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Recent advances in magnetic resonance imaging are enabling the efficient creation of

high-dimensional, multiparametric images, containing a wealth of potential information

about the structure and function of many organs, including the cardiovascular system.

However, the sizes of these rich data sets are so large that they are outstripping our ability

to adequately visualize and analyze them, thus limiting their clinical impact. While there

are some intrinsic limitations of human perception and of conventional display devices

which hamper our ability to effectively use these data, newer computational methods for

handling the data may aid our ability to extract and visualize the salient components of

these high-dimensional data sets.
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INTRODUCTION

While cardiovascular magnetic resonance imaging (CMR) has become a valuable clinical tool,
conventional CMR still has many limitations. Recent ongoing advances in the development of
CMR imaging methods are now making possible the acquisition and reconstruction of much more
comprehensive sets of imaging data on the cardiovascular system, including the creation of large-
scale multidimensional andmultiparametric images. However, limitations of the human perceptual
system and conventional display devices make the visualization and analysis of these large and
complex data sets challenging. We will briefly summarize some of the background related to the
creation and potential applications of these new CMR data sets, and we will discuss some of the
associated challenges involved in handling them, as well as some possible paths forward to meet
these challenges.

CONVENTIONAL CARDIOVASCULAR MRI

Magnetic resonance imaging (MRI) uses the physical phenomena of nuclear magnetic resonance
to create images that reflect multiple aspects of the state of the body, including the following
principles: (1) Certain nuclei, including hydrogen (one of the principal constituents of the body),
can become magnetized in a strong magnetic polarizing field, producing a collective bulk nuclear
magnetization. (2) The orientation of the nuclear magnetization relative to the polarizing field
can be changed (“excited”) by applying an oscillating magnetic field at a specific resonance
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frequency (proportional to the strength of the polarizing field);
if the nuclear magnetization is left at an orientation inclined
to the field direction, it will produce a weak, but detectable,
signal at the resonance frequency. (3) Position information can
be encoded in the signal, through the use of supplementary
magnetic fields which vary with position in a controlled way
(“gradients”), with associated changes in the local resonance
frequency (1); the resulting signals are equivalent to samples
of the Fourier transform of an image. A suitable set of such
encoded signals can be used to reconstruct an image (2D or
3D) of the spatial distribution of the signal sources, through
an inverse Fourier transform. Gradients can also be used
during excitation to select a desired plane to image. Serial
images over time can display motion. (4) Tissue state-dependent
“relaxation times” can affect the strength of the signal; additional
excitations can be used to change the local image contrast,
through relaxation time-dependent effects on the signal, which
can help to reveal the presence of abnormalities in the image,
or to calculate the regional relaxation times or other parameters
(“parameter mapping”), typically by measuring the difference
in image intensity produced by the additional excitations. Such
parameter mapping can potentially be used for more quantitative
characterization of disease states. Contrast agents alter the image
appearance by altering the local relaxation times; early and late
contrast enhancement patterns provide information on perfusion
and associated tissue abnormalities, which can also potentially
be quantified. (5) Additional gradients can be used to sensitize
the signal to motion effects, including velocity and diffusion,
enabling flexible measurements of blood flow and providing
an additional potential means for tissue characterization. (6)
Nuclei at different positions within a molecule may have
slightly different resonance frequencies, potentially providing
some chemical information in the signal, e.g., distinguishing fat
from water.

In applying MRI to the cardiovascular system, we have to deal
with the effects of motion on the images, related to both the
heart beat and breathing. If the heart beats are sufficiently similar,
we can pool data from multiple heart beats, to create “cine”
images at multiple relative times spanning an averaged cardiac
cycle. If data acquisition times are short enough, images can be
created during suspended respiration, to eliminate respiratory
motion effects. In conventional clinical cardiovascular MRI, sets
of relaxation time-weighted and cine images, acquired inmultiple
planes, are used to evaluate the local and global structure,
tissue properties, and function, primarily through qualitative
assessment of 2D images.

While they are clinically very useful, there are still significant
limitations of conventional CMR methods. Due to breath
hold limits, most imaging is 2D and acquired with separate
breath-holds, leading to long imaging sessions needed to cover
the heart and vessels, and potential position inconsistency
between images, due to inconsistent breath-holds. Internal
inconsistency of the acquired data, e.g., when patients
cannot suspend respiration or have arrhythmia, can lead to
image degradation. Conventional parameter mapping is time-
consuming and vulnerable tomotion and other artifacts, limiting
its clinical use.

NEWER CMR METHODS

Various approaches have enabled the use of undersampling of
the imaging data, taking advantage of the underlying correlations
between pixels in medical images (“compressed sensing”),
thus shortening imaging times. In addition to accelerating
conventional imaging, these new methods make it possible to
acquire larger image data sets in a reasonable time. In the context
of CMR, considering cardiac and respiratory cycle phases as
effectively being additional dimensions enables reconstruction
of respiratory- and cardiac-synchronized 2D and 3D image
data sets from free-breathing continuous data acquisitions (2,
3). Previously, parameter mapping required acquiring multiple
images with different degrees of “steady” sensitivity to the desired
tissue property, and then combining them to calculate the value
of the property; however, this is a time-consuming process,
and is subject to errors related to any position inconsistency
between the images. Newer mapping imaging methods have
taken a more efficient dynamic approach, directly incorporating
the “unsteady” response of the signal to transient perturbations,
such as additional excitations or contrast injections, into the data
acquisition process. The resulting mixed effects on the signals can
then be separated during the image reconstruction process, using
mathematical tools such as “low rank” decomposition of the
resulting image data set. This “multitasking” approach enables
adding parameter mapping and perfusion imaging to a combined
image reconstruction. Such combined multidimensional data
acquisition and reconstruction imaging methods can thus enable
direct joint creation of images of regional tissue properties,
together with the motion, without the conventional need to
separately reconstruct the properties from sets of sequential data
acquisitions (which are vulnerable to problems from inconsistent
tissue positions) (e.g., Figure 1). An alternative approach to
multidimensional and multiparameter imaging is to use the
evolving response of the signal to continuously varying excitation
pulses and gradients (“fingerprinting”). However, all these
approaches have previously required time-consuming associated
iterative image reconstruction methods; machine learning (ML)
methods are a promising way to speed up this up (4–10), and
ML-based methods are being rapidly developed for this and
many other image-related applications. Artificial intelligence
(AI)-based methods can be used to help suppress artifacts
that may arise from more conventional image reconstruction
methods, e.g., due to motion or data undersampling. However,
AI-based methods for image handling programs may be subject
to instabilities. These and related methods are described in more
detail and illustrated in the accompanying articles in this issue,
and will not be further discussed here. We can also potentially
acquire multinuclear imaging data, for an additional set of
“dimensions” to display and analyze.

One thing that these methods all have in common is the
ability to create very large and high-dimensional data sets; it is
very challenging to visualize and analyze the wealth of data that
they can potentially contain. The same underlying correlations
between the images across the multiple images that make it
possible to reconstruct them from undersampled data also make
it possible to represent them in a correspondingly compressed
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FIGURE 1 | Example of the use of multitasking imaging, with use of simultaneous T1- and T2-weighting (A), to generate motion-resolved multidimensional images

with parameter mapping (B–E) [(4) (by permission)].

form. This can make for a more compact way to store the data,
and the images can then be selectively re-expanded, as needed,
for displays, making for more efficient data handling. Beyond
the immediate challenge of how to adequately and interactively
survey the full extent of such large data sets, there are also
challenging quantification issues related to associated tasks in
handling the data, such as segmentation of different structures,
characterization of time evolution across multiple dimensions,
and identification/classification of abnormalities revealed by
regional alterations in different parameters. Segmentation of
cardiac structures is already challenging for conventional CMR
functional analysis; segmenting cardiac structures acrossmultiple
dimensions compounds that challenge. However, being able
to quantitatively assess the interactions between cardiac and
respiratory cycles potentially offers new ways to characterize
cardiovascular function (11, 12). One promising approach
to the challenges of multidimensional image handling is
the napari project, which aims to develop an open-source
set of high-performing multidimensional image display and
analysis tools.

HUMAN PERCEPTION LIMITATIONS

We live in a 3D dynamic world; our visual interactions with
it are mediated through images projected onto effectively flat
retinas. We infer relationships between 2D object features
that we see in an image and the corresponding underlying
3D object surface via visual cues, such as shading and
occlusions, and from stereo disparities of details between left-
and right-eye views. However, the structures captured in our

3D (or higher dimensional) MR images may not have well-
defined implicit discrete surfaces to render; this is a frequent
problem with conventional 3D medical imaging methods,
when trying to display such structures as 3D objects. We
can explore a 3D data set by interactively scrolling through
consecutive 2D sections through it, or by displaying an array
of multiple such images, but it is difficult to directly compare
different regions with such displays. One common way to
try to effectively compress 3D data of the heart into a 2D
display is to create target-like “bull’s eye” plots, e.g., with
concentric rings representing different short-axis locations in
the ventricle walls from apex to base and a color scale linked
to some mapped quantity; however, this is associated with
decreased data sampling density and geometric distortion of the
displayed structures.

Our eyes have perceptual limitations, including a limited
dynamic range and a limited ability to discriminate similar
intensities. Vision is also affected by simultaneous contrast;
that is, the subjective appearance of a region can be
significantly altered by changes in the brightness or color
of surrounding regions. We are not good at visually judging
absolute brightness. We also cannot readily attend to multiple
properties and different locations at once, and thus have
difficulty comparing corresponding regions between different
kinds of separately displayed images. These limitations are
further exacerbated when we need to compare and register
motion patterns in separately displayed images of different
locations. These perceptual limitations are already a problem
with conventional intensity-based imaging, and they become
more acute when trying to incorporate additional parameters
into the images.
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DISPLAY OPTIONS AND LIMITATIONS

Conventional computer displays use flat screens, which is
already a significant limitation for viewing 3D data. The usual
approach for interactively viewing 3D data is to use “multiplanar
reformatting” (MPR) to create a virtual view of an interactively
selected 2D plane from within the 3D volume; however, while
MPR is very useful, it can still be difficult to build up a reliable
understanding of the underlying 3D structure relationships in
the imaged volume from viewing such sampled 2D slices. An
alternative display approach is to use a “volume rendering
technique” (VRT) approach to display a shaded rendering of
implicit “surfaces” within the 3D volume; newer “cinematic”
approaches to generating the shaded surface displays can help
make the spatial relationships of the displayed structures clearer.
However, the structures of interest in the imaged volumemay not
have sufficiently sharp boundaries in the intensity data to enable
their use for such rendering. When extending these approaches
to time-varying (e.g., real or “physiologic” time) or other multi-
dimensional data, we can use interactive scrolling through or
animation of a corresponding set of such displays over time or
other dimensions. For images that evolve over time, e.g., images
of dynamic contrast enhancement, it may be more useful to
display functional images that effectively summarize the time
evolution of the signal, e.g., by calculating the temporal moments
or perfusion-related variables, rather than displaying themultiple
underlying serial images, themselves. However, when additional
dimensions are introduced into the data, we must choose which
dimension to animate, as only one dimension can be mapped
into the animation at a time, and we may still have difficulty
exploring interactions between the different dimensions. The task
of interactively exploring all potentially relevant areas of a large
multidimensional data set can be daunting (like “looking for a
needle in a haystack”).

For display of single imaged parameters, or of scalar variables
calculated from the image sets, we can use a simple color overlay
with varying opacity onto the corresponding underlying intensity
image data; we can interactively adjust the associated color
and opacity lookup tables to qualitatively bring out structures
of interest in the display. When dealing with multiparametric
image data, we must choose a given property (or combination
of properties) to map (using an associated color lookup table)
for a given display. However, things get more difficult when
we want to examine the spatial distribution of more than
one scalar property at a time. Although we can try to use
some sort of hue/saturation/value mapping to display multiple
properties at once, these effective display “dimensions” are not
very “orthogonal” to each other, and the eye’s response to
them is not very linear. An alternative approach to jointly
evaluate images of multiple parameters is to enable interactive
exploration of different combinations of the parameters. For
example, we can create synthetic images reflecting the expected
appearance of images that would have been acquired with
different relative amounts of parameter weighting; this may be of
more practical utility than simple images of the parameter values
themselves. One way to approach this would be to map up to
three different coregistered parameter values to be displayed in

separate red, green or blue overlaid colors, with the net perceived
color reflecting the relative contributions from each parameter.
Alternatively, a principal component analysis approach could
be used to look for ways to combine multiple parameters that
would best distinguish between different particular tissue states.
As an example, this approach could potentially be used to help
distinguish myocardial regions of bright appearance on T1-
weighted imaging that are due to late gadolinium enhancement,
rather than to fat or residual contrast enhancement of the
adjacent blood, which would have different chemical shift or
T2 values than enhanced myocardium. Qualitative assessment
of the spatial variation of such multiparametric-based displays
may be more clinically useful for identifying and classifying
regional abnormalities than simple local measurement of specific
numerical values of parameters.

Motion and other temporally varying properties are often not
readily summarized as simple scalars, although approaches such
as calculation of associated temporal moments can be useful.
Higher-dimensional imaged properties, such as vectors (e.g.,
velocity) and tensors (e.g., deformation or diffusion), can be
discretely represented with arrows or glyphs at sampled locations;
however, it is difficult to appreciate their 3D orientation and
scales from a flat image, although “motion parallax” effects
seen while interactively changing the view orientation can help.
The velocity fields can also be used to generate corresponding
streamlines or virtual particle traces (13). To aid the 3D
representation of such higher order variables, we can let arrows
or glyphs closer to the viewer progressively occlude those
behind them, or create an orientation-dependent appearance
for their representation, but this is inherently a difficult
task. It is already challenging to work with conventionally
acquired 4D (3D plus time) flow/motion data for display
and analysis; adding additional effective dimensions will only
compound this difficulty. While virtual reality (VR) display tools
with stereoscopic capabilities have been used to augment the
conventional visualization of 4D flow data, some users have
found them to induce nausea, and the associated available image
display resolution is still relatively limited, indicating that the
virtual display technology may still need more development
before it is ready for adoption for clinical use.

POTENTIAL WAYS FORWARD

Another area of similarly high information content imaging is
multispectral or hyperspectral imaging, e.g., used for remote
sensing of the environment or astronomy. Thus, we could
potentially adapt methods used with hyperspectral imaging
for handling multiparametric MR images; for example, we
can seek to use linear principal component analysis or,
for improved results due to the inherent non-linear nature
of the problem, use machine learning (ML) approaches to
combine data with different parameters for particular tissue
characterization purposes.

Although they are still undergoing technical development,
as described above, we can potentially adapt VR displays to
enable better understanding of 3D spatial relationships within the
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multidimensional CMR data. However, this still effectively only
incorporates one additional dimension in the display.

We will likely need to develop and apply ML-based image
analysis methods, in order to improve the automated discovery of
salient regions/manifolds of the non-linear higher-dimensional
“spaces” of multidimensional/multiparametric CMR, which can
then be used for guided exploration of the data. As we have not
previously had direct access to such kinds of high-dimensional
data, developing the initial annotated data sets needed for the
training of such methods will still be challenging. Thus, we
will need to initially acquire and analyze such multidimensional
data on a sufficient number of normal subjects to be able to
establish regional normal ranges for such data, and we will
need to be able to register individual patient image data sets to
such normal values data. After the use of the initial supervised
machine learning methods, we can use unsupervised machine
learning methods for cardiac analytics which do not require
data annotations, such as those recently developed by our group
(14, 15); this is now an area of active research by many groups.

An advantage of these newer multidimensional CMR
methods is that they can provide the data on different
parameters in mutually spatially-registered ways. However,
different components of some data sets are likely to still have
different levels of signal-to-noise ratio (SNR) or different spatial
resolutions, e.g., withmultinuclear imaging. Thus, we will need to
find effective ways to combine data derived from the higher SNR
and resolution components of the imaging, e.g., for definition
of regions of interest for quantitative analysis, with the other
lower “quality” image components, for better integrated analysis
of the data.

As with conventional parameter mapping, quality assurance
and standardization of the data resulting from multidimensional
imaging will be needed before the results can be trusted enough
to be relied upon for clinical decision making. Imaging of
phantoms containing material with calibrated parameter values
can provide a minimum standard for such evaluation, but may
not adequately test for effects on the data of in vivo imaging,
such as due to motion. The validation of data related to motion-
related analysis of multidimensional images is also necessary
but challenging. Imaging of physical or numerical phantoms
with known motion properties, while useful, may again not
adequately assess the potential effects of in vivo imaging on the
derived numbers. The wide range of potential approaches to the
display of multidimensional data is a strength, but it will make
standardization of the displays more difficult.

An “ideal” viewing/analysis user interface for the display
of multidimensional/multiparametric CMR image data would
provide a set of fast and flexible interactive tools for exploring
the data set. These could include: (1) freely “cutting into”
the different parametric components of the data with MPR,

(2) the ability to freely move along or animate different time-
related dimensions, (3) the ability to flexibly synthesize new
combined displays from the component parameter images, (4)
interactive creation of MPR and VRT images from any of
these kinds of displays, and (5) options to use VR tools for

an enhanced understanding of 3D spatial relationships of the
displayed structures.

DISCUSSION

These new multidimensional/multiparametric CMR methods
have great clinical potential, through their ability to efficiently
create spatially registered images of multiple regional structure,
function, and tissue properties. However, due to their large size
and complexity, they also present multiple challenges related
to their effective display and analysis. Limits posed by human
perception, both in viewing displays and in integrating the
multidimensional data, impede our ability to fully grasp the
high levels of information that can potentially be contained in
these new data sets. Conventional display technology methods
and visualization techniques also have many limitations that can
restrict our ability to interact with these data. ML-based methods
are undergoing rapid development in many areas; in addition
to aiding the reconstruction of these large data sets, we may be
able to incorporate some aspects of their analysis directly into
the reconstruction process, such as automated segmentation of
cardiovascular structures and recovery of functional variables, as
well as identification and classification of regional abnormalities.

There is a great potential for gaining additional clinical
value from themultidimensional/multiparametric data produced
with these new imaging methods, once we develop appropriate
methods to handle the associated challenges of visualizing and
analyzing them.
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