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Abstract: Neuroinflammation is often accompanied by central nervous system (CNS) injury seen in
various CNS diseases, with no specific treatment. Drug repurposing is a strategy of finding new uses
for approved or investigational drugs, and can be enabled by the Library of Integrated Network-
based Cellular Signatures (LINCS), a large drug perturbation database. In this study, the signatures of
Lipopolysaccharide (LPS) were compared with the signatures of compounds contained in the LINCS
dataset. To the top 100 compounds obtained, the Quantitative Structure-Activity Relationship (QSAR)-
based tool admetSAR was used to identify the top 10 candidate compounds with relatively high
blood–brain barrier (BBB) penetration. Furthermore, the seventh-ranked compound, dutasteride, a 5-
α-reductase inhibitor, was selected for in vitro and in vivo validation of its anti-neuroinflammation
activity. The results showed that dutasteride significantly reduced the levels of IL-6 and TNF-α in the
supernatants of LPS-stimulated BV2 cells, and decreased the levels of IL-6 in the hippocampus and
plasma, and the number of activated microglia in the brain of LPS administration mice. Furthermore,
dutasteride also attenuated the cognitive impairment caused by LPS stimulation in mice. Taken
together, this study demonstrates that the LINCS dataset-based drug repurposing strategy is an
effective approach, and the predicted candidate, dutasteride, has the potential to ameliorate LPS-
induced neuroinflammation and cognitive impairment.

Keywords: neuroinflammation; cognitive impairment; drug repurposing; LINCS; dutasteride

1. Introduction

Neuroinflammation is a physiological protective response in the context of infection
and injury [1], but is also an important factor contributing to cognitive impairment and
neurodegenerative diseases when exceeding critical thresholds [2–4]. Lipopolysaccharide
(LPS), a toll-like receptor ligand, commonly induces neuroinflammation [5,6]. Furthermore,
a large number of studies have shown that both central and peripheral injection of LPS
can induce neuroinflammation and cognitive impairment [6–9]. After intraperitoneal
injection, lipid A of LPS binding to myeloid differentiation 2 (MD2) leads to recruitment of
myeloid differentiation primary response protein 88 (MyD88) or toll/interleukin-1 receptor-
domain-containing adaptor-inducing interferon-β (TRIF) [10,11]. The downstream signal
transduction of this receptor complex activates the TLR4/nuclear factor nuclear factor-κB
(NF-κB) pathway, which induces the secretion of inflammatory cytokines, such as TNF-α
and IL-6, that, in turn, activate microglia [12,13] and finally cause neuroinflammation and
neurodegeneration [8].

At present, the most commonly used anti-inflammatory drugs in clinics are non-
steroidal anti-inflammatory drugs (NSAIDs), which have been identified as potential
options for the treatment of neuroinflammation [14]. However, studies have shown that
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although certain NSAIDs may decrease the risk of an asymptomatic individual developing
neurodegenerative disease, they result in no significant improvement in patients with
basic CNS diseases, and may even worsen the diseases [15]. In addition, many other
molecules have also been reported to attenuate neuroinflammation, but most of these are
far from being ready for clinical use. Therefore, it is necessary to identify a new therapy for
neuroinflammation from the FDA-approved drugs.

Drug repurposing is a way of identifying new uses for approved drugs, which has
many virtues such as lower risks and costs, and a shorter development period [16,17].
Signature matching based on the comparison of the “signature” (characteristic) of a drug
with that of other diseases or drugs [16] is an effective approach in drug repurposing.
The Library of Integrated Network-based Cellular Signatures (LINCS) [18] catalogs how
human cells globally respond to chemicals, and contains the largest signature dataset,
including transcriptome, imaging, and proteomic data. In particular, transcriptome data in
LINCS L1000 comprises the largest dataset, having more than one million signatures of
33,608 molecules [19], and is a powerful resource for drug repurposing used by numerous
studies [20]. Based on a signature matching strategy, Han et al. [21] recently identified CGP-
60474 as a highly potent anti-sepsis agent. Because BBB penetration is also an important
factor for CNS disease treatment, we combined drug prediction based on the LINCS dataset
and BBB penetration screening to develop an effective strategy to search for compounds to
improve neuroinflammation and cognitive impairment.

In this study, we first obtained the top 100 compounds through signature matching,
and then used the QSAR-based tool admetSAR to identify the top 10 candidate com-
pounds with relatively high BBB penetration. Further, the seventh-ranked compound,
dutasteride, a 5-α-reductase inhibitor, was selected for in vitro and in vivo validation of its
anti-neuroinflammation activity. Finally, dutasteride was found to alleviate LPS-induced in-
flammatory cytokines secretion, microglia activation, and cognitive impairment, suggesting
it has the therapeutical potential in neuroinflammation-related diseases.

2. Materials and Methods
2.1. Signature Matching and BBB Penetration Prediction

Two LPS signatures (GSE3140), generated from adult mononuclear cells and neona-
tal mononuclear cells (CREEDS ID: drug: 3594 and drug: 3595), were collected from
CREEDS [22], which is a crowdsourcing project to annotate and reanalyze a large number
of gene expression profiles from the Gene Expression Omnibus (GEO) [23]. The LINCS
signatures were computed using the characteristic direction [24,25] approach using the
level4 dataset, and the differentially expressed genes (DEGs) were extracted by the z-
test by setting the threshold p values < 0.01 [26]. The pathway enrichment analysis was
implemented by GSEApy [27,28].

The up-regulated DEGs of each LPS were compared with the DEGs of the 80,447
signatures of 1451 approved drugs by measuring the respective Jaccard score, and an
average score was then obtained. Because the condition to generate LPS signatures was
different from those of LINCS drugs, we only kept the highest Jaccard score of signatures
for each drug regardless of the cell lines, drug dosage, and time point. The Jaccard score
metric is shown as below, where SiLPS-up is LPS up-regulated DEGs and Sj

dn is the drug
down-regulated DEGs.

J
(
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i , Sdn

j

)
=
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Then the BBB penetration ability of the compounds with top 100 Jaccard scores was

predicted by admetSAR [29,30], an QSAR-based ADMET properties prediction tool from
a medicinal chemistry perspective. The BBB probability score was in the range of [–1, 1],
wherein drugs with higher BBB probability were considered to be more likely to cross the
BBB according to a previous study [31].
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These original data and code are available at: https://github.com/gaoshengqiao/
Signature-matching-based-drug-repurposing, accessed on 12 October 2021.

2.2. Cell Culture and Drug Administration

The immortalized BV-2 microglial cells (the Institute of Basic Medicine Chinese
Academy of Medical Sciences, Beijing, China) were maintained in high glucose DMEM
(Sigma, Saint Louis, MO, USA, Catalog No. D6429) supplemented with 10% FBS (Sigma,
Saint Louis, MO, USA, Catalog No.12103C) at 37 ◦C in a humidified atmosphere of 5% CO2
in air.

Cells were seeded in 96 well plates at 1 × 105 cells per well, then cultured for 24 h.
These cells’ group distribution and administration were divided into the following groups
(n = 3 per group): control group; LPS (5 µg/mL) group; LPS + TAK-242 (1 µM) group
(TAK-242, a TLR4 inhibitor which can prevent LPS-induce inflammatory response, was
used as positive control [32,33]); and LPS + dutasteride (10 nM–20 µM) group. Cells were
incubated with TAK-242 (TargetMol, Washington, USA, Catalog No. TQ0181) and dutas-
teride (TargetMol, Washington, DC, USA, Catalog No. T1499) for 1 h, and subsequently
stimulated with LPS (TargetMol, Washington, DC, USA, Catalog No. T11855) for 24 h, then
stored for later tests.

2.3. Cell Viability

After LPS stimulation for 24 h, culture medium was removed and 100 µL fresh culture
medium with 10 µL CCK-8 reagent (TargetMol, Washington, DC, USA, Catalog No. C0005)
was added to each well. The cells continued to be cultured for 2 h. Then the cell viability
was determined by measuring the optical density (OD) absorbance at the wavelength of
450 nm.

2.4. ELISA Measurement of TNF-α and IL-6

After LPS stimulation for 24 h, the concentrations of TNF-α and IL-6 in culture
medium were detected by ELISA kit (R&D Systems, Minneapolis, MN, USA) according to
the protocol recommended by the manufacturer. Absorbance was determined at 450 nm,
and the concentrations were calculated according to standard curves.

2.5. Animals and Drug Administration

Male C57BL/6J mice (20± 2 g, 3 months) were purchased from Beijing SPF Biotechnol-
ogy Company (license number: SCXK (Beijing) 2016–0002). During housing, the animals
were kept in a temperature- and humidity-controlled room with free access to pellet food
and water on a 12 h light/dark cycle. After seven days of adaptive breeding, the weight
of all mice was measured. Forty-eight mice were randomly divided into four groups
(n = 12 per group) according to their spontaneous motor activity: control group (equal vol-
umes of corresponding vehicle); LPS (250 µg/kg) group; LPS + TAK-242 (3 mg/kg) group
(as positive control); and LPS + dutasteride (0.65 mg/kg) group. LPS and vehicle were
administered via intraperitoneal injection to induce-neuroinflammation, dutasteride was
administered intragastrically, and TAK-242 was intraperitoneally injected 30 min before
LPS injection. The vehicle of TAK-242 and dutasteride was a mixture (30% PEG300 + 1%
Tween80 + 69% deionized water), whereas that of LPS was saline. All doses were converted
according to the equivalent dose of 0.0026 for humans and mice with reference to clinical
guidelines or previous studies. All dosing volumes were 0.1 mL/10 g.

2.6. Tissue and Blood Samples Collection

After LPS injection for 15 h, mice were collected for plasma, left hippocampus, and
right hemisphere samples. The tissues were quickly collected and then placed in liquid
nitrogen for quick freezing, and then placed in a −80 ◦C refrigerator for later tests.

https://github.com/gaoshengqiao/Signature-matching-based-drug-repurposing
https://github.com/gaoshengqiao/Signature-matching-based-drug-repurposing
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2.7. MWM Test

The MWM test was consistent with the method of Wang et al. [34], including hidden-
platform training (spatial learning) and probe trial (spatial memory) sessions. In the
hidden-platform training session, mice were allowed 4 daily trials in the presence of the
platform, for 4 or 5 subsequent days. In the probe trial session (on the fifth or sixth day of
the experiment), the platform was removed, and mice were allowed to swim to search it for
60 s. The escape latency (the time taken to find the hidden platform) in the hidden-platform
training sessions and the escape latency (the first time that the mice crossed the removed
platform), time in the target quadrant, and number of crossings of the removed platform in
the probe trial sessions were recorded and analyzed. To develop acute neuroinflammation,
mice were pretreated with dutasteride or TAK-242 for 30 min, then treated with LPS after
the first day of the MWM test, and subsequently continued to undergo tests. To develop
chronic neuroinflammation, mice were pretreated with dutasteride or TAK-242 for 30 min
before LPS treatment daily for two months, then continued to undergo MWM tests

2.8. Immunofluorescence

According to the experimental protocol of Campos et al. [35], five micrometer thick
paraffin sections were prepared from the hemispheres of 5 mice. After dewaxing, blocking
and other operations, these paraffin sections then were incubated with Iba1 antibody
(Abcam, Cambridge, UK, Catalog No. ab5076) (diluted 1:1000 in PBS) overnight at 4 ◦C.
Washing with PBS was followed by incubation with IgG (H + L)/HRP antibody (Zhong
Shan Jin Qiao Corporation, Beijing, China, Catalog No. ZB-2306) (diluted 1:1000 in PBS) for
30 min at room temperature. Immunofluorescence images were acquired using fluorescence
microscope (Leica Microsystems Inc, Wetzlar, Germany). Finally, cell integrated optical
density (IOD) of IBA-1 was detected in the hemispheres of mice using Image Pro Plus
6.0 software.

2.9. Luminex Assay Detection of Multiple Cytokines

The concentrations of IL-6, IL-1β, TNF-α, RANTES, GM-CSF, MCP-1, IFN-γ, IL-4,
IL-10, and VEGF in plasma and hippocampal homogenate were determined by a Luminex
kit (Merck, Darmstadt, Germany, Catalog No. 3100931). Briefly, 10 µL/well of antibody-
immobilized beads were co-incubated with 10 µL/well of diluted sample for 60 min, then
carefully washed 3 times with 200 µL of wash buffer per well, followed by incubation with
10 µL of detection antibody and streptavidin-phycoerythrin per well for 30 min. After
the final washing step, 150 µL of assay buffer was added to each well, and the plates
were analyzed using the Luminex 200 (Luminex Crop, Austin, TX, USA) according to the
manufacturer’s protocol.

2.10. Statistical Analysis

Data are expressed as mean values ± standard deviation. The statistical analyses were
performed with GraphPad Prism 8.0 software. One-way ANOVA followed by Dunnett’s
test or one-way ANOVA followed by Tukey’s test were used in assessing comparisons
between groups, and p < 0.05 was considered to be statistically significant.

3. Results
3.1. Repurposing of Dutasteride to Treat Neuroinflammation by Signature Matching and BBB
Penetration Screening

The workflow of drug screening is shown in Figure 1A. Firstly, we analyzed the
enriched pathway of LPS signatures (CREEDS ID: drug: 3594 and drug: 3595), in which
the LPS up-regulated genes were significantly enriched in innate immunity pathways,
such as TNF and NF-κB pathways (Figure S1A), consistent with its clinical symptoms.
We hypothesized that small molecules that down-regulated this gene expression state may
decrease the inflammatory responses. Therefore, the LPS up-regulated genes and drug
down-regulated genes were compared in this study as illustrated in Figure 1A. Jaccard
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similarity was utilized between signatures of 1451 approved drugs and those of LPS to
search for the leading compounds that oppose LPS. Then we analyzed the mechanism of
actions (MOAs) of the top 100 compounds. The most enriched entities (Figure 1B) included
cyclooxygenase inhibitors and lipoxygenase inhibitors, which were reported to be able to
alleviate the LPS responses, implying the signature matching approach would be reliable.
The top 100 compounds were subsequently screened by admetSAR [29,30] to obtain a BBB
probability score. The BBB probability score was in the range of [−1, 1]. According to
previous study, molecules with higher BBB probability were considered to be more likely
to cross the BBB [31]. Here, we retained 10 molecules with the highest BBB probability
(Figure 1C).
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Further document retrieval showed that the 10 candidate compounds, with the ex-
ception of dutasteride and fomepizole, were all revealed to possess anti-inflammatory or
neuroprotective effects in a large number of studies. This evidence also indicates that our
strategy is of high accuracy. We focused on dutasteride particularly, and further analyzed
the reversal overlapped genes between dutasteride and LPS. The overlapped DEGs of du-
tasteride and LPS (p value = 1.01× 10−17, hypergeometric test), were significantly enriched
in TNF and NF-κB pathways (−log adjust p value > 3, Figure S1B), suggesting dutasteride
and LPS may modulate innate immunity pathways in reverse directions. Therefore, we
speculated dutasteride may play a role in LPS-induced neuroinflammation.

3.2. Dutasteride Reduced Cytokine Secretions in LPS-Activated BV2 Microglial Cells

Microglia is an active participant in neuroinflammation by releasing inflammatory
cytokines [8,36].The immortalized murine BV-2 microglia cell line is widely used in ex-
perimental neuroinflammatory studies [37,38]. To elucidate the anti-neuroinflammatory
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efficacy of dutasteride, LPS (250 µg/mL) was used to activate BV2 microglial cells, and TAK-
242 (1 µM), a TLR4 inhibitor which can prevent LPS-induce inflammatory response [32,33],
was used as positive control. We firstly investigated the concentration-dependent effects of
dutasteride (0.01, 0.1, 1, 10, 30, 50 µM) on the survival of BV2 microglial cells (Figure S2A).
Then at non-cytotoxic concentrations (0.01, 0.1, 1, 10, 20 µM) (Figure S2B), the levels of
IL-6 and TNF-α secreted in LPS-stimulated BV2 microglial cells with LPS treatment for
24 h were measured by ELISA. The results showed that dutasteride pretreatment sig-
nificantly reduced the level of TNF-α and IL-6 induced by LPS (TNF-α: p < 0.001, IL-6:
p < 0.01; Figure 2A,B), indicating that dutasteride can alleviate inflammatory response at
the cellular level.
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Figure 2. Dutasteride reduced the concentrations of proinflammatory cytokines in LPS-activated
BV2 microglial cells. (A) The level of TNF-α secretion. (B) The level of IL6 secretion. Above data
are presented as the mean ± S.D (n = 3 per group); *** p < 0.001 compared with the control group
(Control); ## p < 0.01, ### p < 0.001 compared with the LPS group (Model).

3.3. Dutasteride Decreased Level of IL-6 in Plasma and Hippocampus following LPS Administration

To investigate the effect of dutasteride on neuroinflammation in vivo, mice were pre-
treated with dutasteride (0.65 mg/kg) or TAK-242 (3 mg/kg) for 30 min, then treated with
250 µg/kg LPS for 15 h. The concentrations of inflammatory cytokines in the plasma and
hippocampus were measured. The results are shown in Table S1, where the levels of IL-6
in the plasma and hippocampus significantly increased after LPS injection (plasma and
hippocampus: p < 0.001; Figure 3A,B), and dutasteride administration effectively reduced
LPS-induced production of IL-6 in plasma and hippocampus (plasma: p < 0.001, hip-
pocampus: p < 0.01; Figure 3A,B). In addition, dutasteride administration also significantly
increased the ratio of thymus to body weight compared to the LPS-treated group (p < 0.05;
Figure S3A). These results show that dutasteride can effectively attenuate LPS-induced
inflammation both in the central and peripheral systems.

3.4. Dutasteride Decreased Microglia Activation in the Brain of LPS Stimulated Mice

LPS-induced neuroinflammation is accompanied by microglia activation. Here we
further investigated the inhibitory effect of dutasteride on brain microglia activation on
as outlined in Section 3.3. The results showed that LPS administration significantly in-
creased the number of activated microglia (IBA-1 labeled) in the brain of mice (p < 0.05;
Figure 3C,D), whereas dutasteride treatment decreased the number of activated cells com-
pared to the LPS-treated group (p < 0.05; Figure 3C,D). These results show that dutasteride
can effectively attenuate the activation of microglia cells caused by LPS.
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Figure 3. Dutasteride suppressed inflammatory reaction in the LPS-induced neuroinflammatory
mouse model. (A) The concentration of IL-6 in plasma (n = 8~12 per group). (B) The concentration of
IL-6 in hippocampus (n = 8~12 per group). (C,D) The examination of IBA-1 immunohistochemical
staining (microglia activation) of the semi-brain (n = 3 per group). Above data are presented as the
mean ± S.D; * p < 0.05, *** p < 0.001 compared with the control group (Control); # p < 0.05, ## p < 0.01,
### p < 0.001 compared with the LPS group (Model).

3.5. Effects of Dutasteride on Spatial Learning and Memory in LPS-induced Neuroinflammatory
Mouse Model

Here we designed single and long-term intraperitoneal injection of LPS to induce
acute and chronic neuroinflammation in the mouse. The effects of dutasteride on cogni-
tive impairment were detected via MWM test, a standard and routine method to assess
spatial learning and memory ability in rodents [39]. The acute neuroinflammatory model
(the experimental schedule is shown in Figure S4A) showed that dutasteride administration
significantly decreased the escape latency compared to the LPS-treated group in the first
day after LPS injection (Day 2: p < 0.05; Figure S4B), but no significant was found in the
following training and test sessions, both in the LPS-treated group and the dutasteride-
treated group (Figure S4B–E), indicating that single injection of LPS (low doses, 250 µg/kg)
induced cognitive impairment that was time-limited, which was consistent with previous
studies [6,40]. In the chronic neuroinflammatory model (the experimental schedule is
shown in Figure 4A), after multiple intraperitoneal injections of LPS for two months, the
LPS-treated mice exhibited long-term learning impairment, and LPS-treated mice showed
a longer escape latency than the control group on the last day of training. Dutasteride
significantly decreased the escape latency compared with the LPS-treated group (Day 4:
p < 0.001; Figure 4B). Similarly, during the probe test period, dutasteride administration
significantly decreased the escape latency compared with the LPS-treated group (p < 0.001;
Figure 4C). Moreover, the dutasteride-treated group showed a significant improvement
in the number of platform area crossings (p < 0.05; Figure 4D) and the time spent in the
target quadrant (p < 0.01; Figure 4E) compared with the LPS-treated group (Figure 4D,E).
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In summary, these results suggest that dutasteride can alleviate LPS-induced chronic or
persistent neuroinflammation and cognitive impairment.
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and (E) the time spent in the target quadrant during the probe test of the MWM tests. Data are
presented as the mean ± S.D (n = 10~12); * p < 0.05, ** p < 0.01, *** p < 0.001 compared with the
control group (Control); # p < 0.05, ## p < 0.01, ### p < 0.001 compared with the LPS group (Model).

4. Discussion

Neuroinflammation is a key pathological event triggering and perpetuating the neu-
rodegenerative process associated with many CNS diseases [6], and is a complex process
that is related to systematic dysregulation of cellular functions or pathways [3]. It is well-
known that an omics dataset can represent the systematic effect of organisms/cells exposed
to chemicals. Therefore, it is an abundant source for discovering therapeutic candidates.
LINCS transcriptome data constitutes the largest dataset, having more than one million
signatures of 33,608 molecules [19], and has been previously demonstrated as a powerful
resource for drug repurposing in numerous studies [20]. Additionally, several successful
cases have also proved the reliability of the LINCS resource in discovering drugs to oppose
inflammatory related disease or responses, including inflammatory bowel disease [41],
LPS induced sepsis [21], and cigarette smoke-induced inflammation [42]. However, for
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the treatment of neuroinflammation, many drugs examined in research failed in clinical
trials because they do not effectively cross the blood–brain barrier (BBB) [43–46]. Therefore,
an additional screening based on BBB penetration is necessary to identify compounds of
greater potential therapeutic value.

In this study, we used LINCS dataset-based signature matching followed by BBB
penetration screening to search for potential anti-LPS-induced neuroinflammation agents,
and found that most of the top 10 candidate compounds, with the exception of fomepi-
zole, have been reported to have anti-inflammatory or neuroprotective effects. For exam-
ple, ramelteon and fluoxetine can relieve neuroinflammation [33,47,48], and rilmenidine
and vinburnine have been reported to have neuroprotective effects [49–51]. Moreover,
nepafenac, diphenylpyraline [52,53], sufentanil [54], dutasteride [55], and diethylcarba-
mazine [56,57] have also been found to have anti-inflammatory effects, indicating that this
strategy contributes to identifying potential compounds having anti-neuroinflammation
properties among approved and marketed drugs. The lengthy time to develop new drugs
and the hindrance posed by the BBB are the main obstructions for uncovering novel treat-
ments for neuroinflammation [58]. We think there are two essential conditions needed to
be considered in the discovery of anti-brain neuroinflammation drugs: the ability to inhibit
the pathological processes of inflammation, and the ability to penetrate the BBB. However,
it cannot be ruled out that some drugs can affect the inflammatory processes of the central
nervous system through other indirect processes. The prediction strategy based on LINCS
data and BBB penetration in this study is not only time- and cost-effective, but also takes
into account the role of the BBB in CNS diseases, so as to improve the successful rate of
drug repurposing, and may be applied in other CNS diseases.

Among the top 10 compounds examined above, most have been revealed to possess
anti-inflammatory or neuroprotective effects in a large number of studies. In contrast, du-
tasteride has been rarely reported. Therefore, for the purpose of identifying new potential
anti-neuroinflammatory molecules and our research focus, we selected dutasteride for
further investigation in in vitro and in vivo experiments. The results showed that dutas-
teride significantly reduced the secretion of IL-6 and TNF-α in LPS-stimulated BV2 cells,
and decreased the microglia activation in the brain and the levels of IL-6 in the plasma
and hippocampus in an LPS-induced neuroinflammatory mouse model, indicating that
dutasteride can effectively suppress the inflammatory response stimulated by LPS in the
peripheral and central nervous systems. Additionally, our MWM tests results showed that
dutasteride can alleviate LPS-induced learning and memory impairments. Thus far, our
study demonstrates that dutasteride can ameliorate LPS-induced neuroinflammation and
cognitive impairment.

The direct anti-neuroinflammatory and neuroprotective mechanisms were not further
investigated in this study. According to previous research, dutasteride is a selective in-
hibitor of type 1 and type 2 5-α-reductase, a family of several isozymes responsible for the
conversion of testosterone to 5-α-dihydrotestosterone [59], and mainly used to clinically
treat benign prostatic hyperplasia (BPH). The inhibition of 5-α-reductase can increase the
level of testosterone [60] and promote the conversion of testosterone to 17-β estradiol [61].
Increasing evidence suggests that both testosterone and 17-β estradiol can inhibit the
activation of microglia cells, thereby playing an anti-inflammatory role [62,63]. In ad-
dition, several studies reported the neuroprotection effect of dutasteride, and proposed
that the neuroprotection of 5-α-reductase inhibitor is an androgen receptor-dependent
mechanism [61,64,65]. These may provide an explanation for the mechanism of dutas-
teride against neuroinflammation. Interestingly, however, we noted that the results in
Figure 2 showed that the concentrations of TNF-a and IL-6 with low-dose (0.01, 0.1, 1 µM)
dutasteride treatment were slightly higher than those with LPS treatment (no significant
difference). This phenomenon may be due to the potential pro-inflammatory effect of du-
tasteride at low doses and anti-inflammatory effect at high doses. As reported in previous
studies, long-term low-dose use of 5-α-reductase inhibitors has side effects on the central
nervous system, including anxiety, depression, and suicidal ideation [66–68], which are
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highly correlated with neuroinflammation reactivation [69]. By comparison, dutasteride
was reported to be able to inhibit Keap1-Nrf2 interaction, an essential pathway involved
in oxidative stress [55]. Studies have shown that the inhibition of Keap1-Nrf2 interaction
can eliminate ROS or inhibit the transcription of pro-inflammatory cytokine genes [70–72]
or inhibit NF-κB activation, thereby suppressing inflammation [73]. Therefore, inhibition
of keap1Keap1-nrf2 Nrf2 interaction may also partly explain the anti-neuroinflammatory
mechanisms. Nonetheless, the anti-neuroinflammatory characteristics of dutasteride and
its mechanism of action need to be further studied and elucidated.

5. Conclusions

In summary, we repurposed 1451 compounds using the LINCS dataset and BBB pene-
tration screening-based virtual prediction. One of the top 10 compounds, dutasteride, was
validated to possess anti-neuroinflammatory and cognitive improvement effects in vitro and
in vivo. These results indicated that signature matching combined with BBB penetration
screening is an effective method for drug prediction for CNS disease. The predicted candi-
date, dutasteride, may be worthy of further evaluation as an anti-neuroinflammation agent,
and may provide a potential therapeutic option for neuroinflammation-related diseases.
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following LPS administration. Figure S4 Effects of dutasteride on spatial learning and memory in a
single injection of LPS-induced neuroinflammatory mouse model.
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