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Abstract: From the earliest moments of life, contact with the outside world and with other individuals
invalidates the sterility of the oral cavity. The oral cavity passes from a sterility condition, that is
present only during intrauterine life, to a condition in which a microbiota organizes and evolves itself,
accompanying the person throughout their life. Depending on a patient’s age, systemic conditions
and/or oral conditions, different characteristics of the oral microbiome are shown. By verifying and
analyzing this process it is possible to understand what is at the basis of the etiopathogenesis of some
oral pathologies, and also the function of the oral microbiome.
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The anatomical diversity of the oral cavity forms different habitats, with different physical and
chemical factors. These niches (lips, cheeks, palate, teeth, gingival sulcus) are suitable for different
microbial populations. It is necessary to consider that the oral microbiota has great plasticity over time;
both short term (during a day), and long term (during the lifetime). Analyzing the oral microbiota,
and the different habitats, it can be easily concluded that the colonizable surfaces are different [1–4].

In fact, the oral cavity is characterized by hard tissue, such as enamel, which does not exfoliate,
and thus allows for a stable colonization, and soft tissues, which undergo renewal and exfoliation
and a final habitat, defined as the crevicular area, which has specific characteristics with respect to
bacterial colonization.

The oral cavity is also characterized by a high humidity, guaranteed by the presence of saliva and
crevicular liquid. Saliva has a cleansing and other important functions during the chewing phases. It
is produced in a quantity of about 800–1500 mL/day. Although saliva has an important antibacterial
function, it contains proteins or glycoproteins, which favor the formation of the acquired enamel film
(enamel pellicle). The enamel film allows the adhesion of bacteria and therefore, the formation of
plaque. On the other hand, the crevicular fluid is an exudate of plasmatic origin [5–9].

There are chemical and physical factors that influence the oral microbiota, such as temperature,
pH, anaerobic conditions, age, hormonal variations, hygiene, type of diet, presence of systemic diseases
or the use of drugs, all of which affect bacterial colonization (Figure 1) [9–16].
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Figure 1. Factors that influence the oral ecosystem. 

While the oral cavity is host to microbes that belong to different species, in general, the 
predominant bacteria in the mouth are Streptococci. The oral cavity is sterile at birth, but bacterial 
colonization already begins within 6–10 h, and undergoes maturation and changes over the following 
hours. The changes of the oral microbiota are not due only to the passage of time, but as previously 
specified, also due to other co-factors, and to the oral anatomical condition changes. The newborn's 
edentulous mouth has no teeth, no hard surfaces, and anaerobic condition habitats, such as the 
gingival sulcus. For this reason, the anaerobic bacteria in these phases are scarce (Veillonella 
Fusobacteria and Peptostreptococci), to the detriment of the optional aerobic-anaerobic colonizers 
such as Streptococci, in particular the Streptococcus salivarius. During the eruption phases, the 
microbiome changes, as a result of the colonization of not exfoliating hard surfaces. This change could 
occur by Streptococcus sanguis, Neisseria sicca, Streptococcus mitis, or Streptococcus mutans that leads to 
the formation of the first plaque. Tartar originates from plaque calcification [17–19]. 

Subsequent to the formation of the enamel film, which takes place a few seconds after having 
performed the oral hygiene maneuvers, the tooth surfaces are colonized. The initial phase lasts about 
8 h, in these phases the Streptococci (S. sanguis, S. mitis) and some Neisserie (N. sicca) lead to the 
formation of microcolonies. The subsequent phases see the maturation of the plaque, which leads to 
non-quantitative but qualitative changes. In fact, anaerobic conditions are realized, and receptor 
structures are formed which indicate a bacterial interaction. The formation of plaque layers makes 
the bacteria resistant to both drugs and host responses [20–23]. 

Following this, it is possible to distinguish a supragingival plaque from a subgingival plaque. 
The supragingival plaque is mainly composed of streptococci (S. sanguis, S. mitis, S. mutans); 
actinomycetes (Actinomyces viscosus) and Veilonelle. It is, however, necessary to consider that some 
of these bacterial species are antagonistic, and for this reason, they tend to colonize different habitats, 
for example, the Streptococcus mutans is present on the occlusal and approximal faces of the teeth, 
while the Streptococcus sanguis is on the smooth teeth surfaces. Subgingival plaque, characterized by 
conditions of anaerobiosis, is highly variable. The structure of the subgingival plaque has some 
similarities with that of the supragingival plaque, especially when it comes to plaque associated with 
gingivitis without the formation of a deep sulcus. The bacteria include Gram-positive and Gram-
negative cocci and filamentous organisms. Spirochetes and various flagellated bacteria could be 
encountered, especially in the most apical areas of the plaque. The most superficial layer is often less 
densely colonized, and the leukocytes are regularly interposed between the plaque and the epithelial 
lining of the gingival sulcus. When a periodontal sulcus forms, the appearance of subgingival 
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While the oral cavity is host to microbes that belong to different species, in general, the predominant
bacteria in the mouth are Streptococci. The oral cavity is sterile at birth, but bacterial colonization
already begins within 6–10 h, and undergoes maturation and changes over the following hours. The
changes of the oral microbiota are not due only to the passage of time, but as previously specified, also
due to other co-factors, and to the oral anatomical condition changes. The newborn’s edentulous mouth
has no teeth, no hard surfaces, and anaerobic condition habitats, such as the gingival sulcus. For this
reason, the anaerobic bacteria in these phases are scarce (Veillonella Fusobacteria and Peptostreptococci),
to the detriment of the optional aerobic-anaerobic colonizers such as Streptococci, in particular the
Streptococcus salivarius. During the eruption phases, the microbiome changes, as a result of the
colonization of not exfoliating hard surfaces. This change could occur by Streptococcus sanguis, Neisseria
sicca, Streptococcus mitis, or Streptococcus mutans that leads to the formation of the first plaque. Tartar
originates from plaque calcification [17–19].

Subsequent to the formation of the enamel film, which takes place a few seconds after having
performed the oral hygiene maneuvers, the tooth surfaces are colonized. The initial phase lasts about
8 h, in these phases the Streptococci (S. sanguis, S. mitis) and some Neisserie (N. sicca) lead to the
formation of microcolonies. The subsequent phases see the maturation of the plaque, which leads
to non-quantitative but qualitative changes. In fact, anaerobic conditions are realized, and receptor
structures are formed which indicate a bacterial interaction. The formation of plaque layers makes the
bacteria resistant to both drugs and host responses [20–23].

Following this, it is possible to distinguish a supragingival plaque from a subgingival plaque. The
supragingival plaque is mainly composed of streptococci (S. sanguis, S. mitis, S. mutans); actinomycetes
(Actinomyces viscosus) and Veilonelle. It is, however, necessary to consider that some of these bacterial
species are antagonistic, and for this reason, they tend to colonize different habitats, for example,
the Streptococcus mutans is present on the occlusal and approximal faces of the teeth, while the
Streptococcus sanguis is on the smooth teeth surfaces. Subgingival plaque, characterized by conditions
of anaerobiosis, is highly variable. The structure of the subgingival plaque has some similarities with
that of the supragingival plaque, especially when it comes to plaque associated with gingivitis without
the formation of a deep sulcus. The bacteria include Gram-positive and Gram-negative cocci and
filamentous organisms. Spirochetes and various flagellated bacteria could be encountered, especially
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in the most apical areas of the plaque. The most superficial layer is often less densely colonized, and
the leukocytes are regularly interposed between the plaque and the epithelial lining of the gingival
sulcus. When a periodontal sulcus forms, the appearance of subgingival bacterial deposits becomes
complex [24]. In this case, the tooth surface could be represented by both the enamel and the cement,
from which the periodontal fibers have been detached. Filamentous microorganisms predominate
in this layer of plaque, but cocci and rods are also found. On the other hand, in the deeper parts
of the periodontal sulcus, the filamentous microorganisms become increasingly scarce, and in fact,
seem to be absent in the most apical portion. Instead, the dense bacterial deposit that faces the
tooth surface is dominated by smaller microorganisms, with no particular orientation. It is precisely
during these phases of colonization that it is possible to create the conditions for the formation of
colonies of aggressive bacteria against host tissues, such as Campylobacter rectus, Prevotella Intermedia
and Porphyromonas gingivalis [25–30].

Bacterial plaque is not only formed on the surface of natural teeth, but also on artificial surfaces
exposed to the oral environment, including implant surfaces. The similarities between peri-implant
microbial and subgingival deposits have been clearly demonstrated by cross-sectional and longitudinal
studies, and it is possible to state that the structure of peri-implant plaque deposits may resemble
those encountered in the subgingival environment. The presence of a complex biofilm could have
repercussions at the systemic level, or even have repercussions on surgical operations performed in the
oral cavity [31–39].

In addition, bacterial metabolism of the multiple species found in plaque could lead to the
formation of catabolites that could damage oral tissues [40–44].

Surely being able to fully understand these mechanisms could lead to therapies and preventive
techniques aimed at the formation of a less aggressive plaque, or to inhibit these phenomena.
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