Thus, SSU rRNA and
ITS1-specific PCR were designed to display the presence of Trypanosoma and Leishmania
DNA in the gecko visceral organs. As a result, only Trypanosoma DNA was found in eight
geckos with at least one visceral organ by SSU rRNA-based PCR.

Intriguingly, Trypanosoma sp. DNA could be detected in the six spleen samples from
eight positive geckos, suggesting that the parasites preferentially deposited in particular
tissues. Consistently, several Trypanosoma species, including T. brucei, T. cruzi, T. vivax, and T.
congolense, have also been mentioned for tissue tropism, especially in extravascular tissues,
i.e., the brain, aqueous humor, heart, lung, liver, and kidney, as well as the spleen [31–34].
This phenomenon would be beneficial to parasites in terms of enhancing transmission,
virulence reduction, immune evasion, and resistance to treatment [31]. Unfortunately,
blood smear preparation for the microscopic detection of parasites was not conducted
in this study due to the inadequate blood volume of the geckos during dissected organ
preparations.

All Trypanosoma sp. sequences amplified from positive organs in this study phy-
logenetically resembled other Trypanosoma spp. sequences detected in sand flies from
leishmaniasis-endemic areas as follows: Ph. kazeruni (AB520638) from Pakistan [35], and
Se. khawi (MK603822) and Se. indica (MK603820), as previously described in southern
Thailand [30]. This finding suggests the possible transmission of parasites from sand flies
to flat-tailed house geckos. In addition, these Trypanosoma sequences were grouped into
a single clade (An04/Frog1) of previously described anuran or amphibian Trypanosoma
species, including T. fallisi, T. ranarum, T. neveulemairei, T. rotatorium, and T. mega, obviously
separating from Trypanosoma spp. In other clades [36]. As these are positioned in the
An04/Frog1 clade, this implies that Trypanosoma sp. identified in flat-tailed house geckos
might be able to infect different kinds of hosts, including both amphibians and reptiles.

Based on ITS1-PCR in the present study, we could not detect both reptilian and mam-
malian Leishmania DNA in any gecko organ samples. However, our previous publication
revealed that L. martiniquensis DNA was detected in the liver of black rats (Rattus rattus)
collected from the house area of the same patient in this study by ITS1-PCR [37]. Further-
more, L. martiniquensis has been reported in horses in Central Europe and the USA, as well
as bovines in Switzerland [38–40]. Recently, the DNA of L. martiniquensis was detected in
the buffy coat of a black rat captured from Chiang Rai province, northern Thailand [41]. To
our knowledge, it can be presumed that mammalian vertebrate hosts most likely serve as a
natural reservoir and involve the zoonotic transmission of L. martiniquensis in Thailand.

In addition to Leishmania, phlebotomine sand flies have been also mentioned to serve
as the potential vectors of Trypanosoma species causing trypanosomiasis in a wide variety of
vertebrate hosts, including fishes, frogs, lizards, birds, and mammals [35,42–45]. Previous
publications have demonstrated that Leishmania and Trypanosoma DNA could be detected
in phlebotomine sand flies, especially in the affected areas of Thailand [29,30,37,46,47].
L. martiniquensis DNA could be detected in several sand fly species, i.e., Se. khawi, Se.
barraudi [30,37,46], and Se. iyengari [47]. For Trypanosoma, the first detection was described
in Ph. stantoni by Phumee et al. (2017) [29]. Afterward, Trypanosoma sp. DNA was detected
in Se. khawi, Se. indica, Se. anodontis, Ph. asperulus, and Ph. betisi by Srisuton et al. (2019) [30].
Interestingly, L. martiniquensis and Trypanosoma sp. co-infection was found in one Se. khawi
sample collected near the house of a leishmaniasis patient in Songkhla province of Thailand,
inferring that these two related trypanosomatids could harbor the same sand fly vector and
consequently share the same animal host upon which such vectors feed [30]. By analyzing
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blood meal, Siripattanapipong et al. (2018) revealed that the blood DNA of both humans
and the sun skink (Mabuya multifasciata), taxonomically related to the house gecko, could
be detected in Se. iyengari sand flies [47]. Altogether with our results, we speculated that
sand flies could feed on and transmit the pathogens to flat-tailed house geckos, serving as
a natural host of anuran Trypanosoma parasites.

For the feasibility of anuran Trypanosoma to infect mammalian hosts, Hysek and Zizka
(1976) demonstrated experimental transmission and pathogenic effects of T. rotatorium
in white laboratory mice [48]. Contrastingly, Kato et al. (2010) inoculated intradermally
with anuran Trypanosoma sp. (code: IKAZ/PK/04/SKF32), isolated from the sand fly Ph.
kazeruni in Pakistan, into Mongolian gerbils and BALB/c mice; however, parasite DNA
could not be detected in both peripheral blood and lymphatic tissues by PCR 6 weeks after
infection [35]. Interestingly, the SSU rRNA sequence (AB520638) of this anuran Trypanosoma
sp. (code: IKAZ/PK/04/SKF32) was closely clustered with our Trypanosoma sp. Sequences,
as revealed in Figure 1. This strongly suggests that the Trypanosoma sp. detected in flat-
tailed house geckos in this study likely possesses a high degree of specificity, restrictive to
amphibian or reptilian hosts. In addition, only certain species of animal trypanosomes, i.e.,
T. b. brucei, T. evansi, T. vivax, T. congolense, T. lewisi, and T. lewisi-like trypanosomes, have
so far been documented for nineteen cases of atypical human trypanosomiasis worldwide
over 1917–2010, as reviewed by Truc et al. (2013) [11]. To the best of our knowledge, there
are no published data now indicating that anuran Trypanosoma species can cause atypical
infections or any diseases in humans.

Essentially, it can be inferred from our molecular findings that the flat-tailed house
gecko can be a natural host of anuran Trypanosoma species, and therefore, there is no
promising evidence that it acts as a reservoir for trypanosomatid parasites relevant to
human health. Future studies should focus on other domestic animals (e.g., cattle, dogs,
and cats) to see whether they could be a natural reservoir host of human pathogenic
trypanosomatids, especially in the affected area. Ultimately, a deep understanding of the
relationships of parasites, vectors, and reservoirs could be used to deploy the effective
prevention and control of transmission of both Trypanosoma and Leishmania parasites in
Thailand.

4. Materials and Methods
4.1. Ethics Statement

The study on animals was approved by the animal research ethics committee of
Chulalongkorn University Animal Care and Use Protocol (CU-ACUP), Faculty of Medicine,
Chulalongkorn University, Bangkok, Thailand (COA No. 004/2562).

4.2. Gecko Collection and Visceral Organ Dissection

A total of 19 flat-tailed house geckos were captured alive for a duration of one
week from the house of a 56-year-old HIV-infected male Thai rubber planter, who was
first reported in July 2012 with a history of being diagnosed with autochthonous cuta-
neous, visceral leishmaniasis caused by L. martiniquensis, at Na Thawi district (6◦44’30” N,
100◦41’30” E), Songkhla province, southern Thailand, as shown in Figure 3 [27]. The col-
lected flat-tailed house geckos were anesthetized by Zoletil® 100 (Virbac, Carros, France).
Then, samples of liver, heart, and spleen were dissected from individuals, placed in sterile
1× phosphate buffer saline, and stored at 4 ◦C. All samples were taken to the Vector Biology
and Vector-Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine,
Chulalongkorn University for further DNA extraction and parasite detection.
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4.3. Genomic DNA Extraction

Total DNA was isolated from fifty-seven dissected preparations of the liver, heart, and
spleen (three organs for each sample) using the Invisorb® Spin Tissue mini kit (STRATEC,
Birkenfeld, Germany) according to the manufacturer’s instructions. Each sample was lysed
in a 400 µL of lysis buffer G with 40 µL of proteinase K. Purified genomic DNA was eluted
in 50 µL of elution buffer. Then, DNA concentrations of extracted samples were measured
by the Nanodrop 2000c spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).
The purified genomic DNA was used as a DNA template in a PCR step and kept at −20 ◦C
for long-term storage.

4.4. Detection of Trypanosoma and Leishmania DNA in Flat-Tailed House Geckos

The purified genomic DNA was used to detect Trypanosoma and Leishmania parasites
by using conventional PCR. To detect Trypanosoma, a set of primers (TRY927-F: 5´-GAA-
ACA-AGA-AAC-ACG-GGA-G-3´ and TRY927-R: 5´-CTA-CTG-GGC-AGC-TTG-GA-3´)
were applied to amplify approximately 900 bp product of the SSU rRNA gene as described
by Noyes et al. (1999) [49]. PCR reagents were set up in a total volume of 25 µL, containing
50 ng of genomic DNA, 10× PCR buffer, 25 mM of MgCl2 (Thermo Fisher Scientific,
Waltham, MA, USA), 2.5 mM of dNTPs (GeneAll, Seoul, Korea), 10 µM of forward and
reverse primers, and 1 unit of Taq DNA polymerase (Thermo Fisher Scientific, Waltham,
MA, USA). The PCR condition was programmed by pre-denaturation at 95 ◦C for 5 min,
followed by 40 cycles of denaturation at 95 ◦C for 45 s, annealing at 53 ◦C for 1 min, and
extension at 72 ◦C for 1.30 min. The final extension temperature was at 72 ◦C and extended
for 7 min.

To detect Leishmania DNA, a pair of primers (LeF: 5´-TCC-GCC-CGA-AAG-TTC-
ACC-GAT-A-3´ and LeR: 5´-CCA-AGT-CAT-CCA-TCG-CGA-CAC-G-3´) were used as
previously described by Spanakos et al. (2008) to amplify the approximately 379 bp
fragment of internal transcribed spacer 1 (ITS1) region [50]. The PCR amplification profile
includes pre-denaturation at 95 ◦C for 5 min, followed by 40 cycles of denaturation at
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95 ◦C for 1 min, annealing at 65 ◦C for 1 min, extension at 72 ◦C for 1 min, and final
extension at 72 ◦C for 7 min. The PCR reagents were identical to those used for Trypanosoma
detection as described above. The PCR amplicons were separated on a 1.5% (w/v) agarose
gel electrophoresis and visualized with Quantity One Quantification Analysis Software
Version 4.5.2 (Gel Doc EQ System; Bio-Rad, Hercules, CA, USA) after being stained with
ethidium bromide. In this study, plasmid DNA containing SSU rRNA and ITS1 genes were
used as the positive controls in Trypanosoma and Leishmania detection, respectively, whereas
double-distilled water (ddH2O) was used as a negative control.

4.5. Molecular Identification of Flat-Tailed House Geckos

To identify the species of geckos, the partial mitochondrial cytochrome b (Cytb) gene
was amplified using oligonucleotide primers previously described as follows: CytbF: 5´-
AAA-AAG-CTT-CCA-TCC-AAC-ATC-TCA-GCA-TGA-TGA-AA-3´ and CytbR: 5´-AAA-
CTG-CAG-CCC-CTC-AGA-ATG-ATA-TTT-GTC-CTC-A-3´ [51,52]. Using 50 ng of DNA
template and the same reagents as detailed above, PCR was performed under the following
thermal profiles: 95 ◦C for 5 min, 35 cycles of denaturation at 95 ◦C for 30 s, annealing at
45 ◦C for 45 s, and extension at 72 ◦C for 1 min, followed by a final extension at 72 ◦C for
7 min. Amplification of the mitochondrial Cytb gene was determined by the presence of a
band at approximately 376 bp.

4.6. TA Cloning and Sanger Sequencing

All positive PCR products were inserted into pGEM® T-Easy vector (Promega Cor-
poration, Madison, WI, USA), following the manufacturer’s instructions. Recombinant
plasmids were chemically transformed into competent Escherichia coli strain DH5α cells and
then screened by the blue-white colonies selection system on the Ampicillin/X-Gal/IPTG
Luria Bertani agar plate. Positive white clones were ensured by colony PCR and subse-
quently cultured overnight in LB medium with ampicillin. Plasmids with inserts were
extracted using the Invisorb® Spin Plasmid Mini Kit (STRATEC, Birkenfeld, Germany) and
sent to the Macrogen, Inc. (Seoul, Korea) for Sanger sequencing service.

4.7. Phylogenetic Tree Construction

Retrieved sequence reads were analyzed using the BioEdit Sequence Alignment Editor
Version 7.2.6 for removal of plasmid vector sequences [53]. Trimmed sequences were then
compared to the GenBank reference database using the BLASTn search tool (https://blast.
ncbi.nlm.nih.gov/Blast.cgi, accessed on 15 November 2021) for species identification. All
SSU rRNA and Cytb nucleotide sequences obtained from this study were submitted to the
GenBank database and assigned accession numbers, as detailed in the results.

For phylogenetic analysis, a tree of SSU rRNA Trypanosoma sequences in this study
and from the GenBank database was built by the MEGAX software using the maximum-
likelihood method with Kimura-2 parameter (K2P) with invariant positions and gamma
distribution (K2P+G+I) and tested by 1000 bootstrap replicates [54]. Likewise, phylogeny
based on the Cytb sequences of the house geckos in this study and those from the Gen-
Bank database was analyzed by the maximum likelihood method using the Hasegawa-
Kishino-Yano model with invariant positions and gamma distribution (HKY+G+I) with
1000 bootstrap tests.

5. Conclusions

The natural infection by the trypanosomatid parasites in flat-tailed house geckos (H.
platyurus) was surveyed in the affected area of leishmaniasis in Songkhla, southern Thailand.
Based on the preliminary data in this study, it can be inferred that the flat-tailed house gecko
can serve as a natural host of amphibian Trypanosoma species, phylogenetically clustered in
the anuran An04/Frog1 clade, and therefore has no significant role in the transmission of
human pathogenic trypanosomatids. Conclusively, the detection and identification of the
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trypanosomatid parasites in their natural hosts would help us understand the host-parasite
relationships as well as the biology and dynamics of parasite transmission better.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens11020247/s1, Table S1: Identity matrix showing the
percentage of partial SSU rRNA sequence similarity between PCR-positive isolates.
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