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ABSTRACT: Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and
sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past
decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine
learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these
learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable
to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated
and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and
supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster
analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer
observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in
the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are
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Exploratory Methods

Dimension reduction

Dimension reduction is an important multivariate statistical
approach; it is used to identify latent structure which is not
observable but presented in the observations that are results of
these structures. The number of dimensions or factors of the
latent structure needs to be less than the number of variables,
and the groupings of variables or weighted combinations of all
variables are the statistical representations defined for the
latent structure.

Principal component analysis (PCA) and factor analysis are
2 elementary statistical techniques for dimension reduction. In
the literature for integrated omics, dimension reduction meth-
ods have presented several variations from PCA and factor
analysis. These variations include multiple factor analysis
(MFA),! consensus PCA (CPCA), multiple-block PCA
(MBPCA),? and nonnegative matrix factorization (NMF).?

PCA and its variations. Hassani et al* first introduced a CPCA
method for multiple omics data sets, referred as “blocks,” and 3
validation tools in 2010. A block represents one type of omics
measurement, and multiple blocks are collected from same bio-
logical samples. They used the genetic fingerprinting data and
metabolite fingerprinting Fourier transform infrared spectra as an
example which subdivides spectra into blocks of polysaccharide
region, fingerprint region, protein region, and fatty acid region.
Consensus PCA uses an iterative algorithm (NIPALS
[Nonlinear Iterative Partial Least Squares])>® to identify the

latent bilinear structure from the combined measurement data.
NIPALS can identify latent structure parameters including the
block and global loading scores, block scores, and global scores
iteratively (Figure 1). The authors described 3 methods for
choosing components: root mean square error (RMSE), uncer-
tainty # test, and stability plot. The RMSE is used to select the
number of principal components through the RMSE plot. An
uncertainty # test uses a # statistic estimated from loading coef-
ficients to assess whether the measurement significantly con-
tributes to the CPCA. The stability plot assesses any outlying
observations. All 3 methods are used at both the block level
and the global level.

In 2013, the same group of authors? compared 3 different
deflation strategies for MBPCA. In iterative algorithms, such
as NIPALS, latent components are extracted in a specific order.
“Deflation” is the structure associated with each component
subtracted off to reveal the next components; it corresponds to
taking residuals in a regression. The choice of deflation strategy
affects the interpretation of the structure by affecting which
components of the estimated latent structure are forced to be
orthogonal.

Conesa et al” proposed a multiway approach to identify
the underlying components that interconnect with different
omics variables, with explicit modeling of 3-way latent
structure. They use a dimension-reducing technique
TUCKERS for intra-omics analysis and the N-partial least

@ @@ Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without
further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).


https://uk.sagepub.com/en-gb/journals-permissions
mailto:i.zeng@auckland.ac.nz

Bioinformatics and Biology Insights
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Figure 1. Multiblock principal component analysis (A, B, C). The multiblock principal component analysis starts from a random global score vector t (a
randomly chosen starting scale for the principal component space). The blocks of data X (different omics measurements) are regressed via t and result in
the principal loading P? which represents the importance (weight) of each omics measurement variable contributing to the latent structure components.
The loading P? is normalized to ﬁ;b , and a new block score is formed by multiplying ,Eib with the data blocks X. The new block scores of vector ts are
combined and become the block score matrix T. T is used to regress on the global score vector t resulting in weight vector w which is normalized to the
length of 1. The new global score vector t for the next iteration is then calculated by multiplying the weight w and the new block score matrix T.

squares (N-PLS) for inter-omics analysis. The different
omics data sets comprise functional genomics measurements
of transcriptomic, metabolomic, and physiological data sets.
TUCKERS is suggested to be an appealing data integration
strategy because it can accommodate the structure of the
data from a multifactorial design experiment (ie, time x treat-
ment x protein expression), and N-PLS can infer the
relationships between biomolecular measurements in multi-
dimensional space.

Factor analysis and its variations. In contrast to PCA which
projects the observations into the new latent structuralized
space, factor analysis identifies latent structures that can be
used to form (or explain) the observed data. Sanchez et al'
introduced MFA that can be used to reduce dimension and
integrate supplementary information with the original omics
data sets in a common space. Multiple factor analysis starts
from a PCA on each block (type) of data and followed by

jointly analyzing the singular-value normalized data using the

global PCA. The normalized singular value represents the
square root of the first eigenvalue. Sanchez et al' suggested that
using MFA is expected to avoid the 7 << p problem and is
suitable for different types of omics data sets.

NMEF and others. As a dimension reduction technique, conven-
tional NMF method decomposes the data matrix using a latent
factor matrix Wand a basic component data matrix.
Nonnegative matrix factorization is similar to PCA, but
using nonnegative constraints instead of orthogonality con-
straints. Its solution is less uniquely defined but more inter-
pretable for the nonnegative omics measurements, such as
microRNA  (miRNA) and gene expression. Yang and
Michailidis® introduced an integrated NMF (iNMF) algo-
rithm to handle the heterogeneous multiple omics data sets
and reduce the overall dimensions. The joint conventional
NMF decomposes 7 multiple nonnegative data matrices by
using the nonnegative common latent factor matrix W and m
basic nonnegative component data matrix H, assuming that the
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m data sets have common latent structures. The “iINMF” adds
the variation in the latent factor matrix W and uses a penalty
term to control the variation for latent factor matrix across dif-
ferent data matrices. In contrast to the “orthogonality” con-
straints approach used in PCA, partial least squares (PLS), and
canonical correlation analysis which maintains the center of
mass, the “INMF” uses constraint over “nonnegativity” for a
better interpretation. Both approaches are to identify the best
approximations for the original data sets. The iNMF has also
been extended to cope with sparsity using a sparsity parameter
in the penalty term. These methods were proposed for expres-
sion data sets with continuous measurements.

The other streamlines in dimension reduction include Serra
et al® who combined dimension reduction and cluster analysis
to multiple genomic data sets. The algorithm involves proto-
type extraction and ranking which aims to reduce dimension
by filtering variables using variance and rank the prototype
based on their abilities to separate classes. Su et al’ proposed an
integrated framework, which applied different dimensional
reduction and feature extraction techniques, and used image-
omics and functional omics data for the classification of breast
cancer staging. They demonstrate an improvement of 3% in
classifications using the integrated data compared with using
the image-omics data only.

Clustering Methods

In integrated omics, clustering methods appear to be the com-
monly used approaches for subjects or features partitioning.
They are useful tools to provide exploratory view of the under-
lying clusters pattern. The data set from multi-omics may have
a complex data topology; new strategies are required to identify
the partitioning structure of the integrated information. Apart
from the conventional clustering approach using different dis-
tance measures, newly proposed methods use maximum likeli-
hood method and some include penalized terms to control for
complexity in feature selections. Among these studies, Newman
and Cooper!? and Aibar et al'! introduced and modified the
stochastic clustering method: self-organizing map (SOM) that
has been used in cartography in geography. Shen et al'? and
Kim?'3 used the latent variable approach with penalty terms to
optimize the likelihood for cluster memberships. Sharma
et al'* used iterative maximized likelihood method to cluster
both categorical and continuous variables.

Iterative maximum likelihood—based approaches

Newman and Cooper®® presented an unsupervised clustering
technique which bases on the SOM (Figure 2), a stochastic
clustering method to reduce the number of dimensions and
preserve the local topology of gene expressions. Initial SOM
measures the similarity of adjacent nodes and derives the dis-
similarity surface (error matrix). The error matrix is used to
identify borders of clusters and group similar data points and
separate dissimilar data points iteratively. The AutoSOME

method uses density equalization, which is a technique of car-
tography, to ensemble these graphical features output from
SOM and to rescale the SOM output lattices. The density
equalization treats nodes of high errors with high density and
forces these nodes separating from each other; conversely, it
treats nodes of low errors with low densities and aggregates
them. A minimal spanning tree algorithm is then built from
the rescaled nodes to identify the final clusters solution. Using
the similar approach, Aibar et al'! applied the SOM in tran-
scriptomics samples from 3 real data sets: myelodysplastic syn-
drome, Alzheimer disease, and colorectal cancer, to classify
patients from different disease stages.

Sharma et al™ proposed a maximum likelihood—based clus-
tering approach that can be applied to both categorical and
continuous data. In system biology, this method can be applied
to microarray expression and single-nucleotide polymorphism
(SNP) data. It identifies the optimal solution that maximizes
the likelihood for the 7 class clusters following the data topol-
ogy. The iterative algorithm includes the following steps: ini-
tialize the cluster members, shift one sample from one cluster
to another, and recalculate the total likelihood of 7 clusters
based on the new mean and covariance matrices of each cluster.
The proposed likelihood-based algorithm uses both the dis-
tance measures and variance components in the samples.

Regularization-based methods to control for
complexity in feature selections

Regularization or penalty constraints are one common
approach in statistical modeling for controlling complexity and
achieve precision when the number of observations is far
beyond the number of features or when the real associations
between molecular features are known to be much smaller than
all the possible associations.

Shen et al'? proposed a penalty-based clustering method
(iCluster) to identify the number of clusters and membership
of clusters for the integrated genetic and genomic features
(copy number variation [CNV ], DNA methylation, SNP). The
main idea is to treat the latent variables of clusters as missing
information and use expectation and maximization algorithm
to estimate parameters of the penalized complete data likeli-
hood. The penalty term induces sparsity in the weighting
matrix for the latent variables and achieves simplicity of the
clusters. Their paper introduces 3 types of penalty functions,
namely, lasso, elastic net, and fused lasso to control the number
of clusters.

Kim'3 proposed group penalty method for group-structured
and tight integrative clustering in which group lasso is pre-
sented as an updated version of iCluster.!? Under the penalized
regression framework, the joint penalty complete log-likeli-
hood was extended by adding a group lasso penalty term.
Because it is possible that multiple feature modules share the
same feature, for example, 2 miRNAs regulate the same gene.
The group lasso regularization, which is based on multiple
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Figure 2. AutoSOME (Automatic clustering using Self Organized Map) (A, B, C, D). Self-organizing map (SOM) is a stochastic clustering method to
reduce the number of dimensions and preserve the local topology of gene expressions.

feature modules, contains overlapped features (ie, messenger
RNA [mRNA], CNV, 2 methylations) and maintains the bio-
logical information in the model building.

Chi et al'® created a convex biclustering method to partition
samples and features under a regulation penalty path. They use
the distance-based measurements for clusters and iteratively
shrink both the column (features) and samples (rows) simulta-
neously. The biclustering method is motivated by solving prob-
lems in the high-dimensional genome data and can be extended
to use in the omics study for 2-dimensional partition problems.

Network Learning Methods

Network composing nodes and arcs provide an advanced tool
to demonstrate the interactions between large numbers of vari-
ables (molecular features) in integrated omics. In network
learning theories, variables are presented as nodes, causal rela-
tion or associations are presented as the arcs or edges between
nodes. The graphical model and Bayesian network (BN) pro-
vide probabilistic estimates between nodes in these networks.
The learning methods for causal and conditional-dependent

networks can be used to investigate the multilayer associations
and causal relations between omics features in integrated omics
studies. When the causal relations are not the focus, matrix-
based statistics are used to measure the associations between
the linked data sets. The existing method for omics data sets
includes canonical correlation and RV. Developments in matrix
statistics for integrated omics blossomed in the past decade
include the maximal first-order partial correlation coefficients

(MF-PCcor) and adjusted RV.

Estimating associations between omics data sets

Kayano et al'” introduced ranking-based MF-PCcor to estimate
the associations within the metabolite network and cope with out-
lying samples. The partial correlation coefficient bases on the nor-
malized rank of the expression data and the maximal first-order
partial correlation estimates the edges between metabolites.
Mayer et al presented an unbiased estimate of matrix corre-
lation—adjusted RV coefficient.’® RV was originally used as a
similarity index for 2 matrics; it is a generalization of the
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correlation from 2 variables to 2 data sets. It is the ratio between
trace of cross-correlation matrices’ product and trace of squared
correlation matrices’ product:

RV( X, y) - M
tr( Ry Ry )

The adjusted RV, an unbiased estimate of the matrix corre-
lation, replaces the squared correlation with the conventional
adjusted R squares in linear regressions. The adjusted RV is
applied to multiple system biology data sets for the identifica-
tion of biologically meaningful subgroups and can be used as
the input for clustering and multiscaling analysis.

Estimating structure of multilayer networks formed
by integrated omics data sets

Angione et al” introduced the multilayer network (multiplex)
method for the integrated omics data. It is known that iCluster
and similarity network fusion are not designed for the analysis of
cross-omics data.'? iCluster does not scale all measurements and
needs preselection of genes. Similarity network fusion only cre-
ates aggregated layers from genes. Angione proposes a method to
model the linkage between genotypes and phenotypes. It consti-
tutes multiplex networks of transcriptomics and fluxomics (a
duplex) and fuses the 2 networks into one using a weighting net-
work fusion approach. The proposed method uses a linear pro-
gram to map the gene expression onto the metabolite model.
Network with 2 layers is constructed with nodes representing
environmental condition and edges representing similarity
between nodes regarding gene or metabolite expression. The final
derived single network is used to identify clusters of conditions
with similarities. The weighted fusion approach of multiplex net-
works uses the weight to reflect the importance of gene or metab-
olite to the nodes (environmental conditions). Figure 3 provides
the visualization map of the multiplex fusion algorithm.

Mosca and Milanesi?® presented a network analysis method
similar to Angione et al’ to integrate biological components

and their interactions from multiple omics data sets. They pro-
pose to use molecular interactions and multiple objectives
(MOs) for the simultaneous optimization, basing on statistical
criteria at the network level and component level. Different
statistical criteria are set for different objective functions in the
MO optimizations. Of these criteria, hypervolume indicator,
which presents the volume of the dominated portion (subopti-
mal points) of the objective space, is used as the quality meas-
ure of MO optimization process. The introduced algorithm
integrates a weighted network from multiple omics data sets
and optimizes the weighted networks.

Cun and Frohlich?1?? presented netClass algorithm of join-
ing networks using smoothing approach. It uses smoothing
method (kernel-based smoothing network diffusion) on the
feature-wise marginal statistics over the structure of a joint
protein-protein and miRNA-target gene interaction graph.
Random walk kernel is used for smoothing and a permutation
test is used to select features of each data set. The package pro-
vides an analytical tool to integrate miRNA and mRNA
expression data, with protein-protein interactions and miRNA-
target gene information.

Apart from developing new learning methods, some studies
applied the existing methods into integrated omics. One typi-
cal study of these applications is the work by Pefiagaricano
et al*® who applied BN (R package bnlearn) to explore the
causal networks underlying fat deposition and muscularity in
pigs, using genotype, transcriptomic, and phenotype data sets.
The study group introduces an integrated analysis using mar-
ginal associations between genotypic and phenotypic traits
(genotype and phenotype data) via pQTL, marginal associa-
tions between genotypic and expression traits (genotype and
transcript expression mRNA data) via eQTL, and identifies
the colocalized joint significant eQTL and pQTL from the
mapping analysis. They provide a summary of several methods
to infer the causal genotype-phenotype network. One of the
causal structure learning techniques is the inductive causation
(IC) algorithm and its extended version, Incremental
Association Markov Blanket (IAMB). The IC algorithm starts
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with determining conditional associations of a pair of variables
(A and B) given all other variables, by searching any possible
subsets of other variables as the dependency set. It follows by
the second set of conditional independent tests including the
adjacent variable C of A and B. The resultant partially directed
graph is then filled with undirected edges as many as possible
so long as that there is no new V structure and new directed
edge formed. The extended version of the IC-IAMB algo-
rithm includes a screening process to identify the Markov
blanket of every variable X. The IAMB involves a set of condi-
tional independent test for a pair of variable X and Y given
subset /7, it reduces the computation complexity without com-
promising accuracy. PARADIGM?* is another BN tool that is
developed for the integrated omics expression data; it is a factor
BN graph method that requires a differentiating state for each
variable and their pathways.

There are study groups only providing tools for building a
network and visualizing these networks. Appendix 1 includes a
summary of these tools. One example is the BisoGenet,?
which is a network building tool assigning biological functional
relations of protein and protein, protein and genes, based on a
local in-house database “SysBiomics.” This server provides net-
work building and visualization functions, given input entities
nodes and edges.

Regression-Based Methods

In the integrated omics literature, the regression equations are
set for explaining inter- or intrasystem relation and interac-
tions. The strategies of parallel or sequential regressions are
sometimes used with constraints. Parallel regressions are cho-
sen to model causal relations between multiple molecular
responses (ie, metabolites and genes) on continuous or categor-
ical scale and their interacting effects as well as factors of inter-
ests, ie, pathway membership. Multivariate responses technique
is not suitable due to the necessity of including interresponse
relations in the explanatory factors of these models. One exam-
ple of these interresponse relations is as follows: an active path-
way membership of gene affects metabolites involved in the
same pathway.

Parallel regressions

The parallel regressions are used in different omics responses
to explain intersystem responses simultaneously. One example
is the model proposed by Jauhiainen et al? to integrate tran-
scriptomic and metabolomic data to make an informed path-
way-level decision. They proposed 2 linear models to describe
responses of the gene and metabolite expression on pathway
memberships. The fixed and random effect metabolite linear
models include the pathway membership of gene presented by
the regression coefficients from its parallel linear model; the
mixed model includes random effects on the metabolite level.
The random term allows the effects from unselected genes in
the pathway being measured as these genes could post effects

on the metabolite even if they are not selected at the gene level.
The model selection occurs at 2 levels: firstly to select differen-
tially expressed genes and subsequently which genes are
allowed to influence the metabolite expression, and secondly,
on the global pathway level to pick out the active pathways.
Poisson et al?” presented 2 joint tests for gene expression
and metabolite information using 2 parallel logistics regres-
sions. The gene expression and metabolite information are fit-
ted in separate logistic regression, both of which predict the
probability being in the interested gene or metabolite set S.
The first test involves a 2-degree-of-freedom Wald test on the
resultant regression coefficients. The second test is an enrich-
ment test statistics using the sum of square statistics for gene
and metabolite which are constructed as a 2-dimensional vec-
tor (WSGE"E,WSM””ME) by permutation. A similar enrichment
strategy was given by Pey et al?® who used an optimized path-
way analysis model enriched by the classification based on
upregulated or downregulated gene/protein expression. The
optimization is divided into 3 stages to minimize the associa-
tions between flux and reactions in the classes. Results of gene
expression measured by transcriptomics and protein data meas-
ured by proteomics are used to infer the forming of pathways.

Sequential regressions

Acharjee et al? presented a sequential analytical approach
starting from using the random forest to screen variables from
individual “omic” data set, followed by further selection of the
redundant variables via eQTL (quantity trait linkage). One
advantage of the study is using the well-known regulatory
genetic and metabolic pathways to validate the method. The
method in the study is applied to transcriptomic (mRNA),
proteomic (2D gel), and metabolomic (liquid chromatogra-
phy-mass spectrometry and gas chromatography-mass spec-
trometry) data. First, the analysis starting with a random forest
algorithm is implemented using R package randomForest, and
a permutation test is proposed by the author to determine the
metabolite/protein/RNA significance for predicting the trait.
Second, the integrated linkage map is used and implemented
via R package metanerwork. Finally, the final selected gene,
protein, and metabolites including the trait are used to con-
struct the network. The network’s nodes are formed by the
aforementioned molecules and traits, and the edges are repre-
senting the strength of the interactions measured by regular-
ized partial correlations.

Partial least squares

Partial least squares is a multivariate technique used to identify
latent structures of both predictors and responses by maximiz-
ing the covariance between them. It is widely used in the inte-
grated omics study. Since Wold introduced the NIPALS
algorithm for PCA and PLS in chemometrics in the 1980s,
NIPALS became the popular computer algorithm for PLS. Lé
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Figure 4. N-partial least squares (N-PLS) construct data array with responses (Y) from different omics platforms’. The predictor data blocks (X) curated

from another type of omics platform in the multifactorial (N) spaces.

Cao et al® proposed a sparse PLS (SPLS) using lasso penaliza-
tion for integrated omics. Sparse PLS optimizes the square
error terms with a penalty term of loading vectors of response
matrix Yand predictor matrix X.

Fonville et al®! introduced the extended orthogonal signal
correction (OSC) PLS (O-PLS) in 2010. It weights the predic-
tor variables using the orthogonal components in the covariance
matrix between the response (Y) and the predictor variables (X).
The O-PLS filters out the “structure noise” basing on the covari-
ance matrix for Yand X. It becomes one of the popular approaches
in metabolomics due to its easy interpretation. A similar idea
named N-PLS was also given by Conesa et al,” N-PLS con-
struct data array responses (Y) from multiple omics platforms
and the predictor data blocks (X) curated from another type of
omics platform in the multifactorial (N) spaces. It finds latent
spaces that can maximize the covariance between X and Y and
decomposing X from the improved version. The authors pro-
posed a gene selection procedure using a gene-associated param-
eter p that reflects the contribution of each gene (Figure 4).

Chen and Li%* presented 3 stochastic discrete dynamic equa-
tions to describe the relations among genes, proteins, miRNAs,
and DNA methylations. These stochastic dynamic equations
provide quantitative predictions of measurements of mRNA,
miRNA, and protein expression at a specific time point. The
quantitative measurements involve their expression levels at time
#,interactions, respectively, for miRNA-mRNA, protein-protein,
and the degradation of mRNA, as well as rate of miRNA-
mRNA coupling. These stochastic equations describe the inter-
molecular relations included in protein-protein interaction,
miRNA and gene regulatory network, and the measurement
errors. In addition to the 3 stochastic equations, an extra equa-
tion for path gene protein is added to construct the integrated
genetic and epigenetic cellular network. The regulatory and
interactive parameters included in these 4 dynamic equations are
evaluated using temporal data and solved by the constrained
least square parameter estimation problem.

Another example is given by Pavel et al3® who integrated 3
types of molecular data: mutation, CNV, and gene expression
via a fuzzy system score for each gene and sample. Biological
rules are created based on the defined categories of these 3
molecular data sets. A fuzzy logic modeling is used to cluster
and subtype discovery and to recover many known suppressor
genes and oncogenes and subtypes in colorectal cancer cells.

Biological Knowledge Enrichment Learning

As defined in machine learning literature, supervised learning
method uses response variable and training data or prior
knowledge to provide a prediction for response variable. In sta-
tistical learning, the prior knowledge can either be used to set
prior in the Bayesian model or inform the model selection.
Bayesian modeling provides the essential framework to incor-
porate known information in analysis. It is called supervised
learning in the context of prediction because the “true” value Y
is part of the training data. In the context of estimating causal
relationships between omics variables, however, the value of ¥
is not the goal of the analysis and these do not involve knowing
the true causal relations.

Pavel et al33 gave examples of using the biological knowl-
edge for forming biological rules in the cluster. Poisson et al?”
introduced enrichment tests learned by biological knowledge
to jointly evaluate gene expression and metabolite abundance.
Nguyen and Hob3* proposed a semisupervised machine learn-
ing method to identify disease-related genes via the publicly
available database. The method starts with identified disease-
related proteins from the public databases which provide
known biological information for the proteins to be analyzed.
The included databases are UniProt, Gene Ontology, Pfam,
InterDom, Reactome, and gene expression. The proteins of
interests are divided into disease-related group or not related
group according to the integrated information from these data-
bases. After the division, data are extracted and preprocessed
according to the feature functions, namely, the protein sequence
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Intra- and interplatform variabilities also have their influences
in the method selection.

Consensus PCA, operating on combined measurement, is
for more uniformly curated data from the same or different
platforms. Multiblock PCA can handle data with larger inter-
platform variability, potentially curated from complex experi-
ments. Multiple factor analysis, an extension of factor analysis,
is beneficial to studies when there is known biological knowl-
edge to interpret latent common factors; it provides a tech-
nique for projecting supplementary variables (representing
prior knowledge) on to the estimated factors. MFA has been
used in research to investigate the insulin resistance when there
are clinical data, DNA banding, and expression arrays that
need to be integrated.!

Sanchez et al! provided cross-validated estimates to deter-
mine number of relevant dimensions in CPCA, whereas MFA
requires prespecified dimensions.

Cluster Analysis Methods

To compare these clustering methods, a published matrix* for
comparing cluster method is used as our reference. We con-
dense the matrix to focus on the 5 statistical and implementa-
tion performances: (1) outliers detection, (2) providing number
of clusters objectively, (3) providing uncertainty measures (ie,
confidence interval), (4) handling mixed types of data variables,
and (5) speed and memory use.

An enhanced version of the SOM, the AutoSOME cluster
method, does not require prior knowledge of number of cluster
and is less sensitive to outlying observations. Starting with a
dissimilarity measure matrix in the SOM, the later adding pro-
cesses include the density equalization algorithm and a graph-
theory/minimum-spanning-tree algorithm to identify the
objective number of clusters based on a threshold of P value.
The limitation is that it can only be used in platforms produc-
ing continuous data, but with strength in its ability to handle
both clean and noisy gene expression data and its stability in
using the resampling method to derive the averaged cluster
solution and confidence interval. Empirically, Newman and
Cooper!? showed that applied transformation on the euclidean
distance such as cubic operation achieves better separations
and clusters using AutoSOME.

Comparatively, the regularization-based approach iCluster
can be used for both categorical and continuous integrated
omics data. Similar to the bicluster and group-regularized
methods, iCluster allows faster estimation even in high-dimen-
sional data sets.

Network Learning Methods
The proposed criteria used to compare these network learning
methods in integrated omics are as follows: (1) purpose of the
network learning, (2) handling complex network, (3) providing
uncertainty measures, (4) speed and memory, and (5) providing
prediction accuracy information.

Multiplex similarity networks are designed to handle com-
plex networks with multiple layers; it provides a weighted simi-
larity measures to account for the importance of each layer. The
version at the time of this review does not provide prediction
accuracy for model comparison and uncertainty measures.

The widely used BN is established with a longer history in
other areas; it provides structure for modeling causal relations
among variables. It has been used and developed in integrated
omics recently; although it is not designed to handle multiple
complex layer networks, it can be used for a limited number of
mixed types of variables (such as phenotypes and expression
measurements) using the hybrid Bayesian computing BN. It
provides uncertainty measures for the marginal or conditional
probabilities and uses information criteria such as BIC
(Bayesian information criterion) and BDe (Bayesian Dirichlet
equivalent uniform posterior probability) to assess goodness of
fit in the structure.

Kernel-based smoothing approach in the netClass package
uses a kernel-smoothed Support Vector Machine algorithm
based on gene-wise 7 statistics to select the significant signa-
tures from continuous expression data (miRNA and mRNA);
it provides cross-validation to assess goodness of fit.

Among these methods, BN and its extended algorithm for
omics data sets are designed for directed acyclic graphs: these
require a known or hypothesis structure. Multiplex similarity
networks are designed for multiple networks, and they can
handle different types of variables (scales, counts, and binary
variable) without requirement of a known structure.

Parallel Versus Sequential Regression Versus
Multivariate PLS
Using a parallel or sequential approach to regression needs to be
decided on the study purposes and complexities of the omics
data sets. Parallel methods allow estimation of relations between
different omics responses and their explanatory variables simul-
taneously. They are useful for pathway-level analysis, especially
when data sets have different types of omics variables involved in
the same pathway. A sequential approach is used to facilitate bio-
logical enrichment analysis following the feature reduction when
each platform has large number of variables. The sequential
approach allows selected gene, proteins, or metabolites to be
included in the network construction at the final step.
Multivariate PLS is useful when the study requires extrapo-
lating relations between multidimensional responses and
explanatory variables because it takes account of the multiway
structure of the data (eg, samples by platforms by time).
Multivariate PLS variants include SPLS, O-PLS, and N-PLS
that attempt to simplify the latent structure in different ways.
Both parallel and sequential regressions integrate the hierar-
chical structure of biological regulation in the models. The paral-
lel approach requires a global fitness measure such as a

pathway-level weighted combined RZ  for model selection.

comb

When there are a large number of omics variables from different
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platforms to be integrated, the sequential regression approach or
a penalized PLS will be beneficial to cope with the large num-
bers of dimensions in regression, although the parallel regression
approach can also use penalized approach for each model.

Bayesian versus non-Bayesian computation

Bayesian and frequentist approaches are not contradictory in
integrated omics. In machine learning literature, supervised
learning includes using Bayesian statistical approaches to
integrating prior knowledge in the current observations.
Sharma et al'* used the prior probability of cluster belongings
in their iterative maximal likelihood algorithm for estimating
the posterior probability of clusters membership. Although
their computation method does not use the classic posterior
samplings (ie, Markov chain Monte Carlo approach), they
have employed the Newton-Raphson gradient ascending
method to find the optimal estimates which have integrated
the priors information. iCluster is another example of using
Bayesian approach for identifying cluster membership, but
using expectation-maximization (EM) algorithm in the com-
putation, iCluster!? requires prior knowledge of the number
of clusters. Multiple Dataset Integration®3 uses the multino-
mial mixture model which requires prior knowledge of mix-
ture probability and uses the Gibb samplings. PARADIGM?*
and CONEXIC#* are 2 algorithms that use BN-based meth-
ods: the former uses EM algorithm in the computation of the
unknown factor graph parameters and the latter is specifically
designed for combining gene expression and copy numbers to
construct a regression tree.

Bayesian method is preferred when the analysis requires
integrating known knowledge (ie, pathway or network
structure)® but it requires larger computer memories and
can be time-consuming to achieve better precisions in the
estimation.

Closing Remarks

The presented methods for integrated omics are not only inno-
vative but also diverse. The selections of analytical techniques
are primarily determined by the research questions sought to
answer. New methods are created for providing better strate-
gies to integrate different omics measurements from different
technology platforms that have both inter- and intraplatforms
variabilities. Streamlining of these methods gives us a clear
vision of how the statistical framework has been built to agree
with other sciences. Future research requires more uniformed
structure and methods in networks estimation and prediction
for mixed types of measurements and more applications in pre-
cision medicines.
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